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REAL ANALYTIC DEPENDENCE OF SIMPLE AND
DOUBLE LAYER POTENTIALS UPON PERTURBATION

OF THE SUPPORT AND OF THE DENSITY

MASSIMO LANZA DE CRISTOFORIS AND LUCIA ROSSI

ABSTRACT. We consider a hypersurface in Euclidean
space Rn parametrized by a diffeomorphism of the unit sphere
to Rn, and a density function on the hypersurface, which we
think as points in suitable Schauder spaces, and we consider
the dependence of the corresponding simple and double layer
potentials, which we also think as points in suitable Schauder
spaces, upon variation of the diffeomorphism and of the den-
sity, and we show a real analyticity theorem for such depen-
dence.

1. Introduction. In this paper, we plan to study the dependence
of simple and of double layer potentials upon the hypersurface of
integration, i.e., upon the support. We assume the hypersurface
of integration to be of sphere-type. Namely, we denote by Bn ≡
{x ∈ Rn : |x| < 1} the open unit ball in the Euclidean space Rn,
with n ≥ 2, and we consider our hypersurface to be assigned by a
diffeomorphism φ of ∂Bn onto φ (∂Bn) ⊆ Rn, such that φ (∂Bn) is an
(n−1)-dimensional manifold imbedded in Rn. Then we consider the set
A∂Bn

of such admissible functions φ, see Lemma 2.5, and we consider
the Schauder space Cm,α (∂Bn,Rn). The set Cm,α (∂Bn,Rn) ∩A∂Bn

is open in Cm,α (∂Bn,Rn), and we can think of φ as a point of such
a set. If f ∈ Cm,α (∂Bn,R), then the function f ◦ φ(−1) is defined on
φ (∂Bn), and it makes sense to consider the simple and double layer
potentials

v[φ, f ](ξ) ≡
∫
φ(∂Bn)

Sn (ξ−η) f ◦ φ(−1)(η) dση ∀ ξ ∈φ (∂Bn) ,

w[φ, f ](ξ) ≡
∫
φ(∂Bn)

∂

∂νφ(η)
[Sn (ξ−η)] f ◦ φ(−1)(η) dση ∀ ξ ∈φ (∂Bn) ,
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where Sn(·) denotes the fundamental solution of the Laplace operator in
Rn, and where νφ denotes the outward normal to the set I[φ] bounded
by φ (∂Bn), see Section 2. Then we can consider the functions

V [φ, f ](x) ≡ v[φ, f ] ◦ φ(x) ∀x ∈ ∂Bn,(1.1)
W [φ, f ](x) ≡ w[φ, f ] ◦ φ(x) ∀x ∈ ∂Bn .(1.2)

One can consider the nonlinear operator V [·, ·] of (Cm,α (∂Bn,Rn)∩
A∂Bn

)×Cm−1,α (∂Bn,R) to Cm,α (∂Bn,R) which takes (φ, f) to the
function V [φ, f ] defined above, and the nonlinear operator W [·, ·] of
(Cm,α (∂Bn,Rn) ∩A∂Bn

) × Cm,α (∂Bn,R) to Cm,α (∂Bn,R) which
takes (φ, f) to the function W [φ, f ] defined above.

The purpose of this paper is to show that the operators V [·, ·], W [·, ·]
defined above are real analytic, see Theorem 3.12. Then we also
compute all order differentials of V , W , cf., Proposition 3.14. Problems
such as those treated here are not new. A stability result for simple
layer potentials has been proved by Keldish [7, Lemma VIII] in order
to study stability properties of boundary value problems. Then we
mention a continuity result of Verchota, see Meyer [18, Theorem 7]
for simple layer potentials defined on Lipschitz hypersurfaces upon
variation of the hypersurface. Also in connection with the work of
this paper, we mention the study of the dependence of the Cauchy
integral

C[φ, f ](·) ≡ 1
2πi

∫
∂B2

f(t)φ′(t)
φ(t) − φ(·) dt

upon the pair (φ, f), and the contribution of Calderón, Coifman, Meyer,
McIntosh, David, whose work implies the analyticity of operators
related to C. For references to the various contributions of the above
authors to this issue, we refer to Lanza and Preciso [13, Section 1].
In particular, at least in case n = 2, a formula for the derivatives
of W could also be deduced by known corresponding formulas for
the derivatives of C. By Lanza and Preciso [13], the operator C
is complex analytic from (Cm,α (∂Bn,C) ∩ A∂Bn

) × Cm,α (∂Bn,C)
to Cm,α (∂Bn,C). The analyticity of C finds application in various
problems, see Lanza [12], Lanza and Preciso [14, 15] and Lanza and
Rogosin [16, 17]. Operators such as V , W or C appear in the study
of various problems, and one of the motivations to prove the real
analyticity of V , W is to analyze regular and singular perturbation
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problems for integral and differential equations of the type of those
treated in the above mentioned papers for C.

To prove our statement, we shall consider first the operator V [·, ·].
Indeed, the corresponding result for W [·, ·] can be deduced by that for
V [·, ·], and by well known formulas of classical potential theory.

We now briefly describe our strategy. Given a pair (φ0, f0) in the
set (Cm,α (∂Bn,Rn) ∩A∂Bn

) × Cm−1,α (∂Bn,R), we show that there
exists a 0 < δ < 1 and an open neighborhood W0 of φ0 such that all
functions φ in W0 can be extended to a diffeomorphism Eφ0 [φ] of the
annulus

Aδ ≡ {x ∈ Rn : 1 − δ < |x| < 1 + δ}
onto a neighborhood of φ(∂Bn). Next we set

A+
δ ≡ {x ∈ Rn : 1 − δ < |x| < 1} ,

A−
δ ≡ {x ∈ Rn : 1 < |x| < 1 + δ} ,

and we show that v[φ, f ] is uniquely determined by two harmonic func-
tions v+, v− defined in Eφ0 [φ](A+

δ ), and in Eφ0 [φ](A−
δ ), respectively,

and that the pair (v+, v−) is the unique solution of a coupled boundary
value problem, cf. Theorem 3.2. Next we exploit the diffeomorphism
Eφ0 [φ] in order to transform such a domain dependent problem for
(v+, v−) into a coupled boundary value problem for a pair of functions
(V +, V −) which determines uniquely V [φ, f ] and such that V + and
V − are defined on A+

δ and on A−
δ , respectively. Then we recast such

a boundary value problem for (V +, V −) into an abstract functional
equation in Banach space, which we analyze by means of the Implicit
Function Theorem, see proof of Proposition 3.11, in order to deduce
the real analyticity of (V +, V −), and thus of V [·, ·].

The paper is organized as follows. Section 2 is a section of preliminar-
ies, at the end of which we construct the extension operator Eφ0 [φ]. In
Section 3, we first introduce some known properties of layer potentials,
and then we introduce the boundary value problems for (v+, v−) and
for (V +, V −), which we need to prove our main Theorem 3.12. Then
in Proposition 3.14, we compute all order differentials of V , W .

2. Technical preliminaries and notation. We denote the norm
on a (real) normed space X by ‖ · ‖X . Let X and Y be normed
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spaces. We endow the product space X × Y with the norm defined
by ‖(x, y)‖X×Y ≡ ‖x‖X + ‖y‖Y for all (x, y) ∈ X ×Y , while we use the
Euclidean norm for Rn. For standard definitions of calculus in normed
spaces, we refer to Prodi and Ambrosetti [20]. The symbol N denotes
the set of natural numbers including 0. Throughout the paper, n is an
element of N \ {0, 1}. The inverse function of an invertible function
f is denoted f (−1), as opposed to the reciprocal of a complex-valued
function g, or the inverse of a matrixA, which are denoted g−1 and A−1,
respectively. A dot ‘·’ denotes the inner product in Rn, or the matrix
product between matrices with real entries. LetA be a matrix. Then At

denotes the transpose matrix of A, and trA denotes the trace of A and
Aij denotes the (i, j) entry of A. If A is invertible, we set A−t ≡ (

A−1
)t.

The set of r × r matrices with real entries is denoted Mr(R). Let
D ⊆ Rn. Then clD denotes the closure of D. For all R > 0, x ∈ Rn,
xj denotes the jth coordinate of x, |x| denotes the Euclidean modulus
of x in Rn, and Bn(x,R) denotes the ball {y ∈ Rn : |x − y| < R}.
For short, we set Bn ≡ Bn(0, 1). Let Ω be an open subset of Rn. The
space of m times continuously differentiable real-valued functions on
Ω is denoted by Cm(Ω,R), or more simply by Cm(Ω). D(Ω) denotes
the space of functions of C∞(Ω) with compact support. The dual
D′(Ω) denotes the space of distributions in Ω. Let f ∈ (Cm(Ω))n. The
sth component of f is denoted fs, and Df denotes the gradient matrix
(∂fs/∂xl)s,l=1,...,n. Let η ≡ (η1, . . . , ηn) ∈ Nn, |η| ≡ η1+· · ·+ηn. Then
Dηf denotes ∂|η|f/∂xη11 . . . ∂xηn

n . The subspace of Cm(Ω) of those
functions f such that f and its derivatives Dηf of order |η| ≤ m can be
extended with continuity to cl Ω is denoted Cm(cl Ω). The subspace of
Cm(cl Ω) whose functions have mth order derivatives that are Hölder
continuous with exponent α ∈ ]0, 1] is denoted Cm,α(cl Ω), cf., e.g.,
Gilbarg and Trudinger [4]. Let D ⊆ Rn. Then Cm,α(cl Ω,D) denotes
{f ∈ (Cm,α(cl Ω))n : f(cl Ω) ⊆ D}. Cm,α(cl Ω,Mr(R)) denotes the
space of functions of cl Ω to Mr(R), whose components are of class
Cm,α. Now let Ω be a bounded open subset of Rn. Then Cm(cl Ω)
endowed with the norm ‖f‖m ≡ ∑

|η|≤m supcl Ω |Dηf | is a Banach
space. If f ∈ C0,α(cl Ω), then its Hölder quotient |f : Ω|α is defined as
sup {|f(x) − f(y)|/|x− y|α : x, y ∈ cl Ω, x 
= y}. The space Cm,α(cl Ω),
endowed with its usual norm ‖f‖m,α = ‖f‖m +

∑
|η|=m |Dηf |α, is well

known to be a Banach space. We say that a bounded open subset of
Rn is of class Cm or of class Cm,α, if it is a manifold with boundary
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imbedded in Rn of class Cm or Cm,α, respectively, cf., e.g., Gilbarg
and Trudinger [4, Section 6.2]. In order to compactify our notation, we
find it convenient to set

(2.1) Cm,0 ≡ Cm.

Thus for example, by a manifold of class Cm,0, we just mean a manifold
of class Cm.

We summarize in the following statement some known properties of
Schauder spaces, which we need in the sequel, cf., e.g., Gilbarg and
Trudinger [4], Lanza [10, Section 2, Lemmas 3.1, 4.26, Theorem 4.28].

Lemma 2.1. Let m, r ∈ N, r > 0; α, β ∈ ]0, 1]. Let Ω, Ω1 be
bounded connected open subsets of Rn of class C1. Then

(i) The pointwise product is continuous in Cm,α(cl Ω).

(ii) Cm+1(cl Ω) is continuously imbedded in Cm,1(cl Ω).

(iii) If α > β, then Cm,α(cl Ω) is compactly imbedded in Cm,β(cl Ω).

(iv) If m > 0 and if (φ, ψ) ∈ Cm,α(cl Ω1) × Cm,α(cl Ω, cl Ω1), then
φ ◦ ψ ∈ Cm,α(cl Ω).

(v) If m > 0, φ ∈ Cm,α(cl Ω,Rn), φ is injective and detDφ 
= 0 in
cl Ω, then the inverse function φ(−1) ∈ Cm,α(clφ(Ω),Rn).

(vi) The pointwise matrix product, which reduces to the point-
wise product of functions when r = 1, is bilinear and continu-
ous and henceforth real analytic from the space Cm,α(cl Ω,Mr(R)) ×
Cm,α(cl Ω,Mr(R)) to the space Cm,α(cl Ω,Mr(R)).

(vii) The map F �→ F−1 is real analytic from the set {F ∈ Cm,α(cl Ω ,
Mr(R)) : detF 
= 0 on clΩ} to itself, and its differential at the element
F0 is given by the map M �→ −F−1

0 ·M · F−1
0 .

We note that throughout the paper ‘analytic’ means ‘real analytic.’ For
the definition and properties of analytic operators, we refer to Prodi
and Ambrosetti [20, p. 89].

As was mentioned in the introduction, we shall deal with diffeomor-
phisms of open subsets of Rn. Then we introduce the following lemma,
see [10, Corollary 4.24, Proposition 4.29].
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Lemma 2.2. Let Ω be a bounded connected open subset of Rn of
class C1. Then the set

AclΩ ≡ {
Φ ∈ C1(cl Ω,Rn) : Φ is injective, detDΦ(x) 
= 0, ∀x ∈ cl Ω

}
is open in C1(cl Ω,Rn).

Now let m ∈ N \ {0}, α ∈ [0, 1]. As is well known, a subset M of Rn

is a differential manifold of dimension s and of class Cm,α imbedded
in Rn, if, for every P ∈ M , there exist a neighborhood W of P in
Rn and a parametrization ψ ∈ Cm,α (clBs,Rn) such that ψ is a
homeomorphism of Bs onto W ∩M , ψ(0) = P , and Dψ has rank s
at all points of cl Bs. If we further assume that M is compact, then
there exist P1, . . . ,Pr ∈ M , and parametrizations {ψi}i=1,...,r, with
ψi ∈ Cm,α (cl B s,Rn) such that ∪ri=1ψi(Bs) = M . Then there exist
0 ≤ θi ∈ D(Rn) for i = 1, . . . , r such that

(2.2)
r∑
i=1

θi(x) = 1 ∀x ∈M, M ∩ supp θi ⊆ ψi(Bs), i = 1, . . . , r.

We denote by Cm,α (M) the linear space of functions f of M to R such
that f ◦ ψi ∈ Cm,α (clBs) for all i = 1, . . . , r, and we set

‖f‖Cm,α(M) ≡ sup
i=1,...,r

‖f ◦ ψi‖Cm,α(clBs) ∀ f ∈ Cm,α (M) .

It is well known that, by choosing a different finite family of parametriza-
tions as {ψi}i=1,...,r, we would obtain an equivalent norm. Also,
the normed space

(
Cm,α (M) , ‖ · ‖Cm,α(M)

)
is known to be complete.

Then we have the following, cf., e.g., Troianiello [23, Theorem 1.3,
Lemma 1.5].

Lemma 2.3. Let m ∈ N \ {0}, α ∈ [0, 1], cf. (2.1). Let Ω be a
bounded open connected subset of Rn of class Cm,α. Then

(i) ∂Ω is a manifold of class Cm,α and codimension 1, and the
restriction map is linear and continuous from Ck,α (cl Ω) to Ck,α (∂Ω)
for all k = 0, . . . ,m.

(ii) There exists a linear and continuous extension operator F of
Cm,α (∂Ω) to Cm,α (cl Ω) such that F[f ]|∂Ω = f for all f ∈ Cm,α (∂Ω).
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(iii) Let R > 0 be such that cl Ω ⊆ Bn(0, R). Then there exists a
linear and continuous operator FR of Cm,α (cl Ω) to Cm,α (clBn(0, R))
such that FR[f ]|cl Ω = f for all f ∈ Cm,α (cl Ω).

We now introduce the following variant of [10, Proposition 4.29],
which can be proved by a straightforward modification of the proof of
Proposition 4.29 of [10].

Lemma 2.4. Let K be a compact subset of Rn. Let C0,1(K,Rn)
denote the space of Lipschitz continuous functions of K to Rn. Let
|f : K|1 denote the Lipschitz constant of f ∈ C0,1(K,Rn). Let

lK [f ] ≡ inf
{ |f(x) − f(y)|

|x− y| : x, y ∈ K, x 
= y

}
∀ f ∈ C0,1(K,Rn).

Then l[·] is continuous from C0,1(K,Rn) endowed with the semi-norm
|· : K|1 to [0,+∞[.

We now introduce the following variant of [10, Theorem 4.18, Propo-
sition 4.29].

Lemma 2.5. Let φ ∈ C1 (∂Bn,Rn). Then l∂Bn
[φ] > 0 holds if

and only if φ is injective and the differential dφ(p) is injective for all
p ∈ ∂Bn. The map l∂Bn

[·] of C1 (∂Bn,Rn) to [0,+∞[ is continuous
and the set

A∂Bn
≡ {

φ ∈ C1 (∂Bn,Rn) : l∂Bn
[φ] > 0

}
is open in C1 (∂Bn,Rn).

Proof. As is well known, there exists Φ ∈ C1 (Rn,Rn) such
that Φ|∂Bn

= φ, see, for example, the construction of the proof of
Lemma 6.38 of Gilbarg and Trudinger [4]. The tangent space Tp(∂Bn)
to ∂Bn at the point p of ∂Bn is easily seen to coincide with the linear
subspace of Rn generated by the elements v ∈ Rn such that |v| = 1 and
such that there exist sequences {xj}j∈N, {yj}j∈N in ∂Bn with xj 
= yj
for all j, limj→∞ xj = p = limj→∞ yj , limj→∞(xj − yj)/|xj − yj | = v.
Then condition l∂Bn

[φ] > 0 can be seen to be equivalent to the injec-
tivity of φ together with condition DΦ(p) · v 
= 0 for all v ∈ Tp (∂Bn),
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see [10, Theorem 4.18]. Since dφ(p)[v] = DΦ(p) ·v for all v ∈ Tp(∂Bn),
then the proof is complete. We now turn to the proof of the continu-
ity of l∂Bn

[·]. By Lemma 2.4 it suffices to note that C1 (∂Bn,Rn) is
continuously imbedded in the space C0,1 (∂Bn,Rn) endowed with the
semi-norm |· : ∂Bn|1, a fact which follows by the well-known existence
of a continuous extension operator of C1 (∂Bn,Rn) into C1 (clBn,Rn),
and by Lemma 2.1 (ii).

We now note that if φ ∈ A∂Bn
, then by the Jordan-Leray separation

theorem, cf., e.g., Deimling [2, Theorem 5.2], the set Rn \ φ(∂Bn) has
exactly two connected components. We denote by I[φ] the bounded
connected component, and by E [φ] the unbounded connected compo-
nent. Then we have the following.

Lemma 2.6. Let m ∈ N \ {0}, α ∈ [0, 1], cf. (2.1). If φ ∈
Cm,α (∂Bn,Rn) ∩ A∂Bn

, then I[φ] is a bounded open connected set
of class Cm,α, and ∂I[φ] = φ(∂Bn) = ∂E [φ].

Proof. We first show that φ(∂Bn) is a manifold of class Cm,α

imbedded in Rn of codimension 1. Let p ∈ φ(∂Bn), q ∈ ∂Bn, p = φ(q).
Let ψ ∈ Cm,α (clBn−1,Rn) be a local parametrization for ∂Bn around
q. By assumption, φ◦ψ ∈ Cm,α (clBn−1,Rn), φ◦ψ(0) = p, andD(φ◦ψ)
has rank n−1 at all points of clBn−1. Since ∂Bn is compact and φ is a
continuous bijection of ∂Bn onto φ(∂Bn), then φ is a homeomorphism
of ∂Bn onto φ(∂Bn). Accordingly, φ ◦ψ is a homeomorphism of Bn−1

onto a neighborhood of p in φ(∂Bn). Since φ(∂Bn) is homeomorphic
to ∂Bn, then we have ∂I[φ] = φ(∂Bn) = ∂E [φ], cf., e.g., Dugundji
[3, Theorem 2.4, Chapter XVII]. We now show that if p ∈ φ(∂Bn),
then I[φ] is locally around p an open set of class Cm,α. We can write
p ≡ (p′, pn) with p′ ∈ Rn−1, p ∈ R. Since ∂I[φ] = φ(∂Bn) is a
manifold embedded in Rn, ∂I[φ] is locally around p a graph. We can
assume that there exist r > 0, δ > 0, g ∈ Cm,α (clBn−1(p′, r)) with
nonvanishing gradient such that

{(x′, xn) ∈ Bn−1(p′, r)×] − δ + pn, δ + pn[: g(x′) = xn}
= (Bn−1(p′, r)×] − δ + pn, δ + pn[) ∩ ∂I[φ].
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Clearly, the sets

A1 ≡ {(x′, xn) ∈ Bn−1(p′, r)×] − δ + pn, δ + pn[: g(x′) < xn} ,
A2 ≡ {(x′, xn) ∈ Bn−1(p′, r)×] − δ + pn, δ + pn[: g(x′) > xn} ,

are both connected and must be contained either in the connected
component I[φ] or in the connected component E [φ]. However, they
cannot be both contained in the same component, otherwise equality
∂I[φ] = φ(∂Bn) = ∂E [φ] would be violated. Then I[φ] is locally around
p an open set of class Cm,α.

Next we show that each ‘admissible’ φ can be extended to a diffeo-
morphism of an annular neighborhood of ∂Bn.

Proposition 2.7. Let m ∈ N \ {0}, α ∈ [0, 1], cf. (2.1). If
φ belongs to Cm,α (∂Bn,Rn) ∩ A∂Bn

, then there exist δ ∈]0, 1[ and
Φ ∈ Cm,α (clAδ,Rn) ∩ AclAδ

such that

(i) Φ(x) = φ(x) for all x ∈ ∂Bn.

(ii) Φ
(
A+
δ

)
is a bounded open connected subset of Rn of class Cm,α

contained in I[φ], and ∂Φ
(
A+
δ

)
= Φ ((1 − δ)∂Bn) ∪ Φ (∂Bn).

(iii) Φ
(
A−
δ

)
is a bounded open connected subset of Rn of class Cm,α

contained in E [φ], and ∂Φ
(
A−
δ

)
= Φ (∂Bn) ∪ Φ ((1 + δ)∂Bn).

Proof. We denote by νφ(P ) the exterior normal to I[φ] at the point P
of φ(∂Bn). By classical differential topology, one may think of defining
Φ(x) as φ (x/|x|) + (|x| − 1)νφ (φ (x/|x|)) for a sufficiently small δ. For
such a definition, Φ(Aδ) would be a so-called tubular neighborhood
of φ(∂Bn). However, the problem with such a construction is that
the normal field νφ is only of class Cm−1,α when φ is of class Cm,α,
while we need Φ of class Cm,α. Then we proceed as follows. We
note that νφ ◦ φ ∈ C0 (∂Bn,Rn), and that accordingly, by exploiting
the local parametrizations of ∂Bn, a partition of unity as in (2.2)
and Weierstrass Approximation Theorem, νφ ◦ φ can be approximated
uniformly by a vector field a of class C∞ (∂Bn,Rn). We take a ∈
C∞ (∂Bn,Rn) such that |a(x)| = 1 for all x ∈ ∂Bn and such that
a(x)·νφ(φ(x)) > 1/2 for all x ∈ ∂Bn. Obviously, the function Φ defined
by Φ(x) ≡ φ (x/|x|) + (|x| − 1)a (x/|x|) for all x ∈ clAδ, is of class
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Cm,α (clAδ,Rn) for all 0 < δ < 1. We now show that the Jacobian of Φ
is nonzero at all points q of ∂Bn. It suffices to show that if v1, . . . ,vn−1

is a basis for the tangent space Tq(∂Bn), and if vn ≡ q/|q| is the outward
normal to ∂Bn at q, then the vectors {dΦ(q)[vi]}i=1,...,n are linearly
independent. By simple computations, we have dΦ(q)[vi] = dφ(q)[vi]
for 1 ≤ i ≤ n − 1, and dΦ(q)[vn] = a(q). Then we conclude that
the vectors {dΦ(q)[vi]}i=1,...,n are linearly independent, otherwise a(q)
belongs to the space generated by the vectors {dΦ(q)[vi]}i=1,...,n−1,
i.e., a(q) belongs to the tangent space to φ(∂Bn) at p = φ(q), in
contradiction to assumption a(q) ·νφ(φ(q)) > 1/2. By taking 0 < δ < 1
sufficiently small, we can assume that det(DΦ(x)) 
= 0 for all x ∈ clAδ.
We now show that by possibly shrinking δ, we can assume that Φ is
injective. Assume by contradiction that for all j ∈ N there exist xj ,
yj ∈ clA2−j with xj 
= yj , Φ(xj) = Φ(yj). By possibly extracting
subsequences, we can assume that the sequences {xj}j∈N, {yj}j∈N have
limits x, y in Rn, respectively. Obviously, x, y ∈ ∂Bn and Φ(x) = Φ(y).
Since Φ|∂Bn

= φ, we must have x = y. By taking j sufficiently large,
we can assume that xj , yj ∈ Bn(x, δ). Then for such js we have

(2.3) 0 =
Φ(xj) − Φ(yj)

|xj − yj | =
∫ 1

0

DΦ(xj + (yj − xj)t) · xj − yj
|xj − yj | dt.

By further selecting subsequences, we can assume that limj→∞(xj − yj)/
|xj − yj | exists equal to some v ∈ ∂Bn. Then by taking the limit
as j → ∞ in (2.3), we deduce that DΦ(x) · v = 0, in contradiction
with assumption det (DΦ(x)) 
= 0. Thus we have proved that for
0 < δ < 1 sufficiently small, Φ ∈ AclAδ

. Then, by a standard ar-
gument, we have that Φ

(
A±
δ

)
are bounded open connected subsets

of Rn of class Cm,α and that ∂Φ
(
A+
δ

)
= Φ ((1 − δ)∂Bn) ∪ Φ (∂Bn),

∂Φ
(
A−
δ

)
= Φ (∂Bn) ∪ Φ ((1 + δ)∂Bn), see Lamberti and Lanza [9,

Lemmas 2.2, 2.4]. Moreover, Φ
(
A±
δ

)
are connected and contained in

Rn \ φ(∂Bn). Then each of such two sets must be contained either in
I[φ] or in E [φ]. If both Φ

(
A+
δ

)
and Φ

(
A−
δ

)
are contained in the same

connected component of Rn \ φ(∂Bn), say in I[φ], then the points of
φ(∂Bn), which are interior to Φ(Aδ) = Φ(A+

δ )∪φ(∂Bn)∪Φ(A−
δ ), would

not be boundary points of E [φ], contrary to Lemma 2.6. Then Φ(A+
δ )

and Φ(A−
δ ) cannot be contained in the same component of Rn\φ(∂Bn).

We now show that with our choice of a(·), one must necessarily have
Φ(A−

δ ) ⊆ E [φ]. Assume by contradiction that Φ(A−
δ ) ⊆ I[φ]. Then we
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take q ∈ ∂Bn. Since νφ(φ(q)) is the exterior normal to I[φ] at φ(q),
then there exists 0 < η0 < δ such that φ(q) + ηνφ(φ(q)) ∈ E [φ] for
0 < η < η0. Moreover, we must have

φ

(
q + ηq

|q + ηq|
)

+ (|q + ηq| − 1)a
(
q + ηq

|q + ηq|
)

= φ(q) + ηa(q) ∈ I[φ]

∀ η ∈ ]0, δ0[ .

Then the segment ]Φ(q) + ηνφ(φ(q)),Φ(q) + ηa(q)[ must contain a
point φ(qη) with qη ∈ ∂Bn for all 0 < η < η0. If equality qη = q holds
for at least one η, then 0 belongs to the segment ]ηνφ(φ(q)), ηa(q)[, in
contradiction with the positivity of a(q)·νφ(φ(q)). Then we have q 
= qη
for all 0 < η < η0. Possibly choosing a smaller η0, we have

φ(qη) − φ(q)
|qη − q| =

∫ 1

0

DΦ(q + t(qη − q)) · qη − q

|qη − q| dt,

for all 0 < η < η0. Clearly, there exists a decreasing sequence {ηk}k∈N

in ]0, η0[ with 0 limiting value such that q̃ ≡ limk→∞(qηk
− q)/|qηk

− q|
exists in ∂Bn. Clearly limk→∞ φ(qηk

) = φ(q), and limk→∞ qηk
= q.

Then limk→∞(φ(qηk
) − φ(q))/|qηk

− q| = DΦ(q) · q̃, and thus we have

lim
k→∞

φ(qηk
) − φ(q)

|φ(qηk
) − φ(q)| =

DΦ(q) · q̃
|DΦ(q) · q̃| .

Since DΦ(q) · q̃/|DΦ(q) · q̃| belongs to the tangent space to φ(∂Bn) at
φ(q), we must have

(2.4) lim
k→∞

φ(qηk
) − φ(q)

|φ(qηk
) − φ(q)| · νφ(φ(q)) = 0.

Now by definition of qη, there exists τη ∈ ]0, 1[ such that

(2.5) φ(qη) = φ(q) + ηa(q) + τη (ηνφ(φ(q)) − ηa(q))

However, by (2.5), we have

lim
k→∞

φ(qηk
) − φ(q)

|φ(qηk
) − φ(q)| · νφ(φ(q))

= lim
k→∞

a(q) + τηk
(νφ(φ(q)) − a(q))

|a(q) + τηk
(νφ(φ(q)) − a(q))| · νφ(φ(q)).
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We also have [a(q)+τηk
(νφ(φ(q))−a(q))]·νφ(φ(q)) ≥ 1/2. Furthermore,

|a(q) + τηk
(νφ(φ(q)) − a(q))| ≤ 1, and accordingly

lim
k→∞

a(q) + τηk
(νφ(φ(q)) − a(q))

|a(q) + τηk
(νφ(φ(q)) − a(q))| · νφ(φ(q)) ≥ 1

2
,

contrary to (2.4). Thus the proof is complete.

Now we have the following, which shows the existence of a local
extension operator for diffeomorphisms.

Proposition 2.8. Let m ∈ N \ {0}, α ∈ [0, 1], cf. (2.1). If φ0 be-
longs to Cm,α (∂Bn,Rn) ∩ A∂Bn

, then there exist δ ∈]0, 1[, and Φ0 ∈
Cm,α (clAδ,Rn)∩AclAδ

satisfying (i), (ii), (iii) of Proposition 2.7, and
an open neighborhood W0 of φ0 contained in Cm,α (∂Bn,Rn) ∩A∂Bn

,
and a linear and continuous extension operator F0 of Cm,α (∂Bn,Rn)
to Cm,α (clAδ,Rn) such that the map E0 of Cm,α (∂Bn,Rn) to
Cm,α (clAδ,Rn) defined by

(2.6) E0[φ] ≡ Φ0 + F0[φ− φ0] ∀φ ∈ Cm,α (∂Bn,Rn)

maps W0 to Cm,α (clAδ,Rn) ∩AclAδ
, and satisfies the following con-

ditions.

(i) E0[φ]|∂Bn
= φ, for all φ ∈ W0.

(ii) E0[φ](x) = Φ0(x), for all x ∈ (1 − δ)∂Bn ∪ (1 + δ)∂Bn and for
all φ ∈ W0.

(iii) E0[φ]
(
A+
δ

)
is a bounded open connected subset of Rn of class

Cm,α contained in I[φ], and ∂
(
E0[φ]

(
A+
δ

))
= Φ0 ((1 − δ)∂Bn) ∪

φ (∂Bn), for all φ ∈ W0.

(iv) E0[φ]
(
A−
δ

)
is a bounded open connected subset of Rn of

class Cm,α contained in E [φ], and ∂
(
E0[φ]

(
A−
δ

))
= φ (∂Bn) ∪

Φ0 ((1 + δ)∂Bn), for all φ ∈ W0.

Proof. Let δ and Φ0 be as in Proposition 2.7 for the map φ0.
By Lemma 2.3, there exists a linear and continuous operator F of
Cm,α (∂Bn,Rn) to Cm,α (clBn(0, 1 + δ),Rn) such that F[φ]|∂Bn

= φ
for all φ ∈ Cm,α (∂Bn,Rn). Possibly multiplying F by a function of
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C∞ (Rn) with compact support contained in Aδ and equal to 1 on
∂Bn, we can clearly assume that F[φ](x) = 0 for all x ∈ ∂Aδ and
φ ∈ Cm,α (∂Bn,Rn). Now we take F0[φ] ≡ F[φ]|clAδ

for all φ ∈
Cm,α (∂Bn,Rn). Since E0 is continuous and Cm,α (clAδ,Rn)∩AclAδ

is open in Cm,α (clAδ,Rn), we conclude that there exists an open
neighborhood W0 of φ0 such that E0 [W0] ⊆ Cm,α (clAδ,Rn)∩AclAδ

.
Properties (i) and (ii) hold by our choice of F0 and by (2.6). By a
simple topological argument, cf., e.g., Lamberti and Lanza [9, Lemmas
2.2, 2.4], to prove statement (iii), it suffices to show that E0[φ]

(
A+
δ

)
is included in I[φ]. By Lemma 2.6 and by Proposition 2.7 (ii), we
have Φ0 ((1 − δ)∂Bn) ⊆ I[φ0]. Since the norm in Cm,α (∂Bn,Rn)
is stronger than that of the uniform convergence, possibly shrinking
W0, we can assume that Φ0 ((1 − δ)∂Bn) ⊆ I[φ] for all φ ∈ W0.
Since E0[φ]

(
A+
δ

)
is an open connected subset of Rn \ {φ(∂Bn)},

we either have E0[φ]
(
A+
δ

) ⊆ I[φ], or E0[φ]
(
A+
δ

) ⊆ E [φ]. Since
∂
(
E0[φ]

(
A+
δ

))
= Φ0 ((1 − δ)∂Bn) ∪ φ (∂Bn) ⊆ clI[φ], we must have

E0[φ]
(
A+
δ

) ⊆ I[φ], and the proof of statement (iii) is complete. The
proof of statement (iv) is similar.

In the sequel, we shall also need the following, which can be proved
by a straightforward argument based on the connectivity of A±

δ and on
Lemma 2.6, see also Lamberti and Lanza [9, Lemmas 2.2, 2.4].

Lemma 2.9. Let m ∈ N \ {0}, α ∈ [0, 1], cf. (2.1), δ ∈ ]0, 1[. Then
the following statements hold.

(i) If Φ ∈ AclAδ
, then φ ≡ Φ|∂Bn

∈ A|∂Bn
.

(ii) The set A′
clAδ

≡ {
Φ ∈ AclAδ

: Φ(A +
δ ) ⊆ I[Φ|∂Bn

]
}

is open in
AclAδ

and Φ(A−
δ ) ⊆ E [Φ|∂Bn

] for all Φ ∈ A′
clAδ

.

(iii) If Φ ∈ Cm,α (clAδ,Rn) ∩ A′
clAδ

, then both Φ(A+
δ ) and Φ(A−

δ )
are open sets of class Cm,α, and ∂Φ

(
A+
δ

)
= Φ ((1 − δ)∂Bn)∪Φ (∂Bn),

∂Φ
(
A−
δ

)
= Φ ((1 + δ)∂Bn) ∪ Φ (∂Bn).

We note that, by definition, the operator E0[·] of Proposition 2.8 has
values in Cm,α (clAδ,Rn) ∩A′

clAδ
.



150 M. LANZA DE CRISTOFORIS AND L. ROSSI

3. Introduction of a modified problem and real analyticity
of the layer potentials. Let Sn be the function of Rn \ {0} to R
defined by

Sn(ξ) ≡
{
s−1
n log |ξ| ∀ ξ ∈ Rn \ {0}, if n = 2,

(2 − n)−1s−1
n |ξ|2−n ∀ ξ ∈ Rn \ {0}, if n > 2,

where sn denotes the (n − 1) dimensional measure of ∂Bn. Sn is well
known to be the fundamental solution of the Laplace operator. Clearly,
we have DSn(ξ) = s−1

n ξ/|ξ|n for n ≥ 2. We collect in the following
statement some known facts in classical potential theory.

Theorem 3.1. Let m ∈ N\ {0}, α ∈ ]0, 1[. Let Ω be a bounded open
subset of Rn of class Cm,α. Then the following statements hold.

(i) If µ ∈ Cm−1,α (∂Ω), then the function v of Rn to R defined by

v(ξ) ≡
∫
∂Ω

Sn(ξ − η)µ(η) dση ∀ ξ ∈ Rn

is continuous in Rn and harmonic in Rn \ ∂Ω. The function v+ ≡
v|cl Ω belongs to Cm,α (cl Ω), and the function v− ≡ v|Rn\Ω belongs
to Cm,α (clBn(0, R) \ Ω) for all R > 0 such that cl Ω ⊆ Bn(0, R).
Moreover

(3.1) Dv+(ξ) · νΩ(ξ) −Dv−(ξ) · νΩ(ξ) = −µ(ξ), ∀ ξ ∈ ∂Ω,

where νΩ(x) denotes the exterior normal to ∂Ω at x.

(ii) If µ ∈ Cm,α (∂Ω), then the function w of Rn \ ∂Ω to R defined
by

(3.2) w(ξ) ≡
∫
∂Ω

∂

∂νΩ(η)
[Sn(ξ − η)]µ(η) dση ∀ ξ ∈ Rn \ ∂Ω

is harmonic. The restriction w|Ω can be extended uniquely to an
element w+ of Cm,α (cl Ω), and the restriction w|Rn\clΩ can be extended
uniquely to an element w− of Cm,α (Rn \ Ω), and we have

(3.3) w+−w− = µ(ξ), Dw+ ·νΩ(ξ)−Dw− ·νΩ(ξ) = 0 ∀ ξ ∈ ∂Ω.
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If ξ ∈ ∂Ω, then

(3.4)

∫
∂Ω

∂

∂νΩ(η)
[Sn(ξ − η)]µ(η) dση = w+(ξ) − 1

2
µ(ξ),∫

∂Ω

∂

∂νΩ(η)
[Sn(ξ − η)] dση =

1
2
.

(iii) If µ ∈ C0,α (∂Ω), and w is as in (3.2), then we have

(3.5) w(ξ) = −
n∑
j=1

∂

∂ξj

{∫
∂Ω

µ(η)(νΩ)j(η)Sn(ξ − η) dση

}
,

for all ξ ≡ (ξ1, . . . , ξn) ∈ Rn \ ∂Ω.

(iv) If µ ∈ Cm,α (∂Ω), U is an open neighborhood of ∂Ω in Rn,
µ̃ ∈ Cm (U), µ̃|∂Ω = µ, and w is as in (3.2), then the following holds

(3.6)

∂w

∂ξi
=

n∑
j=1

∂

∂ξj

{∫
∂Ω

[
(νΩ)i(η)

∂µ̃

∂ηj
(η)−(νΩ)j(η)

∂µ̃

∂ηi
(η)

]
Sn(ξ−η)dση

}
,

for all ξ ≡ (ξ1, . . . , ξn) ∈ Rn \ ∂Ω.

Proof. Statement (iii) follows by differentiation under the integral
sign. We prove statement (iv) by the following argument of Kupradze
et al. [8, p. 315] for n = 3. Clearly,

(3.7)
∂

∂ξi

[ n∑
j=1

(νΩ)j(η)
∂

∂ηj

(
Sn(ξ − η)

)]

=
n∑
j=1

[
(νΩ)j(η)

∂

∂ηi
− (νΩ)i(η)

∂

∂ηj

](
∂

∂ξj
(Sn(ξ − η))

)
,

for all ξ ≡ (ξ1, . . . , ξn) ∈ Rn \ ∂Ω and η ≡ (η1, . . . , ηn) ∈ ∂Ω. Now
we fix a ξ ∈ Rn \ ∂Ω, and we take ϕ ∈ D (Rn), suppϕ ⊆ U , ϕ = 1
in a neighborhood of ∂Ω, ϕ = 0 in a neighborhood of ξ, and we set
ψ(η) ≡ ϕ(η)µ̃(η)(∂/∂ξj) (Sn(ξ − η)). Clearly ψ ∈ C1 (Rn), and thus
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by approximating ψ on cl Ω with smooth functions, and by applying
the Divergence Theorem, we can conclude that

(3.8)
∫
∂Ω

[
(νΩ)j(η)

∂ψ(η)
∂ηi

− (νΩ)i(η)
∂ψ(η)
∂ηj

]
dση = 0.

Then statement (iv) follows by (3.7), by (3.8), and by differentiation
under the integral sign. We now turn to the first two statements. The
continuity of v in Rn, and the validity of (3.1), (3.3) and (3.4) are well
known in classical Potential Theory, cf., e.g., Hackbusch [5, Theorems
8.1.9, 8.2.8, 8.2.13, 8.2.15]. Now let µ ∈ Cm−1,α (∂Ω). Clearly,

∂v

∂ξi
=

∫
∂Ω

∂

∂ξi
(Sn(ξ − η))µ(η) dση, ∀ ξ ≡ (ξ1, . . . , ξn) ∈ Rn \ ∂Ω.

Then by Miranda [19, p. 307], we can assert that ∂v+/∂ξi∈Cm−1,α(cl Ω),
∂v−/∂ξi ∈ Cm−1,α (Rn \ Ω), for all i = 1, . . . , n, and the proof of
(i) is complete. The membership of w+ in Cm,α (cl Ω) and of w− in
Cm,α (Rn \ Ω) for µ ∈ Cm,α (∂Ω) is an immediate consequence of state-
ments (i), (iii) and (iv).

We now show that the pair (v+, v−) is the unique solution of a coupled
boundary value problem by means of the following.

Theorem 3.2. Let m ∈ N \ {0}, α ∈ ]0, 1[, δ ∈ ]0, 1[. Let
Φ ∈ Cm,α (clAδ,Rn) ∩ A′

clAδ
, φ ≡ Φ|∂Bn

. Let νφ denote the exterior
normal to φ (∂Bn). If f ∈ Cm−1,α (∂Bn), then the boundary value
problem
(3.9)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆v+ = 0 in Φ
(
A+
δ

)
,

∆v− = 0 in Φ
(
A−
δ

)
,

v+ − v− = 0 on φ (∂Bn),
Dv+ · νφ −Dv− · νφ = −f ◦ φ(−1) on φ (∂Bn),
v+(ξ) =

∫
φ(∂Bn)

Sn(ξ − η)f ◦ φ(−1)(η) dση ∀ ξ ∈ Φ ((1 − δ)∂Bn),

v−(ξ) =
∫
φ(∂Bn)

Sn(ξ − η)f ◦ φ(−1)(η) dση ∀ ξ ∈ Φ ((1 + δ)∂Bn),

where the Laplacian is understood in the sense of distributions, has one
and only one solution (v+, v−) ∈ Cm,α

(
cl Φ

(
A+
δ

))×Cm,α (
cl Φ

(
A−
δ

))
.
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Furthermore, we have

(3.10)

v+(ξ) =
∫
φ(∂Bn)

Sn(ξ − η)f ◦ φ(−1)(η) dση ∀ ξ ∈ Φ
(
A+
δ

)
,

v−(ξ) =
∫
φ(∂Bn)

Sn(ξ − η)f ◦ φ(−1)(η) dση ∀ ξ ∈ Φ
(
A−
δ

)
.

Proof. By known properties of layer potentials, see Theorem 3.1,
the boundary value problem (3.9) admits the solution defined by the
righthand side of (3.10). We now turn to prove the uniqueness.
Assume that (v+

1 , v
−
1 ) and (v+

2 , v
−
2 ) belong to Cm,α

(
cl Φ

(
A+
δ

)) ×
Cm,α

(
cl Φ

(
A−
δ

))
and solve (3.9). Then we consider the function u of

cl Φ (Aδ) to R defined by setting u ≡ v+
1 −v+

2 on clΦ
(
A+
δ

)
, u ≡ v−1 −v−2

on cl Φ
(
A−
δ

)
(note that v+

1 − v+
2 = v−1 − v−2 on φ (∂Bn)). By (3.9),

u and Du · νφ have zero jump across φ (∂Bn). Then by a standard
argument based on the Divergence Theorem, one can easily show that
the continuous function u solves the Laplace equation in the sense of
distributions in Φ (Aδ). Since u vanishes on ∂Φ (Aδ), we conclude that
u = 0.

Now the problem with (3.9) is that it is defined on a domain which
depends on Φ. To transform such a problem into a problem defined
on the fixed domain Aδ, we need to change the variable in (3.9) by
means of the function Φ. To do so, we first of all need to know how
the normals and the hypersurface area elements change, and we see it
in the following Lemma 3.3. However, we will have to face another
problem. Namely, if m = 1, the map Φ is only one time continuously
differentiable, and accordingly, we have to explain how we plan to
change the variables in the Laplace operators which appear in (3.9).
We do so by means of Lemma 3.4 below. Both lemmas are of immediate
verification.

Lemma 3.3. Let Ω be a bounded open subset of Rn of class C1. Let
νΩ be the exterior normal to ∂Ω. Let Φ ∈ C1 (cl Ω,Rn)∩AclΩ. Let νΦ
denote the exterior normal to ∂Φ(Ω). Then we have the following.



154 M. LANZA DE CRISTOFORIS AND L. ROSSI

(i) νΦ(Φ(x))=(DΦ(x))−t · νΩ(x)/| (DΦ(x))−t · νΩ(x)| for all x∈∂Ω.

(ii) If ω ∈ L1 (Φ(∂Ω)), then∫
Φ(∂Ω)

ω(η) dση =
∫
∂Ω

ω ◦ Φ(y)σn[Φ](y) dσy,

where σn[Φ] = | detDΦ|| (DΦ)−t · νΩ|.
(iii) If u ∈ C1 (cl Φ (Ω)), x ∈ ∂Ω, then we have

∂u

∂νΦ
(Φ(x)) = D (u ◦ Φ) (x) · (DΦ(x))−1 · (DΦ(x))−t · νΩ∣∣∣(DΦ(x))−t · νΩ

∣∣∣ ,
for all x ∈ ∂Ω.

Lemma 3.4. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω be a bounded open
connected subset of Rn. The set

Ym−1,α (Ω) ≡
{

(w1, . . . , wn) ∈ Cm−1,α (cl Ω,Rn) :

n∑
j=1

∫
Ω

wj
∂ψ

∂xj
dx = 0 ∀ψ ∈ D (Ω)

}

is a closed linear subspace of Cm−1,α (cl Ω,Rn). Let ΠΩ denote the
canonical projection of Cm−1,α (cl Ω,Rn) onto the quotient (Banach)
space

Zm−1,α (Ω) ≡ Cm−1,α (cl Ω,Rn) /Ym−1,α (Ω) .

Let A[·, ·] be the map of the set (Cm,α (cl Ω,Rn) ∩ AclΩ) × Cm,α (cl Ω)
to the space Cm−1,α (cl Ω,Rn) defined by

A[Φ, v] ≡ Dv (DΦ)−1 (DΦ)−t | detDΦ|

for all (Φ, v) ∈ (Cm,α (cl Ω,Rn) ∩AclΩ) × Cm,α (cl Ω). Let (Φ, v)
belong to (Cm,α (cl Ω,Rn) ∩ AclΩ) × Cm,α (cl Ω), f ≡ (f1, . . . , fn) ∈
Cm−1,α (cl Ω,Rn). Then we have

(3.11) ΠΩA[Φ, v] = ΠΩ[f ]
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if and only if

(3.12) ∆
(
v◦Φ(−1)

)
= div

{(
f◦Φ(−1)

) (
DΦ

(
Φ(−1)

))t| detD
(
Φ(−1)

)|},
in the sense of distributions in Φ (Ω), i.e., in D′ (Φ (Ω)).

Proof. By exploiting a simple argument based on the convolution
with a family of mollifiers, one can easily see that equation (3.11) is
equivalent to equation∫

Ω

A[Φ, v] ·
(
D
(
ϕ ◦ Φ

))t
dx =

∫
Ω

f ·
(
D
(
ϕ ◦ Φ

))t
dx ∀ϕ ∈ D(Φ(Ω)).

Then one can easily conclude the equivalence of such an equation to
equation (3.12) by the rule of change of variables in integrals with the
function Φ.

By Theorem 3.2, and by Lemmas 3.3 and 3.4, we immediately deduce
the validity of the following.

Theorem 3.5. Let m ∈ N \ {0}, α ∈ ]0, 1[, δ ∈ ]0, 1[. Let
Φ ∈ Cm,α (clAδ,Rn) ∩ A′

clAδ
. Let f ∈ Cm−1,α (∂Bn). Then the pair

(v+, v−) of Cm,α
(
cl Φ

(
A+
δ

))× Cm,α
(
clΦ

(
A−
δ

))
satisfies (3.9) if and

only if (V +, V −) ≡ (v+ ◦ Φ, v− ◦ Φ) of Cm,α
(
clA+

δ

) × Cm,α
(
clA−

δ

)
satisfies the boundary value problem
(3.13)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ΠA+
δ

[
A
[
Φ, V +

]]
= 0 in Zm−1,α

(
A+
δ

)
,

ΠA−
δ

[
A
[
Φ, V −]] = 0 in Zm−1,α

(
A−
δ

)
,

V + − V − = 0 on ∂Bn,

B1

[
V +, V −, Φ

]
≡ DV + · (DΦ)−1

·[(DΦ)−t · νBn
/| (DΦ)−t · νBn

|] − DV − · (DΦ)−1

·[(DΦ)−t · νBn
/| (DΦ)−t · νBn

|] = −f on ∂Bn,

V +(x) =
∫
∂Bn

Sn (Φ(x) − Φ(y)) f(y)σn [Φ] (y) dσy ∀x ∈ (1 − δ)∂Bn,

V −(x) =
∫
∂Bn

Sn (Φ(x) − Φ(y)) f(y)σn [Φ] (y)dσy ∀x ∈ (1 + δ)∂Bn,

where σn [·], A[·, ·], ΠA+
δ
, ΠA−

δ
have been introduced in Lemmas 3.3 and

3.4.
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Now the boundary value problem (3.13) is actually defined on a fixed
domain. As we have announced in the introduction, our next step
will now be to recast (3.13) into an abstract equation in Banach space
and to analyze it by means of the Implicit Function Theorem. To
do so, however, we need to prove that the assumptions of the Implicit
Function Theorem are satisfied. In particular, we need to show that the
righthand sides of the last two equations in (3.13) depend analytically
upon Φ and f . To do so, we introduce the following three technical
lemmas, which are variants of known results. The first lemma has the
purpose of reducing the problem on the manifold ∂Bn to a problem on
Bn−1 by means of the manifold parametrizations, and it can be proved
by exploiting the definition of norm in the space Cm,α.

Lemma 3.6. Let X be a Banach space, O an open subset of X .
Let k,m ∈ N, m ≥ 1, 0 ≤ k ≤ m, α ∈ ]0, 1]. Let M be a compact
manifold of dimension 1 ≤ s ≤ n and class Cm,α imbedded in Rn. Let
N be a map of O to Ck,α (M). Let {ψi}i=1,...,r be parametrizations of
M with ψi ∈ Cm,α (clBs,Rn) and ∪ri=1ψi(Bs) = M . Let Cψi

be the
composition operator of Ck,α (M) to Ck,α (clBs) defined by

Cψi
[w] ≡ w ◦ ψi ∀w ∈ Ck,α (M) ,

for all i = 1, . . . , r. Let h ∈ N ∪ {∞}. Then N is of class Ch or real
analytic if and only if the operators Cψi

◦N for i = 1, . . . , r are of class
Ch or real analytic, respectively.

We now have the following lemma on the analyticity of superposition
operators, which is just a variant of Böhme and Tomi [1, p. 10], Henry
[6, p. 29], Valent [24, Theorem 5.2, p. 44].

Lemma 3.7. Let k,m, n, n1, s ∈ N, m ≥ 1, 0 ≤ k ≤ m, n1 ≥ 1,
1 ≤ s ≤ n, α ∈ ]0, 1]. Let M be a compact manifold imbedded
in Rn of dimension s and of class Cm,α. Let Ω be an open sub-
set of Rn1 and F a real analytic map of Ω to R. Then the set
O ≡ {

Φ ∈ Ck,α (M,Rn1) : Φ(M) ⊆ Ω
}

is open in Ck,α (M,Rn1) and
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the superposition operator TF of O to Ck,α (M) defined by

TF [Φ] ≡ F ◦ Φ ∀Φ ∈ O,
is real analytic.

Proof. The set O is open because the norm of Ck,α (M,Rn1) is
stronger than that of the uniform convergence. Let {ψj}j=1,...,r be
local parametrizations of M as in the statement of Lemma 3.6. By
Lemma 3.6 it suffices to show that the operators Cψj

◦ TF defined by

Cψj
◦ TF [Φ] ≡ F ◦ Φ ◦ ψj ∀Φ ∈ O,

are real analytic. Now the map of Ck,α (M,Rn1) to Ck,α (clBs,Rn1)
which takes Φ to Φ◦ψj is obviously linear and continuous. Then it suf-
fices to show that the composition operator of

{
Ψ ∈ Ck,α (clBs,Rn1) :

Ψ(clBs) ⊆ Ω} to Ck,α (clBs) which takes Ψ to F ◦Ψ is real analytic, a
known fact, see Böhme and Tomi [1, p. 10], Henry [6, p. 29] and Valent
[24, Theorem 5.2, p. 44].

Then we have the following lemma on integral operators.

Lemma 3.8. Let k, m, n1, n2, s1, s2 ∈ N, m ≥ 1, 0 ≤ k ≤ m,
1 ≤ s1 ≤ n1, 1 ≤ s2 ≤ n2, α ∈]0, 1]. Let M1 and M2 be two
compact manifolds of class Cm,α imbedded in Rn1 and in Rn2 and
of dimension s1 and s2, respectively. Then the bilinear map K of
Ck,α (M1 ×M2) × L1 (M2) to Ck,α (M1) defined by

K[G, f ](x) ≡
∫
M2

G(x, y)f(y) dσy ∀x ∈M1,

for all (G, f) ∈ Ck,α (M1 ×M2) × L1 (M2), is continuous.

Proof. Let {ϕi}i=1,...,r1 be parametrizations of M1 with ϕi ∈
Cm,α (clBs1 ,R

n1) and ∪r1i=1ϕi(Bs1/2) = M1. Let {ψj}j=1,...,r2 be
parametrizations of M2 with ψj ∈ Cm,α (clBs2 ,R

n2) and M2 =
∪r2j=1ψj(Bs2/2). Let {θj}r2j=1 be a partition of unity as in (2.2)
for the atlas {ψj}j=1,...,r2 . Let π1 and π2 be the canonical projec-
tions of Rs1 × Rs2 onto Rs1 and onto Rs2 , respectively. Clearly,
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(ϕi ◦ π1, ψj ◦ π2) ∈ Cm,α (clBs1+s2 ,R
n1+n2). As is well known, and of

immediate verification, the collection of maps {(ϕi ◦ π1, ψj ◦ π2) : i =
1, . . . , r1, j = 1, . . . , r2} is an atlas for M1 ×M2. Thus it suffices to
show that there exists a constant c > 0 such that

sup
i=1,...,r1

‖K[G, f ] ◦ ϕi‖Ck,α(clBs1)

≤ c sup
i=1,...,r1
j=1,...,r2

‖G(ϕi ◦ π1, ψj ◦ π2)‖Ck,α(clBs1+s2)

·
{ r2∑
j=1

∫
Bs2

|f(ψj(ω))θj(ψj(ω))|| (Dψtj ·Dψj) (ω)|1/2 dω
}
,

for all (G, f) ∈ Ck,α (M1 ×M2) × L1 (M2). Now

(3.14)
K[G, f ] ◦ ϕi(ξ) =

r2∑
j=1

∫
Bs2

G(ϕi(ξ), ψj(ω))f(ψj(ω))θj(ψj(ω))

· | (Dψtj ·Dψj) (ω)|1/2dω.
By a standard differentiation theorem for an integral depending on a
parameter, and by the definition of norm in Ck,α (M1 ×M2), one can
easily deduce the existence of c > 0 as above.

We are now ready to show that the lefthand sides of the last two
equations in (3.13) depend real analytically upon Φ and f .

Lemma 3.9. Let m ∈ N \ {0}, α ∈ ]0, 1[, δ ∈ ]0, 1[, r ∈
[1− δ, 1+ δ]\{1}. Let Φ ∈ Cm,α (clAδ,Rn)∩A′

clAδ
. Then the map Vr

of
(
Cm,α (clAδ,Rn) ∩ A′

clAδ

)×Cm−1,α (∂Bn) to Cm,α (r∂Bn) defined
by

Vr[Φ, f ](x) ≡
∫
∂Bn

Sn (Φ(x) − Φ(y)) f(y)σn [Φ] (y) dσy ∀x ∈ r∂Bn,

for all (Φ, f) ∈ (
Cm,α (clAδ,Rn) ∩ A′

clAδ

) × Cm−1,α (∂Bn) is real
analytic.

Proof. The map of Cm,α (clAδ,Rn)∩A′
clAδ

to Cm,α ((r∂Bn) × ∂Bn ,
Rn \ {0}) which takes Φ to the function Ψ of (r∂Bn)×∂Bn to Rn\{0}
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defined by Ψ(x, y) ≡ Φ(x) − Φ(y) for all (x, y) ∈ (r∂Bn) × ∂Bn is real
analytic. By continuity of the pointwise product from

(
Cm−1,α (∂Bn)

)2

to L1 (∂Bn), the map of
(
Cm,α (clAδ,Rn) ∩ A′

clAδ

)×Cm−1,α (∂Bn) to
L1 (∂Bn) which takes (Φ, f) to fσn [Φ]|∂Bn

is real analytic. Then the
conclusion follows by Lemma 3.7 and by Lemma 3.8 with M1 = r∂Bn,
M2 = ∂Bn, M = M1 ×M2, F = Sn, Ω = Rn \ {0}.

Finally, we have the following known technical lemma, which we will
exploit in the proof of our main statement, in order to show solvability
of the linearized problem of (3.13).

Lemma 3.10. Let m ∈ N \ {0}, α ∈ ]0, 1[. Let Ω be a bounded open
connected subset of Rn of class Cm,α. Let b1, . . . ,bn ∈ Cm−1,α (cl Ω),
g ∈ Cm,α (∂Ω). Then there exists one and only one u ∈ Cm,α (cl Ω)
such that

∆u =
n∑
j=1

∂bj
∂xj

in D′(Ω), u = g on ∂Ω.

Proof. By Lemma 2.3, there exists g̃ ∈ Cm,α (cl Ω) such that g̃|∂Ω = g.
Then case m ≥ 2 follows by Gilbarg and Trudinger [4, Theorems
6.14, 6.19], while case m = 1 follows by Gilbarg and Trudinger [4,
Theorem 8.34].

We now introduce some notation. We set

(3.15)

v+[φ, f ](ξ) ≡
∫
φ(∂Bn)

Sn(ξ − η)f ◦ φ(−1)(η) dση ∀ ξ ∈ I[φ],

v−[φ, f ](ξ) ≡
∫
φ(∂Bn)

Sn(ξ − η)f ◦ φ(−1)(η) dση ∀ ξ ∈ E [φ],

for each φ ∈ Cm,α (∂Bn,Rn) ∩A∂Bn
, and f ∈ Cm−1,α (∂Bn,Rn),

(3.16)

w+[φ, f ](ξ) ≡
∫
φ(∂Bn)

∂

∂νφ(η)
[Sn(ξ − η)] f ◦ φ(−1)(η) dση ∀ ξ ∈ I[φ],

w−[φ, f ](ξ) ≡
∫
φ(∂Bn)

∂

∂νφ(η)
[Sn(ξ − η)] f ◦ φ(−1)(η) dση ∀ ξ ∈ E [φ],
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for each φ ∈ Cm,α (∂Bn,Rn) ∩ A∂Bn
, and f ∈ Cm,α (∂Bn,Rn). Then

by Theorem 3.1, we know that v+[φ, f ], w+[φ, f ], and v−[φ, f ], w−[φ, f ]
can be extended with continuity to cl I[φ] and to cl E [φ], respectively.
We denote the corresponding extensions by the same symbol. Then we
have the following proposition, which is preliminary to our main result,
cf. Theorem 3.12.

Proposition 3.11. Let m ∈ N \ {0}, α ∈ ]0, 1[, δ ∈ ]0, 1[. Then the
following statements hold.

(i) Let V +[Φ, f ] and V −[Φ, f ] denote the continuous extensions to
clA+

δ and to clA−
δ of v+[Φ|∂Bn

, f ]◦Φ|A+
δ

and of v−[Φ|∂Bn
, f ]◦Φ|A−

δ
, re-

spectively, for all (Φ, f) ∈ (
Cm,α (clAδ,Rn) ∩ A′

clAδ

)×Cm−1,α (∂Bn).
Then the maps of

(
Cm,α (clAδ,Rn) ∩ A′

clAδ

) × Cm−1,α (∂Bn) to
Cm,α

(
clA+

δ

)
and to Cm,α

(
clA−

δ

)
which take (Φ, f) to V +[Φ, f ] and

to V −[Φ, f ] are real analytic, respectively.

(ii) Let W+[Φ, f ] and W−[Φ, f ] denote the continuous extensions to
clA+

δ and to clA−
δ of w+[Φ|∂Bn

, f ]◦Φ|A+
δ

and of w−[Φ|∂Bn
, f ]◦Φ|A−

δ
,

respectively, for all (Φ, f) ∈ (
Cm,α (clAδ,Rn) ∩A′

clAδ

)×Cm,α (∂Bn).
Then the maps of

(
Cm,α (clAδ,Rn) ∩ A′

clAδ

) × Cm,α (∂Bn) to
Cm,α

(
clA+

δ

)
and to Cm,α

(
clA−

δ

)
which take (Φ, f) to W+[Φ, f ] and

to W−[Φ, f ] are real analytic, respectively.

Proof. We first prove statement (i). Let X ≡ Cm,α (clAδ,Rn) ×
Cm−1,α (∂Bn), Y ≡ Cm,α

(
clA+

δ

) × Cm,α
(
clA−

δ

)
. Let Λ be the non-

linear operator of U ≡ (
Cm,α (clAδ,Rn) ∩ A′

clAδ

)×Cm−1,α (∂Bn)×Y
to the Banach space

Z ≡ Zm−1,α
(
A+
δ

)×Zm−1,α
(
A−
δ

)× Cm,α (∂Bn) × Cm−1,α (∂Bn)
× Cm,α ((1 − δ)∂Bn) × Cm,α ((1 + δ)∂Bn) ,

defined by

Λ
[
Φ, f, V +, V −] ≡ (

ΠA+
δ

[
A
[
Φ, V +

]]
,ΠA−

δ

[
A
[
Φ, V −]] ,

V + − V −, B1

[
V +, V −,Φ

]
+ f,

V +
|(1−δ)∂Bn

− V1−δ[Φ, f ], V −
|(1+δ)∂Bn

− V1+δ[Φ, f ]
)
,
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for all (Φ, f, V +, V −) ∈ U , where B1 [V +, V −,Φ] and V1±δ[Φ, f ] have
been introduced in (3.13) and in Lemma 3.9, respectively. By Theo-
rem 3.5, the graph of the operator (V +[·, ·], V −[·, ·]) of (Cm,α (clAδ,
Rn) ∩ A′

clAδ

) × Cm−1,α (∂Bn) to Y coincides with the set of ze-
ros of Λ. Thus we can deduce the real analyticity of the operator
(V +[·, ·], V −[·, ·]) by showing that we can apply the Implicit Func-
tion Theorem for real analytic operators, cf., e.g., Prodi and Am-
brosetti [20, Theorem 11.6] to equation Λ [Φ, f, V +, V −] = 0 around
(Φ1, f1, V

+[Φ1, f1], V −[Φ1, f1]), for all (Φ1, f1) ∈ (Cm,α (clAδ,Rn)∩
A′

clAδ

) × Cm−1,α (∂Bn). The domain U of Λ is clearly open in
X × Y . By definition, ΠA+

δ
, ΠA−

δ
are linear and continuous. Then

by Lemma 2.1 A[Φ, V ±] and B1[V +, V −,Φ] + f depend real analyti-
cally on (Φ, f, V +, V −). Then by Lemma 3.9, and by the linearity and
continuity of the trace on the boundary, see Lemma 2.3, we deduce
that Λ is real analytic. Thus it suffices to show that the differential
d(V +,V −)Λ [Φ1, f1, V

+[Φ1, f1] ,V −[Φ1, f1]] is a linear homeomorphism.
Since d(V +,V −)Λ [Φ1, f1, V

+[Φ1, f1] ,V −[Φ1, f1]] is continuous, then by
the Open Mapping Theorem it suffices to show that it is a bijection.
Thus we now turn to show that for all (F+, F−, g, g1, h+, h−) ∈ Z there
exists one and only one (X+, X−) ∈ Y such that the following system
holds

(3.17)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ΠA+
δ

[A [Φ1, X
+]] = F+ in Zm−1,α

(
A+
δ

)
,

ΠA−
δ

[A [Φ1, X
−]] = F− in Zm−1,α

(
A−
δ

)
,

X+ −X− = g on ∂Bn,

B1 [X+, X−,Φ1] = g1 on ∂Bn,

X+ = h+ on (1 − δ)∂Bn,

X− = h− on (1 + δ)∂Bn.

By the surjectivity of ΠA+
δ

and of ΠA−
δ
, there exist an element f+ in

Cm−1,α
(
clA+

δ ,R
n
)
, and an element f− in Cm−1,α

(
clA−

δ ,R
n
)

such
that ΠA+

δ
[f+] = F+, ΠA−

δ
[f−] = F−. Now we set φ1 ≡ Φ1|∂Bn

. By
changing variables with the map Φ1, see Lemmas 3.3 and 3.4, we can
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easily see that (3.17) is equivalent to the following system

(3.18)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆
(
X+ ◦ Φ(−1)

1

)
=

∑n
j=1 ∂b

+
j /∂ξj in D′ (Φ1

(
A+
δ

))
,

∆
(
X− ◦ Φ(−1)

1

)
=

∑n
j=1 ∂b

−
j /∂ξj in D′ (Φ1

(
A−
δ

))
,

X+ ◦ Φ(−1)
1 −X− ◦ Φ(−1)

1 = g ◦ Φ(−1)
1 on φ1 (∂Bn),

D
(
X+ ◦ Φ(−1)

1

)
· νφ1

−D
(
X− ◦ Φ(−1)

1

)
· νφ1 = g1 ◦ Φ(−1)

1 on φ1 (∂Bn),

X+ ◦ Φ(−1)
1 = h+ ◦ Φ(−1)

1 on Φ1 ((1 − δ)∂Bn),

X− ◦ Φ(−1)
1 = h− ◦ Φ(−1)

1 on Φ1 ((1 + δ)∂Bn).

where

b+≡ (b+1 , . . . , b
+
n ) ≡

{(
f+ ◦ Φ(−1)

1

)(
DΦ1(Φ

(−1)
1 )

)t∣∣∣ det
(
D(Φ(−1)

1 )
)∣∣∣}

and

b−≡ (b−1 , . . . , b
−
n ) ≡

{(
f− ◦ Φ(−1)

1

)(
DΦ1(Φ

(−1)
1 )

)t∣∣∣ det
(
D(Φ(−1)

1 )
)∣∣∣}.

We first show existence for system (3.18). Let (F+, F−, g, g1, h+, h−) ∈
Z. By Lemma 2.1, we can easily see that b+ ∈ Cm−1,α

(
clΦ1

(
A+
δ

)
,Rn

)
,

and b− ∈ Cm−1,α
(
clΦ1

(
A−
δ

)
,Rn

)
, and g ◦ Φ(−1)

1 ∈ Cm,α (φ1 (∂Bn)),
and g1◦Φ(−1)

1 ∈ Cm−1,α (φ1 (∂Bn)), and h+◦Φ(−1)
1 ∈ Cm,α (Φ1 ((1 − δ)

∂Bn)), and h−◦Φ(−1)
1 ∈ Cm,α (Φ1 ((1 + δ)∂Bn)). Thus, by Lemma 3.10,

there exist elements a− of Cm,α
(
clΦ1

(
A−
δ

))
such that{

∆a− =
∑n
j=1 ∂b

−
j /∂ξj in D′ (Φ1

(
A−
δ

))
,

a− = h− ◦ Φ(−1)
1 on Φ1 ((1 + δ)∂Bn),

and a+ ∈ Cm,α
(
cl Φ1

(
A+
δ

))
such that⎧⎪⎨

⎪⎩
∆a+ =

∑n
j=1 ∂b

+
j /∂ξj in D′ (Φ1

(
A+
δ

))
,

a+ = a− + g ◦ Φ(−1)
1 on Φ1 (∂Bn) = φ1 (∂Bn),

a+ = h+ ◦ Φ(−1)
1 on Φ1 ((1 − δ)∂Bn),
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Obviously, g1 ◦Φ(−1)
1 −Da+ ·νφ1 +Da− ·νφ1 ∈ Cm−1,α (φ1 (∂Bn)), and

Theorem 3.2 implies that

v+
[
φ1, g1 −

(
Da+ · νφ1 −Da− · νφ1

) ◦ φ1

] ∈ Cm,α
(
cl Φ1

(
A+
δ

))
,

v−
[
φ1, g1 −

(
Da+ · νφ1 −Da− · νφ1

) ◦ φ1

] ∈ Cm,α
(
cl Φ1

(
A−
δ

))
.

Clearly, system (3.18) admits a solution (X+, X−) ∈ Y if and only if
system
(3.19)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∆X̃+ = 0 in D′ (Φ1

(
A+
δ

))
,

∆X̃− = 0 in D′ (Φ1

(
A−
δ

))
,

X̃+ − X̃− = 0 on φ1 (∂Bn),

DX̃+ · νφ1 − DX̃− · νφ1 = 0 on φ1 (∂Bn),

X̃+ = v+
[
φ1, g1 −

(
Da+ · νφ1 − Da− · νφ1

)
◦ φ1

]
on Φ1 ((1 − δ)∂Bn),

X̃− = v−
[
φ1, g1 −

(
Da+ · νφ1 − Da− · νφ1

)
◦ φ1

]
on Φ1 ((1 + δ)∂Bn).

admits a solution (X̃+, X̃−) ∈ Cm,α
(
cl Φ1

(
A+
δ

))×Cm,α (
cl Φ1

(
A−
δ

))
,

and in case of existence, we have

X̃+ = X+ ◦ Φ(−1)
1 − a+ + v+

[
φ1, g1 −

(
Da+ · νφ1 −Da− · νφ1

) ◦ φ1

]
X̃− = X− ◦ Φ(−1)

1 − a− + v−
[
φ1, g1 −

(
Da+ · νφ1 −Da− · νφ1

) ◦ φ1

]
Thus we now show existence for system (3.19). By the third and
fourth equation of (3.19), and by a standard argument based on
the Divergence Theorem, system (3.19) is equivalent to the following
system for X̃ ∈ Cm,α (cl Φ1 (Aδ))

(3.20)⎧⎪⎨
⎪⎩

∆X̃ = 0 in D′ (Φ1 (Aδ)),
X̃ = v+ [φ1, g1 − (Da+ · νφ1 −Da− · νφ1) ◦ φ1] on Φ1 ((1−δ)∂Bn),
X̃ = v− [φ1, g1 − (Da+ · νφ1 −Da− · νφ1) ◦ φ1] on Φ1 ((1+δ)∂Bn) .

By Lemma 3.10, such a system has a unique solution X̃.

We now show uniqueness for system (3.17). If (F+, F−, g, g1, h+,
h−) = 0 for some (X+, X−) ∈ Y , then system (3.18) holds with b+ = 0,
b− = 0. Then we set X̃ ≡ X+ ◦ Φ(−1)

1 on cl Φ1

(
A+
δ

)
, X̃ ≡ X− ◦ Φ(−1)

1
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on clΦ1

(
A−
δ

)
. The function X̃ is harmonic in Φ1

(
A+
δ

) ∪ Φ1

(
A−
δ

)
,

and continuous on cl Φ1 (Aδ). Thus by exploiting the third and the
fourth equation of (3.18) with g = g1 = 0 and by a standard argument
based on the Divergence Theorem, X̃ can be shown to be harmonic on
Φ1(Aδ). By the fifth and the sixth equation of (3.18) with h± = 0, X̃
vanishes on ∂Φ1(Aδ). Hence, X̃ = 0, and (X+, X−) must be zero.

We now turn to the proof of statement (ii). We first consider the
map W+[·, ·]. We observe that the linear map Γ of Cm,α

(
clA+

δ

)
to

Cm−1,α
(
clA+

δ

)× Cm−1,α
(
clA+

δ ,R
n
)

defined by

Γ[g] ≡ (g, ∂x1g, . . . , ∂xn
g) ∀ g ∈ Cm,α

(
clA+

δ

)
,

is a linear homeomorphism of Cm,α
(
clA+

δ

)
onto the image space

Im Γ, a subspace of Cm−1,α
(
clA+

δ

) × Cm−1,α
(
clA+

δ ,R
n
)
. Thus it

suffices to show that the nonlinear maps W+[·, ·] and (∂/∂xi)W+[·, ·]
for i = 1, . . . , n are real analytic from

(
Cm,α (clAδ,Rn) ∩A′

clAδ

) ×
Cm,α (∂Bn) to Cm−1,α

(
clA+

δ

)
. Now let R > 1 + δ. By Lemma 2.3

(ii), (iii), there exists a linear and continuous extension operator F
of Cm,α (∂Bn) to Cm,α (clBn(0, R)) such that F[f ]|∂Bn

= f , for all
f ∈ Cm,α (∂Bn). By Theorem 3.1, and by Lemma 3.3, we have the
following identities

(3.21) W+[Φ, f ]

= −
n∑
j=1

n∑
l=1

∂

∂xl

(
V +

[
Φ,

( (
DΦ

)−t · νBn∣∣(DΦ
)−t · νBn

∣∣
)
j

f

])((
DΦ

)−1
)
lj
,

and

(3.22)
∂

∂xi

(
W+[Φ, f ]

)
=

n∑
j,l,r=1

∂Φr
∂xi

∂

∂xl

(
V +

[
Φ,Mrj [f,Φ]

])(
(DΦ)−1

)
lj
,
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for all i = 1, . . . , n, where

Mrj [f,Φ] =
∣∣∣(DΦ)−t · νBn

∣∣∣−1

·
{[ n∑

l=1

(
(DΦ)−1

)
lr

(νBn
)l

][ n∑
l=1

∂(F[f ])
∂xl

(
(DΦ)−1

)
lj

]

−
[ n∑
l=1

(
(DΦ)−1

)
lj

(νBn
)l

][ n∑
l=1

∂(F[f ])
∂xl

(
(DΦ)−1

)
lr

]}
.

By the real analyticity of F[·], and of the trace operator, by Lemma 2.1,
by the real analyticity of V +[·, ·], by equations (3.21) and (3.22), we con-
clude thatW+[·, ·], (∂/∂xi)W+[·, ·] are real analytic from (Cm,α (clAδ ,
Rn) ∩ A′

clAδ

)×Cm,α (∂Bn) to Cm−1,α
(
clA+

δ

)
. Similarly, we can show

that W−[·, ·] depends real analytically on (Φ, f).

We are now ready to prove our main result.

Theorem 3.12. Let m ∈ N \ {0}, α ∈ ]0, 1[. Then the following
statements hold.

(i) The map V [·, ·] of (Cm,α (∂Bn,Rn) ∩ A∂Bn
)×Cm−1,α (∂Bn) to

the space Cm,α (∂Bn) defined by (1.1) is real analytic.

(ii) The map W [·, ·] of (Cm,α (∂Bn,Rn) ∩A∂Bn
) × Cm,α (∂Bn) to

the space Cm,α (∂Bn) defined by (1.2) is real analytic.

Proof. We first consider statement (i). It clearly suffices to show that
if (φ0, f0) ∈ (Cm,α (∂Bn,Rn) ∩ A∂Bn

) × Cm−1,α (∂Bn), then V [·, ·] is
real analytic in a neighborhood of (φ0, f0). Now let W0, δ, E0 be as
in Proposition 2.8. By Theorem 3.1 and (3.15), we have V [φ, f ] =
v+[φ, f ]◦φ = V +[E0[φ], f ] on ∂Bn for all (φ, f) ∈ W0×Cm−1,α (∂Bn).
Thus it suffices to prove that the pair (v+[φ, f ]◦φ, v−[φ, f ]◦φ) depends
real analytically on (φ, f) around (φ0, f0), a fact which is an immediate
consequence of Propositions 2.8 and 3.11. We now turn to the proof of
statement (ii). By Theorem 3.1 (ii), we know that w+[φ, f ] defined as
in (3.16) satisfies the following equality

(3.23) W [φ, f ] = w+[φ, f ] ◦ φ− 1
2
f = W+[E0[φ], f ] − 1

2
f on ∂Bn.
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Then we can conclude by invoking Propositions 2.8 and 3.11 as in the
proof of statement (i).

We now compute the differentials of V and W by exploiting an argu-
ment of Lanza and Preciso [13, Section 4]. To do so, we first introduce
some notation. If m ∈ N\ {0}, α ∈ ]0, 1], φ ∈ Cm,α (∂Bn,Rn)∩A∂Bn

,
then by combining Proposition 2.7 and Lemma 3.3, we can see that
there exists a positive function σ̃n[φ] ∈ Cm−1,α (∂Bn) such that

∫
φ(∂Bn)

ω(η) dση =
∫
∂Bn

ω ◦ φ(y)σ̃n[φ](y) dσy ∀ω ∈ L1 (φ (∂Bn)) .

Then we set

τ̃n[φ] ≡ (νφ ◦ φ) σ̃n[φ],

where νφ denotes the unit exterior normal to I[φ]. Obviously,

σ̃n[φ] = |τ̃n[φ]|.

By Proposition 2.8 and Lemma 3.3, we deduce that the following holds.

Proposition 3.13. Let m ∈ N \ {0}, α ∈ ]0, 1]. Then the maps
τ̃n[·] and σ̃n[·] of Cm,α (∂Bn,Rn) ∩ A∂Bn

to Cm−1,α (∂Bn,Rn), and
to Cm−1,α (∂Bn), which map φ to τ̃n[φ] and to σ̃n[φ], respectively, are
real analytic.

We now compute the differentials of V , W in the following proposi-
tion. Since V and W are linear in the second variable, it suffices to
consider the differentials with respect to the first variable φ.

Proposition 3.14. Let m, k ∈ N\{0}, α ∈ ]0, 1[. Let Gk denote the
group of bijections of {1, . . . , k} to itself. Let dkSn(η)[·] denote the kth
order differential of Sn at η ∈ Rn \ {0}. Then the following statements
hold.

(i) If (φ0, f0) ∈ (Cm,α (∂Bn,Rn) ∩A∂Bn
) × Cm−1,α (∂Bn), then

the kth differential of V [·, ·] at (φ0, f0) with respect to the variable φ is
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delivered by the formula

(3.24)

∂kφV [φ0, f0][h1, . . . , hk](x)

=
∫
∂Bn

k∑
j=0

1
j!(k−j)!

·
∑
γ∈Gk

djSn
(
φ0(x) − φ0(y)

)
[hγ(1)(x) − hγ(1)(y),

. . . , hγ(j)(x) − hγ(j)(y)]

· dk−j σ̃n[φ0][hγ(j+1), . . . , hγ(k)]f0(y) dσy,

for all x ∈ ∂Bn, and for all (h1, . . . , hk) ∈ (Cm,α (∂Bn,Rn))k.

(ii) If (φ0, f0) ∈ (Cm,α (∂Bn,Rn) ∩ A∂Bn
) × Cm,α (∂Bn), then the

kth differential of W [·, ·] at (φ0, f0) with respect to the variable φ is
delivered by the formula

(3.25)

∂kφW [φ0, f0][h1, . . . , hk](x)

= −
∫
∂Bn

k∑
j=0

1
j!(k−j)!

·
∑
γ∈Gk

dj+1Sn (φ0(x) − φ0(y))
[
hγ(1)(x) − hγ(1)(y),

. . . , hγ(j)(x) − hγ(j)(y),

dk−j τ̃n[φ0][hγ(j+1), . . . , hγ(k)]
]
(f0(y) − f0(x)) dσy,

for all x ∈ ∂Bn, and for all (h1, . . . , hk) ∈ (Cm,α (∂Bn,Rn))k.

Proof. We first consider statement (i). Since k-linear symmetric
functions are uniquely determined by their values on the diagonal, we
start by computing ∂kφV [φ0, f0][h, . . . , h] for h ∈ Cm,α (∂Bn,Rn). To

shorten our notation, we write hk instead of

k terms︷ ︸︸ ︷
h, . . . , h. By standard

calculus in Banach spaces, and by (1.1) and by definition of σ̃n[·], we
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have
(3.26)

∂kφV [φ0, f0][hk](x) =
dk

dεk |ε=0

{∫
∂Bn

Sn((φ0(x) − φ0(y)) + ε(h(x)

− h(y)))σ̃n[φ0 + εh](y)f0(y) dσy

}
∀x ∈ ∂Bn,

and now we would like to take the differentiation inside the integral.
To justify such a step, one could exploit the local parametrizations of
∂Bn or extend the functions involved in the integrand in the vicinity
of ∂Bn. We choose the latter method. Thus we introduce W0, δ, F0,
E0 of Proposition 2.8, and the trace operator R of Cm,α

(
clA+

δ

)
to

Cm,α (∂Bn). By Theorem 3.1 and by (3.15), we have

V [φ, f ] = v+[φ, f ] ◦ φ = R
[
v+[φ, f ] ◦ E0[φ]|clA+

δ

]
for all (φ, f) ∈ W0 × Cm−1,α (∂Bn). By standard calculus in Banach
space, and by Lemma 3.3, we obtain

(3.27)

∂k|φ=φ0

(
v+[φ, f0] ◦ E0[φ]|clA+

δ

)
[hk](x)

=
dk

dεk |ε=0

{∫
∂Bn

Sn(E0[φ0 + εh](x) − E0[φ0+εh](y))

· σn[E0[φ0+εh]](y)F0[f0](y) dσy

}
∀x∈ clA+

δ .

Obviously, the righthand side of (3.26) is just the restriction to ∂Bn

of the righthand side of (3.27). Now we note that for x ∈ A+
δ , the

integrand of the righthand side of (3.27) is not singular. Then standard
results on differentiation for integrals depending on a parameter imply
that
(3.28)

∂k|φ=φ0

(
v+[φ, f0] ◦ E0[φ]|clA+

δ

)
[hk](x)

=
∫
∂Bn

k∑
j=0

(
k
j

){
djSn(E0[φ0](x)−E0[φ0](y))

[
(F0[h](x)−F0[h](y))j

]}

· d
k−j

dεk−j |ε=0
{σn[E0[φ0] + εF0[h]](y)}F0[f0](y) dσy ∀x ∈ A+

δ .
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By Proposition 2.8, and by Lemma 3.3, the map σn[E0[·]] is real
analytic from W0 to the space Cm−1,α(clAδ), and thus the function
dk−j {σn[E0[φ0] + εF0[h]](y)} /dεk−j |ε=0 is continuous in y ∈ ∂Bn. As
is well known, cf., e.g., Gilbarg and Trudinger [4, p. 17], for all integers
j ≥ 1, n ≥ 2, there exists c(n, j) > 0 such that

(3.29)
|djSn(y)[v1, . . . , vj ]| ≤ c(n, j)|y|2−n−j |v1| . . . |vj |

∀ y ∈ Rn \ {0}, v1, . . . , vj ∈ Rn.

By Lemma 2.1 (ii), F0[h] is Lipschitz continuous on clA+
δ , and by

Proposition 2.8, lclA+
δ

[E0[φ0]] > 0. Then by Vitali’s convergence
theorem, one can easily show that the righthand side of (3.28) depends
continuously on x ∈ clA+

δ . Since the lefthand side of (3.28) is
continuous for x ∈ clA+

δ , we deduce that

(3.30)

∂k|φ=φ0
V [φ0, f0][hk](x)

=
∫
∂Bn

k∑
j=0

(
k
j

){
djSn (φ0(x) − φ0(y))

[
(h(x) − h(y))j

]}

· d
k−j

dεk−j |ε=0
{σ̃n[φ0 + εh](y)} f0(y) dσy ∀x ∈ ∂Bn.

By inequality (3.29) and by the Lipschitz continuity of h1, . . . ,hn,
and by inequality l∂Bn

[φ0] > 0, we deduce that the righthand side of
equality (3.24), which we denote by H[h1, . . . , hn](x), defines a k-linear
symmetric form on (Cm,α (∂Bn,Rn))k for each x ∈ ∂Bn. Obviously,
∂k|φ=φ0

V [φ0, f0][hk] = H[hk] for all h ∈ Cm,α (∂Bn,Rn). Since k-
linear symmetric forms are uniquely determined by their values on the
diagonal, we can deduce the validity of statement (i).

We now prove statement (ii). As for statement (i), we first compute
∂kφW [φ0, f0][hk](x) for h ∈ Cm,α (∂Bn,Rn), and we face the problem
of differentiating an integral similar to that of (3.26). To circumvent
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such a problem, we note that by Theorem 3.1 (ii) and (3.16), we have

W [φ, f ] = w+[φ, f ] ◦ φ− 1
2
f

= R
[
w+[φ, f ] ◦ E0[φ]|clA+

δ
− F0[f ]|clA+

δ

]
+

1
2
f

= R
[
w+[φ, f ] ◦ E0[φ]|clA+

δ

−
(
w+[φ, 1] ◦ E0[φ]|clA+

δ

)
F0[f ]|clA+

δ

]
+

1
2
f

for all (φ, f) ∈ W0 × Cm,α(∂Bn). For the sake of brevity, we set

τn[φ] ≡ |det (D (E0[φ]))|
(
(D (E0[φ]))−t · νBn

)
∀φ ∈ A∂Bn

.

Now by the same argument of the proof of (i), we have

(3.31)

∂k|φ=φ0

(
w+[φ, f ] ◦ E0[φ]|clA+

δ

− (w+[φ, 1] ◦ E0[φ]|clA+
δ
)F0[f ]|clA+

δ

)
[hk](x)

= −
∫
∂Bn

k∑
j=0

(
k
j

){
dj+1Sn

(
E0[φ0](x) − E0[φ0](y)

)
[(

F0[h](x)−F0[h](y)
)j
,
dk−j

dεk−j |ε=0

(
τn[φ0+εh](y)

)]}
· (F0[f0](y)−F0[f0](x)) dσy ∀x ∈ A+

δ .

Since the map of W0 to Cm−1,α(∂Bn,Rn) which takes φ to τn[φ] is real
analytic, then the function dk−j (τn[φ0 + εh]) /dεk−j |ε=0 is continuous
on ∂Bn. By Lemma 2.1 (ii), (iii), F0[h] is Lipschitz continuous on
clA+

δ , and F0[f0] is Hölder continuous with exponent α on clA+
δ , and

by Lemma 2.8, lclA+
δ
[E0[φ0]] > 0 and (D (E0[φ0]))

−t ·νBn
is continuous

and bounded. Then by (3.29), and by Vitali’s convergence theorem, one
can easily show that the righthand side of (3.31) depends continuously
on x ∈ clA+

δ . Since the lefthand side of (3.31) is continuous for
x ∈ clA+

δ , we deduce that (3.31) holds also for x ∈ ∂Bn. The same
argument also implies that the righthand side of (3.25) defines a k-
linear symmetric form on (Cm,α (∂Bn,Rn))k for each x ∈ ∂Bn. Thus
we can conclude as in statement (i).
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As we have seen in Proposition 3.14, in order to compute the differ-
entials of V , W , one needs to know the differentials of the functions
σ̃n[·], τ̃n[·]. Thus we now present a different way of writing σ̃n[·], τ̃n[·]
which makes it easy to compute such differentials explicitly.

We denote by ∧ the standard vector product of n−1 vectors in Rn, cf.,
e.g., Schwartz [22, p. 250]. If φ ∈ A∂Bn

, then we can consider φ(∂Bn)
as oriented by the exterior normal field νφ, and ∂Bn as oriented by
ν∂Bn

. Then we shall say that φ has index 1 if φ is orientation preserving,
and that φ has index −1 if φ is orientation reversing. We formalize the
known properties of such an index in the following lemma.

Lemma 3.15. Let {e1, . . . , en} denote the canonical basis of Rn.
Let v1(y), . . . , vn−1(y) be an orthonormal basis of the tangent space
Ty∂Bn to ∂Bn at y such that

(3.32)
νBn

(y) = (v1(y) · e2)e1 − (v1(y) · e1)e2 if n = 2,
νBn

(y) = v1(y) ∧ · · · ∧ vn−1(y) if n > 2,

for all y ∈ ∂Bn. If φ ∈ A∂Bn
, then there exists ind [φ] ∈ {−1, 1} such

that
(3.33)

ind [φ] = sgn {νφ(φ(y)) · ((dφ(y)[v1(y)] · e2)e1 − (dφ(y)[v1(y)] · e1)e2)}
if n = 2,

ind [φ] = sgn {νφ(φ(y)) · (dφ(y)[v1(y)] ∧ · · · ∧ dφ(y)[vn−1(y)])}
if n > 2,

for all y ∈ ∂Bn, where we set sgn (t) = 1 for t > 0, sgn (t) = −1 for
t < 0. Moreover, the function ind [·] of A∂Bn

to {−1, 1} which takes φ
to ind [φ] is continuous.

Proof. Let φ0 ∈ A∂Bn
. Let W0, δ, E0 be as in Proposition 2.8. Let

n > 2. By linear algebra, and by (3.32), we have

dφ(y)[v1(y)] ∧ · · · ∧ dφ(y)[vn−1(y)]
= det (D(E0[φ])(y))D(E0[φ])−t(y)ν∂Bn

(y)
=

∣∣D(E0[φ])−t(y)ν∂Bn
(y)

∣∣det (D(E0[φ])(y)) νφ ◦ φ(y),
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and thus the righthand side of (3.33) equals sgn (det (D (E0[φ]) (y)))
for all y ∈ ∂Bn and φ ∈ W0. Similarly, we can argue for n = 2. Then
by Proposition 2.8 and by the continuity of sgn (·) from R \ {0} to
{−1, 1}, we conclude that the righthand side of (3.33) is independent
of y ∈ ∂Bn, and that ind [·] defines a continuous function of A∂Bn

to
{−1, 1}.

Then we have the following.

Proposition 3.16. Let e1, . . . , en, and v1(y), . . . , vn−1(y) for all
y ∈ ∂Bn be as in Lemma 3.15. Then we have

(3.34)

τ̃n[φ](y) = ind [φ] {(dφ(y)[v1(y)] · e2)e1 − (dφ(y)[v1(y)] · e1)e2}
if n = 2,

τ̃n[φ](y) = ind [φ] {dφ(y)[v1(y)] ∧ · · · ∧ dφ(y)[vn−1(y)]}
if n > 2,

for all y ∈ ∂Bn, and for all φ ∈ A∂Bn
.

Proof. Let δ, Φ be as in Proposition 2.7. As in the previous proof, one
can easily check that (detDΦ(y)) (DΦ)−t (y) · νBn

(y) equals the term
in braces of (3.34). By definition of τ̃n[φ], and by Lemma 3.3, we can
see that τ̃n[φ](y) equals |detDΦ(y)| (DΦ)−t (y) · νBn

(y). As pointed
out in the proof of Lemma 3.15, ind [φ] equals sgn (detDΦ(y)) for all
y ∈ ∂Bn. Then we conclude that (3.34) holds.

We note that the differentials of τ̃n of order k ≥ n vanish identically
and that in order to obtain the differentials of order less than k one
can use Leibnitz rule. In particular, we note that, for k = 1, we obtain

dτ̃2[φ][h](y) = ind [φ] {(dh(y)[v1(y)] · e2)e1 − (dh(y)[v1(y)] · e1)e2}
dτ̃n[φ][h](y) = ind [φ] {dh(y)[v1(y)] ∧ dφ(y)[v2(y)]

∧ · · · ∧ dφ(y)[vn−1(y)]
+ · · · + dφ(y)[v1(y)] ∧ . . .
∧ dφ(y)[vn−2(y)] ∧ dh(y)[vn−1(y)]} ifn > 2,
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for all h ∈ Cm,α (∂Bn,Rn). Finally, we note that

dσ̃n[φ][h] = (νφ ◦ φ) · dτ̃n[φ][h]

for all h ∈ Cm,α (∂Bn,Rn).
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