
FUNCTIONAL CALCULUS IN HÖLDER-ZYGMUND SPACES

G. BOURDAUD AND M. LANZA DE CRISTOFORIS

Abstract. In this paper we characterize those functions f of the real line to itself,
such that the nonlinear superposition operator Tf defined by Tf [g] := f ◦g maps the
Hölder-Zygmund space Cs(Rn) to itself, is continuous, and is r times continuously
differentiable. Our characterizations cover all cases in which s is real and s > 0,
and seem to be novel in case s > 0 is integer.

1. Introduction and statement of the main results

In this paper we consider the problem of characterizing those functions f defined
on the real line, such that the operator Tf : g 7→ f ◦ g maps the Hölder-Zygmund
space Cs(Rn) to itself, and is of class Cr. It is well known that for 0 < s < 1, the
operator Tf maps Cs(Rn) to itself if and only if f is locally Lipschitz continuous
(cf. [?], Drábek [?].) It is also well known that if s > 1 and if s is not integer, the
operator Tf maps Cs(Rn) to itself if and only if f belongs to Cs(Rn) locally, and we
prove that the same holds also for s > 1, s integer. Thus the higher order Hölder-
Zygmund classes behave as the usual Sobolev spaces. Indeed the acting condition
on Wm,p(Rn), for an integer m > max(n/p, 1), is precisely that f belongs locally to
Wm,p(R) (cf. [?].) Less clear is the situation in the Zygmund class C1. Indeed, it
is not sufficient for f to be locally Lipschitz continuous in order that the operator
Tf maps C1(Rn) to itself. As a matter of fact there exist continuously differentiable
functions for which Tf (C1(Rn)) is not contained in C1(Rn)!

Theorem 1. Let s > 1. Then Tf (Cs(Rn)) ⊆ Cs(Rn) if and only if f belongs locally
to Cs(R).

Theorem 2. Tf (C1(Rn)) ⊆ C1(Rn) if and only if f is locally Lipschitz continuous
and satisfies

(1.1) f(x+ t) + f(x− t)− 2f(x) = O

(
t

| log t|

)
,

as t→ 0+, uniformly on each compact subset of R.

Our plan is the following. First, we recall some basic facts on Hölder-Zygmund
spaces. Second, we prove the above theorems. Since Theorem 1 is well known when
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s is not integer, we will be concerned mostly with the Zygmund classes Cm(Rn), for
m > 0 integer, and we shall also prove that our results can be extended in part to
the more general Besov spaces Bs,q

∞ (Rn). In the third part of the paper, we apply an
abstract result of [?] to deduce sufficient conditions for f in order that Tf be a map
of class Cr of Cs(Rn) into itself and we prove that such conditions are necessary by
exploiting ideas of Drábek [?], of [?], and of Sobolevskij [?], who have considered the
case in which s is not integer.

Notation. We denote by N the set of all positive integers including 0, and by
N∗ the set N \ {0}. Throughout the paper, n denotes an element of N∗. We denote
by R+ the set of all real numbers x ≥ 0. We use the letters M,M ′,... to denote
positive constants, depending only on the parameters n, s, etc. The exact value of
such constants may change from line to line. A constant denoted A will depend also
on the various functions f , g under consideration. For any function f on Rn and
a ∈ Rn, we define τaf(x) := f(x − a). We denote the norm in Lp(Rn) by ‖ · ‖p.
We denote by ρ a C∞ even function on R, such that ρ(x) = 1 for 0 < x ≤ 1/e and
ρ(x) = 0 for x ≥ 1/2. All the functions considered in this paper are real valued.

2. Preliminaries on function spaces

2.1. Sobolev scales.

Definition 1. Let Ω be an open set in Rn. A Banach distribution space (BDS)
in Ω is a vector subspace E of D′(Ω) equipped with a complete norm such that the
canonical injection jE : E → D′(Ω) is continuous.

The Sobolev scale associated with the BDS E is defined by

W r(E) := {f ∈ D′(Ω) : f (α) ∈ E , ∀ |α| ≤ r} ,

for any r ∈ N. It is well known that W r(E) is a BDS for the following norm:

‖f‖W r(E) :=
∑
|α|≤r

‖f (α)‖E

(cf. e.g., [?], Kufner, John and Fǔcik [?].) By the closed graph theorem, we easily
deduce the following.

Lemma 1. Let E be a BDS in Ω. If D(Ω) ⊆ E, then the canonical injection D(Ω)→
E is continuous. Moreover D(Ω) is continuously imbedded in W r(E), for all r ∈ N.

2.2. Definition of Hölder-Zygmund spaces. The Besov spaces Bs,q
∞ (Rn) can be

easily described by the means of the first and second order moduli of continuity

ω(f ; t) := sup
|h|≤t , x∈Rn

|f(x+ h)− f(x)| ,

η(f ; t) := sup
|h|≤t , x∈Rn

|f(x+ h) + f(x− h)− 2f(x)| .
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If 0 < s < 2 and 1 ≤ q ≤ ∞, we say that a real valued measurable function f , defined
on Rn, belongs to Bs,q

∞ (Rn) if, for some (and then for all) a ∈]0,+∞], one has

‖f‖∞ +

(∫ a

0

(
η(f ; t)

ts

)q
dt

t

)1/q

< +∞ ,

with the understanding, here and in the rest of the paper, that case q = +∞ is
treated with the usual modifications. For 0 < s < 1, one proves classically that a
real valued measurable function f defined on Rn belongs to Bs,q

∞ (Rn) if and only if

(2.1) ‖f‖∞ +

(∫ a

0

(
ω(f ; t)

ts

)q
dt

t

)1/q

< +∞ .

Of course any of the above expressions delivers an equivalent norm in the corre-
sponding Besov space. We denote any of such norms by ‖ · ‖Bs,q

∞ (Rn). In case of no
ambiguity, we simply write ‖ · ‖. Let m < s ≤ m+ 1, with m ∈ N∗. Then we set

Bs,q
∞ (Rn) := Wm

(
Bs−m,q
∞ (Rn)

)
.

In particular, Bs,∞
∞ (Rn) is called the Hölder-Zygmund space with exponent s and

is denoted by Cs(Rn). For the main properties of the Besov spaces Bs,q
p (Rn), with

s ∈ R, p, q ∈ [1,+∞], and of their homogeneous counterparts Ḃs,q
p (Rn), we refer to

the books of Peetre [?], of Triebel [?], and of Runst and Sickel [?].
We shall use also the Lipschitz-Sobolev spaces Wm

∞(Rn) := Wm (L∞(Rn)). The
space of m times continuously differentiable functions on Rn is denoted Cm(Rn).
The set

Cm
b (Rn) := Cm(Rn) ∩Wm

∞(Rn)

is a closed subspace of Wm
∞(Rn). We say that a function f belongs locally to a

functional space E if fϕ ∈ E for all ϕ ∈ D(Rn). The set of such f ’s is denoted Eloc.
In case of no ambiguity, we omit the domain (R or Rn) in our notation for a function
space. We note that Bs,q

∞ (Rn) ⊆ Wm
∞(Rn) for s > m and that W 1

∞(Rn) is a proper
subspace of C1(Rn).

2.3. Basic properties. In 1927, A. Marchaud proved the following relation between
the moduli ω and η (see Marchaud [?] or Bennett and Sharpley [?, Thm. 4.4]):

ω(f ; t) ≤M t

∫ ∞
t

η(f ;u)
du

u2
, ∀t > 0 .

We note that η(f ; t) ≤ 4‖f‖∞, if f is bounded. Thus the Marchaud inequality implies
that

(2.2) ω(f ; t) ≤M t

(∫ 1

t

η(f ;u)
du

u2
+ 4‖f‖∞

)
, for 0 < t ≤ 1 .

Proposition 1. Let 1 < q ≤ +∞. Then there exists M > 0 such that

(2.3)

(∫ 1/e

0

(
ω(f ; t)

t | log t|

)q
dt

t

)1/q

≤M ‖f‖B1,q
∞ (Rn) , ∀f ∈ B1,q

∞ (Rn) .
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Proof. We first note that, for q = ∞, (??) follows immediately from (??). Now
we assume that 1 < q < ∞. To shorten our notation, we set ω(t) := ω(f ; t),
η(t) := η(f ; t). By (??) we deduce that(∫ 1/e

0

(
ω(t)

t | log t|

)q
dt

t

)1/q

≤M


(∫ 1/e

0

(
1

| log t|

∫ 1

t

η(u)
du

u2

)q
dt

t

)1/q

+ ‖f‖∞

 .

By the changes of variables t = e−v and u = e−w, and by the Hardy inequality (cf.
e.g., Folland [?, Cor. 6.21]), we have(∫ 1/e

0

(
1

| log t|

∫ 1

t

η(u)
du

u2

)q
dt

t

)1/q

=

(∫ ∞
1

(
1

v

∫ v

0

η(e−w) ew dw

)q
dv

)1/q

≤

≤M

(∫ ∞
0

(
η(e−v) ev

)q
dv

)1/q

= M

(∫ 1

0

(
η(t)

t

)q
dt

t

)1/q

≤M ‖f‖B1,q
∞
.

�

Remark. For q = +∞, the inequality (??) has been known for a long time (cf.
e.g., Zygmund [?, ch. II, par. 3]). Moreover, as we shall see in Lemma 4, inequality
(??) is optimal if q = +∞. For q = 1, inequality (??) does not hold, but then a more
elementary property is available (cf. e.g., Runst and Sickel [?]):

Proposition 2. The Besov space B1,1
∞ (Rn) is imbedded with continuity in C1

b (Rn).

Proposition 3. Let 1 ≤ q ≤ ∞, s > 0. Then Bs,q
∞ (Rn) is a Banach algebra for the

usual multiplication of functions.

Proof. This result is well known — almost straightforward if s is not integer. For s
integer, it is an immediate consequence of Proposition 1 and of the following identity:

(2.4) f(x+ h)g(x+ h) + f(x− h)g(x− h)− 2f(x)g(x) =

= (f(x+ h) + f(x− h)− 2f(x)) g(x) + f(x+ h) (g(x+ h) + g(x− h)− 2g(x)) +

+ (f(x− h)− f(x+ h)) (g(x− h)− g(x)) .

�

We now introduce an inequality for the second order modulus of the composition
of two functions which turns out to be relevant in our analysis. Inequalities of this
type have been known for a long time (cf. Warschawski [?, p. 321], Tamrazov [?],
[?].) However, for the sake of completeness, we include a proof.

Proposition 4. For all functions f : R→ R and g : Rn → R, the following holds:

(2.5) η(f ◦ g; t) ≤ ω(f ; η(g; t)) + η(f ;ω(g; t)) , ∀t > 0 .
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Proof. Inequality (??) is an immediate consequence of the following elementary in-
equality:

|f(g(x+ h)) + f(g(x− h))− 2f(g(x))| ≤

≤ 1

2
|f(g(x+ h))− f(2g(x)− g(x− h))|+ 1

2
|f(g(x− h))− f(2g(x)− g(x+ h))|+

+
1

2
|f(g(x+ h)) + f(2g(x)− g(x+ h))− 2f(g(x))|+

+
1

2
|f(g(x− h)) + f(2g(x)− g(x− h))− 2f(g(x))| .

�

2.4. Approximation by entire functions. In order to formulate our results on the
continuity and differentiability of Tf , we need to approximate f by entire functions.
We first introduce some notation. Let γ :]0, 1/e]→ R+ be the function defined by

γ(t) :=
t

| log t|
.

We denote by Z the set of functions f of a real variable such that η(f ; t) = O (γ(t))
as t→ 0+. For a function f ∈ Z , we set

‖f‖Z := sup
0<t≤1/e

η(f ; t)

γ(t)
.

Clearly Z ∩W 1
∞ becomes a Banach space if endowed with the norm

‖f‖∞ + ‖f ′‖∞ + ‖f‖Z .
We denote by Cm

ub(R) the set of real valued functions f of class Cm on R such that
f (k) is a uniformly continuous bounded function, for k = 0, . . . ,m. It is easily seen
that Cm

ub(R) is a closed subspace of Wm
∞(R). We set

C∞b (R) :=
⋂
m≥0

Cm
b (R) =

⋂
m≥0

Cm
ub(R) .

We note that C∞b (R) is included in all the function spaces which we have previously
defined on R.

Let H∞ be the set of functions f ∈ L∞(R) such that f̂ is a compactly supported
distribution. Let (ϕj)j≥1 be an approximation of unity defined by

ϕj(x) := jϕ(jx) ,

where ϕ̂ ∈ D(R) and ϕ̂(ξ) = 1 in a neighborhood of 0. If f ∈ H∞, then f is a
restriction to R of an entire function and f = f ∗ϕj for j sufficiently large. Thus we
easily deduce that

H∞ ⊆ C∞b (R) .

We shall use the following two elementary formulas:

(2.6) f(x+ t)− f(x) = t

∫ 1

0

f ′(x+ tu) du ,
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which holds for all functions f in C1(R), and

(2.7) f(x+ t) + f(x− t)− 2f(x) = 2t2
∫ 1

0

∫ 1

0

f ′′(x− tu+ 2tuv)u du dv ,

which holds for all functions f in C2(R).

Proposition 5. The following statements hold.

(1) Let m ∈ N. Then Cm
ub(R) is the closure of H∞ and of C∞b (R) in Wm

∞(R).
(2) Let m ∈ N. Then the set of f ∈ Cm+1

ub (R) such that

(2.8) lim
t→0+

(
sup
x∈R

|f (m)(x+ t) + f (m)(x− t)− 2f (m)(x)|
γ(t)

)
= 0 ,

is the closure of H∞ and of C∞b (R) in Wm (Z ∩W 1
∞).

(3) Let m ∈ N∗, m < s < m+ 1. Then the set of f ∈ Cm
ub(R) such that

(2.9) lim
t→0

(
sup
x∈R

|f (m)(x+ t)− f (m)(x)|
|t|s−m

)
= 0 ,

is the closure of H∞ and of C∞b (R) in Cs(R).
(4) Let m ∈ N∗. Then the set of f ∈ Cm−1

ub such that

(2.10) lim
t→0+

(
sup
x∈R

|f (m−1)(x+ t) + f (m−1)(x− t)− 2f (m−1)(x)|
t

)
= 0 ,

is the closure of H∞ and of C∞b (R) in Cm(R).

Proof. We consider the first two function spaces and leave the other two to the reader.
Indeed the proofs are similar.

I- Assume that fj ∈ C∞b (R) and that fj → f in the function space E.

For E = Wm
∞(R), we obtain that f

(k)
j → f (k) uniformly on R (k = 0, . . . ,m). Then

the uniform continuity of f (k) follows.
Let E = Wm (Z ∩W 1

∞). Since E ⊆ Wm+1
∞ (R), we have f ∈ Cm+1

ub (R). If we apply

(??) to the function f
(m)
j , we obtain

1

γ(t)
|f (m)
j (x+ t) + f

(m)
j (x− t)− 2f

(m)
j (x)| ≤ ‖f (m+2)

j ‖∞ t | log t| (0 < t ≤ 1/e) .

Then

sup
x∈R

|f (m)(x+ t) + f (m)(x− t)− 2f (m)(x)|
γ(t)

≤ ‖f (m) − f (m)
j ‖Z + ‖f (m+2)

j ‖∞ t | log t| .

Hence

lim sup
t→0+

(
sup
x∈R

|f (m)(x+ t) + f (m)(x− t)− 2f (m)(x)|
γ(t)

)
≤ ‖f (m) − f (m)

j ‖Z .

Since the right hand side is arbitrarily small, we conclude that such limit is 0.
II- For f ∈ E, we consider the sequence fj := f ∗ ϕj. Since E ⊆ L∞(R), it can be

readily verified that fj ∈ H∞.

If f ∈ Cm
ub(R), then one proves classically that f

(k)
j → f (k) uniformly for k =

0, . . . ,m. Hence f belongs to the closure of H∞ in Wm
∞(R).
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Let f ∈ Cm+1
ub (R) be such that (??) holds. Then fj → f in Wm+1

∞ (R). Moreover

(f (m) − f (m)
j )(x+ t) + (f (m) − f (m)

j )(x− t)− 2(f (m) − f (m)
j )(x) =

=

∫
Rn

(
f (m)(x+ t)− f (m)(x− y + t) + f (m)(x− t)

−f (m)(x− y − t)− 2f (m)(x) + 2f (m)(x− y)
)
ϕj(y)dy ,

which implies

η(f (m) − f (m)
j ; t) ≤ 2‖ϕ‖1 η(f (m); t) .

On the other hand η(f (m) − f (m)
j ; t) ≤ 4 ‖f (m) − f (m)

j ‖∞. Let ε > 0. By assumption

on f (m), there exists δ > 0 such that

0 < t < δ ⇒ η(f (m); t)

γ(t)
≤ ε

2‖ϕ‖1
.

Since f
(m)
j → f (m) in L∞, there exists j0 such that

j ≥ j0 ⇒ ‖f (m) − f (m)
j ‖∞ ≤

εγ(δ)

4
.

For such j and for all t ∈]0, 1/e], we obtain

1

γ(t)
η(f (m) − f (m)

j ; t) ≤ ε ,

that is ‖f (m) − f (m)
j ‖Z ≤ ε. By inequality (??), we easily see that W 2

∞(R) is con-

tinuously embedded in Z, and thus in Z ∩W 1
∞. Then we conclude that fj → f in

Wm (Z ∩W 1
∞). �

3. Functional calculus in Besov spaces Bs,q
∞ (Rn)

3.1. The case 0 < s < 1. For the sake of completeness, we recall the following well
known result (cf. e.g., [?] and (??)).

Theorem 3. Let 0 < s < 1, 1 ≤ q ≤ ∞. Then Tf (B
s,q
∞ (Rn)) ⊆ Bs,q

∞ (Rn) if and only
if f is locally Lipschitz continuous. Moreover, there exists a continuous increasing
function ψ : R+ → R+ such that

‖f ◦ g‖Bs,q
∞ (Rn) ≤ ‖f‖W 1

∞(R) ψ
(
‖g‖Bs,q

∞ (Rn)

)
,

for all f ∈ W 1
∞(R) and g ∈ Bs,q

∞ (Rn).

3.2. The case s > 1. We are now going to prove a more general version of Theorem
1.

Theorem 4. Let s > 1, 1 ≤ q ≤ ∞. Then Tf (B
s,q
∞ (Rn)) ⊆ Bs,q

∞ (Rn) if and only if
f belongs locally to Bs,q

∞ (R). Moreover, there exists a continuous increasing function
ψ : R+ → R+ such that

(3.1) ‖f ◦ g‖Bs,q
∞ (Rn) ≤ ‖f‖Bs,q

∞ (R) ψ
(
‖g‖Bs,q

∞ (Rn)

)
,

for all f ∈ Bs,q
∞ (R) and g ∈ Bs,q

∞ (Rn).
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Proof. The necessity of f ∈ Bs,q
∞,loc(R) is easily seen by testing Tf on a function

g ∈ D(Rn) such that g(x) = x1 on some ball. To prove the sufficiency, we can
assume that f belongs globally to Bs,q

∞ (R). Indeed if θ ∈ D(R) satisfies θ(x) = 1
on g(Rn), then f ◦ g = fθ ◦ g. Then our proof relies on the following intermediate
statement.

Lemma 2. Let 1 ≤ q ≤ ∞, 0 < r ≤ 1, s > 1. If f ∈ Br,q
∞ (R), then Tf (B

s,q
∞ (Rn)) ⊆

Br,q
∞ (Rn). Moreover, there exists a continuous increasing function ψ : R+ → R+

such that

(3.2) ‖f ◦ g‖Br,q
∞ (Rn) ≤ ‖f‖Br,q

∞ (R) ψ
(
‖g‖Bs,q

∞ (Rn)

)
,

for all f ∈ Br,q
∞ (R) and g ∈ Bs,q

∞ (Rn).

Proof. It clearly suffices to consider case 1 < s < 2.
1- Let 0 < r < 1. The continuous imbedding Bs,q

∞ (Rn) ⊆ W 1
∞(Rn) implies that

(3.3) ω(g; t) ≤M ‖g‖ t .
Hence ω(f ◦ g; t) ≤ ω(f ;M ‖g‖t) and(∫ ∞

0

(
ω(f ◦ g; t)

tr

)q
dt

t

)1/q

≤

≤M ′ ‖g‖r
(∫ ∞

0

(
ω(f ;u)

ur

)q
du

u

)1/q

≤M ′‖g‖r ‖f‖ ,

which gives us ‖f ◦ g‖ ≤ ‖f‖ (1 +M‖g‖r).
2- Let r = 1. The imbeddings Bs,q

∞ (Rn) ⊆ Cs(Rn) and B1,q
∞ (R) ⊆ B

1/s,q
∞ (R) yield

the following inequality(∫ ∞
0

(
ω(f ; η(g; t))

t

)q
dt

t

)1/q

≤
(∫ ∞

0

(
ω(f ;M‖g‖ts)

t

)q
dt

t

)1/q

= s−1/q (M‖g‖)1/s
(∫ ∞

0

(
ω(f ;u)

u1/s

)q
du

u

)1/q

≤M ′ ‖g‖1/s ‖f‖ .

On the other hand, (??) implies that(∫ ∞
0

(
η(f ;ω(g; t))

t

)q
dt

t

)1/q

≤M ‖g‖
(∫ ∞

0

(
η(f ;u)

u

)q
du

u

)1/q

≤M ‖g‖ ‖f‖ .

Then, from Proposition 4, we deduce that

‖f ◦ g‖ ≤ ‖f‖
(
1 +M(‖g‖+ ‖g‖1/s)

)
.

�

Now we go back to the proof of Theorem 4. Let m < s ≤ m + 1, m ∈ N∗. We
show (??) by induction on m. It is well known that the norm of f ◦ g in Bs,q

∞ (Rn) is
equivalent to that given by

‖f‖∞ +
n∑
j=1

‖(f ′ ◦ g) ∂jg‖Bs−1,q
∞ (Rn) .
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According to Proposition 3, it suffices to estimate

‖f ′ ◦ g‖Bs−1,q
∞ (Rn) ‖g‖Bs,q

∞ (Rn) .

For m = 1, we apply Lemma 2 to f ′◦g. For m > 1, we apply the inductive assumption
to f ′ and g. �

3.3. The space B1,1
∞ (Rn).

Theorem 5. Tf (B
1,1
∞ (Rn)) ⊆ B1,1

∞ (Rn) if and only if f belongs locally to B1,1
∞ (R).

Moreover, there exists M > 0 such that

(3.4) ‖f ◦ g‖B1,1
∞ (Rn) ≤M ‖f‖B1,1

∞ (R) (‖g‖B1,1
∞ (Rn) + 1) ,

for all f ∈ B1,1
∞ (R) and g ∈ B1,1

∞ (Rn).

Proof. Let f ∈ B1,1
∞ (R) and g ∈ B1,1

∞ (Rn). From Propositions 2 and 4, we deduce
that

1

t
η(f ◦ g, t) ≤ ‖f ′‖∞

1

t
η(g; t) +

1

t
η (f ;M t ‖∇g‖∞) .

By taking the norms in L1(]0,+∞[, t−1dt) in the previous inequality, we obtain (??).
�

3.4. The case s = 1, q > 1: a sufficient condition.

Theorem 6. Let 1 < q ≤ +∞. If f is locally Lipschitz continuous and sat-
isfies condition (??) as t → 0+, uniformly on each compact subset of R, then
Tf (B

1,q
∞ (Rn)) ⊆ B1,q

∞ (Rn). Moreover, there exists a continuous increasing function
ψ : R+ → R+ such that

(3.5) ‖f ◦ g‖B1,q
∞ (Rn) ≤ ‖f‖Z∩W 1

∞ ψ
(
‖g‖B1,q

∞ (Rn)

)
,

for all f ∈ Z ∩W 1
∞ and g ∈ B1,q

∞ (Rn).

Proof. As in the proof of Theorem 4, we can assume that f belongs to Z ∩W 1
∞ (see

also (??).) We choose the following norm in B1,q
∞ (Rn):

‖g‖ := ‖g‖∞ +

(∫ 1/e

0

(
η(g; t)

t

)q
dt

t

)1/q

.

According to Proposition 1, we have ω(g; t) = κ(t) t | log t|, with(∫ 1/e

0

κ(t)q
dt

t

)1/q

≤M‖g‖ .

Since B1,q
∞ (Rn) ⊆ C1(Rn), we also have

sup
0<t≤1/e

κ(t) ≤M‖g‖ .

By elementary computations, we can show that there exists a continuous decreasing
function w : R+ →]0, 1/e], depending only on M , such that

M‖g‖ t | log t| ≤ 1/e and | log t| ≥ 4 log(M‖g‖) ,
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for all t ∈ ]0, w (‖g‖)]. Since

1 +
log | log t|

log t
≥ 1/2 , ∀t ∈ ]0, 1/e] ,

we deduce that

1

t
η(f ;ω(g; t)) ≤ κ(t)

∣∣∣∣1 +
log | log t|

log t
+

log κ(t)

log t

∣∣∣∣−1 ‖f‖Z ≤ 4κ(t) ‖f‖Z ,

for all t ∈ ]0, w (‖g‖)]. On the other hand, we have

1

t
η(f ;ω(g; t)) ≤ 4

t
‖f ′‖∞ ‖g‖∞ , ∀t > 0 .

Assume that q <∞. Then we obtain∫ 1/e

0

(
1

t
η(f ;ω(g; t))

)q
dt

t
≤

≤ 4q‖f‖qZ
∫ w(‖g‖)

0

κ(t)q
dt

t
+ 4q‖f ′‖q∞ ‖g‖q∞

∫ ∞
w(‖g‖)

dt

tq+1
≤

≤ 4q ‖f‖qZ∩W 1
∞
‖g‖q

(
M q + w(‖g‖)−q

)
.

Hence (∫ 1/e

0

(
1

t
η(f ;ω(g; t))

)q
dt

t

)1/q

≤ ‖f‖Z∩W 1
∞ ψ(‖g‖) ,

where ψ : R+ → R+ is some continuous increasing function. The above inequality is
easily seen to be true also for q = +∞. Since

ω(f ; η(g; t)) ≤ ‖f ′‖∞ η(g; t) ,

then inequality (??) yields to (??). �

3.5. The space C1: a necessary condition. Let f : R→ R be such that

Tf (C1(Rn)) ⊆ C1(Rn) .

By possibly subtracting f(0), we can assume that f(0) = 0. We already know that f
is locally Lipschitz continuous (cf. [?]). To prove condition (??), we observe that, in
some sense, the nonlinear operator Tf is bounded on C1 and we test Tf on appropriate
functions. We start by introducing the following variant of a classical lemma (cf. e.g.,
Katznelson [?, ch. VIII, par. 8.3]).

Lemma 3. If Tf (C1(Rn)) ⊆ C1(Rn), and f(0) = 0, then the set

{f ◦ g : ‖g‖ ≤ c , supp g ⊆ K}
is bounded in C1(Rn), for all compact subsets K of Rn and c > 0.

Proof. Assume by contradiction that the statement is false. Then there exist c > 0
and R > 0 such that

{f ◦ g : ‖g‖ ≤ c , supp g ⊆ [−R,R]n}
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is an unbounded set in C1(Rn). Let θ ∈ D(Rn), with support in [−2R, 2R]n, such
that θ(x) = 1 on [−R,R]n and let Mθ be the norm of g 7→ gθ as a bounded linear
operator on C1(Rn). By our contradiction assumption, there exists a sequence (qj)
in C1(Rn) satisfying the following conditions.

supp qj ⊆ [−R,R]n , ‖qj‖ ≤ c , ‖f ◦ qj‖ > jMθ .

Now we set

Gj := 5Rje1 + [−R,R]n , gj := τ5Rje1qj , θj := τ5Rje1θ ,

where e1 := (1, 0, . . . , 0). Since the norm of C1 is translation invariant, we have

‖gj‖ ≤ c , ‖f ◦ gj‖ > jMθ .

Since supp gj ⊆ Gj, we can define g : Rn → R by setting g(x) := gj(x) on Gj and
g(x) := 0 out of

⋃
j Gj. Then it is clear that g ∈ C1(Rn). Since f(0) = 0, we have

f ◦ gj = (f ◦ gj)θj = (f ◦ g)θj. Then we obtain

j Mθ < ‖(f ◦ g)θj‖ ≤Mθj‖f ◦ g‖ = Mθ‖f ◦ g‖ ,
a contradiction. �

Lemma 4. The function σ(x) := x ρ(x) |log |x|| belongs to C1(R) (see Section 1 for
the definition of ρ.)

Proof. We have

−σ′(x) = ρ(x) log |x|+ ρ(x) + ρ′(x)x log |x|
in the sense of distributions, and the function x 7→ ρ(x) + ρ′(x)x log |x| is clearly in
D(R). On the other hand, it is well known that the function x 7→ log |x| belongs
to BMO(R), which is a subspace of the homogeneous Besov space Ḃ0,∞

∞ (R) (see
[?, Prop. VII. 24, p. 154]). Then it can be readily checked that the function x 7→
ρ(x) log |x| belongs to B0,∞

∞ (R). Hence σ′ ∈ B0,∞
∞ (R) and accordingly σ ∈ B1,∞

∞ (R).
�

Now we go back to the proof of Theorem 2. We first introduce the auxiliary
functions

ga(x) := (a+ σ(x1)) ρ(|x|) = aρ(|x|) + σ(x1) ρ(|x|) , ∀x := (x1, x2, . . . , xn) ∈ Rn .

Let I be a bounded interval. According to Proposition 4 and to Lemma 4, the set
{ga : a ∈ I} is bounded in C1(Rn). Moreover, the functions ga have support in a
fixed compact subset of Rn. Then by Lemma 3, there exists a constant A > 0 such
that

‖f ◦ ga‖ ≤ A , ∀a ∈ I .
In particular,

(3.6) |f(ga(x)) + f(ga(−x))− 2f(ga(0))| ≤ A |x| , ∀a ∈ I , ∀x ∈ Rn .

Let 0 < t ≤ 1/e. Then there exists h ∈ ]0, 1/e] such that t = h | log h|. If we take
x = he1 in (??), we obtain

|f(a+ t) + f(a− t)− 2f(a)| ≤ Ah .
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However, we also have

(3.7) h

∣∣∣∣1 +
log | log h|

log h

∣∣∣∣−1 ≥ h , ∀h ∈ ]0, 1/e] .

Hence

|f(a+ t) + f(a− t)− 2f(a)| ≤ A
t

| log t|
.

3.6. Remarks. Is there a relation between the differentiability of f and the fact
that Tf (C1(Rn)) ⊆ C1(Rn)? The two following propositions answer in part to this
question.

The first Proposition, namely Proposition 6, is due to Winfried Sickel (personal
communication). Below we provide both our proof and the proof of Sickel.

Proposition 6. Let f ∈ C1(R). If

(3.8) f ′(x+ h)− f ′(x) = O
(
| log |h| |−1

)
,

for h→ 0, uniformly in x on every compact set of R, then Tf (C1(Rn)) ⊆ C1(Rn).

Proof. Since f is of class C1, it is a fortiori locally Lipschitz continuous. Moreover,
by the Mean Value Theorem, (??) implies (??).

We now turn to the proof of Sickel. Without loss of generality, we assume that f
is compactly supported. Let g ∈ C1(Rn). By (3.8) and by Proposition 1, we deduce
that

ω(f ′ ◦ g)(t) = O
(
| log t|−1

)
,

as t→ 0+. Then by exploiting the characterization of pointwise multipliers of B0,∞
∞ ,

we obtain (f ′ ◦ g)∂xjg ∈ B0,∞
∞ (Rn) for all j = 1, . . . , n (cf. Koch and Sickel [?,

Lem. 20].) Hence, f ◦ g ∈ B1,∞
∞ (Rn). �

Now, we introduce the second Proposition.

Proposition 7. The condition f ∈ C1 is neither necessary nor sufficient in order to
have Tf (C1(Rn)) ⊆ C1(Rn).

Proof. For α ≥ 0, we consider the function

(3.9) fα(x) :=
|x|

| log |x| |α
ρ(|x|) .

We have fα(h) + fα(−h)− 2fα(0) = 2fα(h). Hence fα does not satisfy the condition
(??) for α < 1. Nevertheless fα is continuously differentiable for α > 0.

We now exhibit a nondifferentiable function f such that Tf (C1(Rn)) ⊆ C1(Rn).
The following example has been indicated to us by Jean-Pierre Kahane. Let {εj} be
a sequence in {−1,+1} such that

uk :=
k∑
j=1

εj
j

(k ≥ 1)

is a bounded but not convergent sequence. For example, we could take

εj := 1 if 22k ≤ j < 22k+1 , εj := −1 if 22k+1 ≤ j < 22k+2 , for k ∈ N .
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Let θ be a C∞, positive, even function, decreasing on [0,∞[, with supp θ = [−1, 1]
and θ(0) = 1. Let g be the odd primitive of θ. We define the function f by setting

f(x) :=
∞∑
j=1

εj
j

2−jg(2jx) .

By (??), we have

|g(x+ h) + g(x− h)− 2g(x)| ≤ min(h2 ‖θ′‖∞, 4‖g‖∞) , ∀x, h ∈ R .

Hence there exists A > 0 such that

(3.10) |f(x+ h) + f(x− h)− 2f(x)| ≤ A

(
h2

k∑
j=1

2j

j
+

∞∑
j=k+1

2−j

j

)
,

for all k ∈ N∗. By an elementary computation, we have

(3.11)
k∑
j=1

2j

j
≤M

2k

k
,

∞∑
j=k+1

2−j

j
≤M

2−k

k
, ∀k ∈ N∗ .

Then, for each h ∈]0, 1/2], we take k such that 2−k−1 < h ≤ 2−k. The inequalities
(??) and (??) yield to

(3.12) |f(x+ h) + f(x− h)− 2f(x)| ≤ A
h

| log h|
, for all h ∈]0, 1/2] , x ∈ R .

We have

f ′(x) =
∞∑
j=1

εj
j
θ(2jx)

in the sense of distributions. Since θ(2jx) = 0 for 2j ≥ 1/|x|, we see that f ′ is a C∞

function on R \ {0}. Let x > 0 and 2k ≥ 1/x. By an Abel transform, we obtain

|f ′(x)| =

∣∣∣∣∣
k∑
j=1

εjj
−1θ(2jx)

∣∣∣∣∣ =

∣∣∣∣∣
k−1∑
j=1

uj (θ(2jx)− θ(2j+1x))

∣∣∣∣∣ ≤ sup
j≥1
|uj| .

Hence the derivative of f belongs to L∞. In other words, f is Lipschitz continuous.
Now we set

ψ(x) :=
g(x)

x
.

We note that ψ can be extended by continuity to R and satisfies the following as-
ymptotic properties:

(3.13) ψ(x) = 1 +O(|x|) as |x| → 0 , ψ(x) = O(|x|−1) as |x| → ∞ .

Moreover, we have

2kf(2−k) = uk +
k∑
j=1

εj
j

(ψ(2j−k)− 1) +
∞∑

j=k+1

εj
j
ψ(2j−k) .
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¿From (??) and (??), we deduce that

2kf(2−k)− uk = O

(
1

k

)
as k → +∞ .

Thus (2kf(2−k))k≥1 is not a convergent sequence, which implies that f is not differ-
entiable in 0. �

Finally, it may be of interest to see that the two conditions of Theorem 2 are
mutually independent. The function f1/2 (cf. (??)) provides an example of locally
Lipschitz continuous function which does not satisfy (??). Now let

f(x) :=
∞∑
j=1

1

j
2−j sin(2jx) .

Exactly as in the preceding proof, we see that f satisfies the property (??). We
now show that f cannot be locally Lipschitz continuous. If f were locally Lipschitz
continuous, then there would exist C > 0 such that |f(x)| ≤ Cx, for 0 < x ≤ 1. By
taking x = 2−N , with N ∈ N∗, we obtain∣∣∣∣∣

N∑
j=1

1

j
2−j sin(2j−N)

∣∣∣∣∣ ≤ C2−N +
∑
j>N

2−j

j
≤ (C + 1)2−N .

On the other hand, we have sin(2j−N) ≥ 2

π
2j−N for 1 ≤ j ≤ N . Hence,∣∣∣∣∣

N∑
j=1

1

j
2−j sin(2j−N)

∣∣∣∣∣ ≥ 2

π
2−N

(
N∑
j=1

1

j

)
,

a contradiction.

4. Continuity and differentiability of the superposition operator

The following regularity Theorem provides a full characterization of the functions
f for which Tf is a Cr mapping on the Hölder-Zygmund space.

Theorem 7. Let s > 0 and r ∈ N. Let f be a function from R to itself. Then the
following list provides, for the various values of s, a necessary and sufficient condition
for the operator Tf to be of class Cr from Cs(Rn) to itself.

(1) f is of class Cr+1, if 0 < s < 1.
(2) f is of class Cr+1 and

f (r)(x+ t) + f (r)(x− t)− 2f (r)(x) = o(γ(t)) ,

as t→ 0+, uniformly on each compact subset of R, if s = 1.
(3) f is of class Cr+m and

f (r+m)(x+ t)− f (r+m)(x) = o
(
|t|s−m

)
,

as t→ 0, uniformly on each compact subset of R, if m < s < m+ 1 for some
m ∈ N∗.
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(4) f is of class Cr+s−1 and

f (r+s−1)(x+ t) + f (r+s−1)(x− t)− 2f (r+s−1)(x) = o(t) ,

as t→ 0+, uniformly on each compact subset of R, if s is integer and s > 1.

We note that statements 1 and 3 are variants of known results. For references to
the various contributions, we refer to [?] and to the extensive monograph of Appell
and Zabreiko [?]. However, we believe that statements 2 and 4 are novel.

As a first step to prove Theorem ??, we introduce an abstract differentiability
result for the composition operator of [?], which we apply to the Hölder-Zygmund
classes in the next section.

4.1. An abstract regularity Theorem.

Proposition 8. Let E be a BDS in R. Let I be a bounded open interval of R. Let
RI be the restriction operator from D′(R) to D′(I). Then E(I) := RI(E), equipped
with the quotient norm associated with the map RI : E → E(I), is a BDS in I.

Proof. If fk → f in E, with RI(fk) = 0, then fk → f in D′(R) and accordingly
RI(f) = 0. Thus the kernel of RI : E → E(I) is a closed subspace of E and
accordingly E(I), with the quotient norm, is a Banach space. We have jE(I) ◦ RI =
RI ◦ jE and RI ◦ jE is a continuous mapping from E to D′(I). Thus by definition of
the quotient topology, jE(I) is continuous of E(I) to D′(I). �

Lemma 5. Let E be a BDS in R such that D(R) ⊆ E. Let P(R) be the set of
polynomials in one real variable. If I is a bounded nonempty open interval of R, then
RI is an injection of P(R) into E(I).

Proof. Let θ ∈ D(R) be such that θ(x) = 1 in a neighborhood of I. Then, for all
p ∈ P(R), we have θp ∈ D(R) ⊆ E, and thus RI(p) = RI(θp) ∈ E(I). �

Lemma 6. Let r ∈ N. Let I be a bounded nonempty open interval of R. Let E be
a BDS in R such that D(R) ⊆ E. Let Pr,E(I) denote the closure of RI(P(R)) in
W r(E(I)). Then the following function is a norm on P(R):

‖p‖r,E,I := ‖RI(p)‖W r(E(I)) ∀p ∈ P(R),

and Pr,E(I) is a completion of (P(R), ‖.‖r,E,I). Moreover Pr1,E(I) is imbedded with
continuity in Pr2,E(I) if r1 > r2, and P0,E(I) is imbedded with continuity in E(I).

Proof. The fact that ‖.‖r,E,I is norm on P(R) is a consequence of Lemma 5. The
other statements are straightforward. �

In the following, we denote by H the set of functions from R to itself which are
restrictions to R of entire analytic functions, and we denote by clEA the closure of a
set A in a certain space E.

Proposition 9. Let r ∈ N. Let I be a bounded nonempty open interval of R. Let E
be a BDS in R such that D(R) ⊆ E. Then

(i) RI maps continuously W r(E) into W r(E(I)).
(ii) RI

(
clW r(E)(W

r(E) ∩H)
)
⊆ Pr,E(I).
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Proof. From the identity (RIf)(j) = RI(f
(j)) (which holds for all f ∈ D′(R)), we

deduce that

‖RIf‖W r(E(I)) =
r∑
j=0

‖RI(f
(j))‖E(I) ≤

r∑
j=0

‖f (j)‖E = ‖f‖W r(E) .

We now prove that

RI(H) ⊆ Pr,E(I) .

Then (ii) follows by (i). For f ∈ H, we consider the Taylor polynomials

pl(x) :=
l∑

j=0

f (j)(0)
xj

j!
.

Let θ ∈ D(R) be such that θ(x) = 1 in a neighborhood of I. Since pl → f , with
all its derivatives, uniformly on each compact subset of R, we have plθ → fθ in
D(R). Accordingly, by assumption D(R) ⊆ E and by Lemma 1, we have plθ → fθ
in W r(E). Hence, by (i), we have

RI(pl)→ RI(f)

in W r(E(I)) and accordingly RI(f) ∈ Pr,E(I).
�

By [?], we have the following general result.

Theorem 8. Let all the assumptions of Proposition 9 hold. Let X be a real commu-
tative Banach algebra with unity. Let A be a subset of X . Assume there exists an
increasing function ψ of R+ to itself such that

(4.1) ‖p(x)‖X ≤ ‖RIp‖E(I) ψ (‖x‖X ) ,

for all (p, x) ∈ P(R) × A. Then there exists a unique map Φ of P0,E(I) × A to X
such that the following two conditions hold:

(i) Φ(p, x) = p(x), for all (p, x) ∈ P(R)×A,
(ii) for all fixed x ∈ A, the map Φ(·, x) is continuous from P0,E(I) to X .

Furthermore, the map Φ(·, x) of (ii) is linear, the map Φ is continuous from P0,E(I)×
A to X , and if f ∈ P0,E(I), with f = limj→∞RIpj in P0,E(I), pj ∈ P(R), and if
x ∈ A, then

Φ(f, x) = lim
j→∞

pj(x), in X ,

and

‖Φ(f, x)‖X ≤ ‖f‖E(I)ψ (‖x‖X ) .

If we further assume that A is open and that r ≥ 1, then Φ is of class Cr from
Pr,E(I)×A to X .
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4.2. Proof of the regularity Theorem ??: sufficiency. In all this section, we
consider some bounded nonempty open interval I and a function θ ∈ D(R) such that
θ(x) = 1 in a neighborhood of cl(I). The set

A := {g ∈ Cs(Rn) : g(Rn) ⊆ I}
is open in Cs(Rn). Since Cs(Rn) is the union of such sets, we are reduced to prove the
regularity of Tf on A. Now we note that f ◦ g = fθ ◦ g for g ∈ A. Furthermore, by
exploiting (??) and (??), it can be easily checked that fθ satisfies the assumptions of
Theorem 7, whenever f does so. Then we can assume that f has compact support,
and Proposition 5 implies that f ∈ clW r(E) (H∞), where E is:

(1) W 1
∞(R),

(2) Z ∩W 1
∞,

(3) Cs(R) (s > 1, noninteger),
(4) Cs(R) (s > 1, integer),

respectively. According to Theorems 3, 4, 6, we have

(4.2) ‖f ◦ g‖Cs(Rn) ≤ ‖f‖E ψs
(
‖g‖Cs(Rn)

)
,

for some continuous increasing function ψs from R+ to itself. From (??), we readily
deduce that

‖f ◦ g‖Cs(Rn) ≤ ‖RIf‖E(I) ψs
(
‖g‖Cs(Rn)

)
,

for any f ∈ E and g ∈ A. By taking f = θp, where p is a polynomial, we see that
the hypotheses of Theorem 8 are fulfilled, with X := Cs(Rn). According to Theorem
8, we obtain that (f, g) 7→ f ◦ g is a Cr mapping from Pr,E(I)×A to Cs(Rn). Since
we have

RI

(
clW r(E)(H∞)

)
⊆ Pr,E(I) ,

Proposition 9 yields the conclusion.

4.3. Proof of the regularity Theorem ??: necessity.

4.3.1. Differentiability of f . We first prove that f is of class C1, by exploiting an
idea of Drábek (cf. [?, p. 52]), who has considered case 0 < s < 1.

Proposition 10. Let s > 0, f : R → R. If Tf is continuous from Cs(Rn) to itself,
then f is continuously differentiable.

Proof. For 0 < s < 1, the result is due to Drábek [?] and, for s > 1, it is immediate.
We now assume that s = 1. It clearly suffices to consider the case n = 1. Let E be
the Banach space of functions g : R→ R for which

‖g‖E := ‖g‖∞ + sup
x∈R, 0<|h|≤1/e

|g(x+ h)− g(x)|
|h| | log |h||

< +∞

By Proposition 1, our assumption implies that Tf is continuous from C1(R) to E.
Let ξ0, x0, h ∈ R. By Lemma 4, the function uh of R to itself defined by

uh(x) := σ(x− x0) + ξ0 + h, ∀x ∈ R ,

belongs to C1(R). Clearly,

lim
h→0

uh = u0, in C1(R) .
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Now let ε > 0 be given arbitrarily. By continuity of Tf at u0, there exists δ > 0
depending only on x0, ξ0 such that

sup
0<|x−x′|<e−1

∣∣∣∣(f(uh(x))− f(uh(x
′)))− (f(u0(x))− f(u0(x

′)))

σ(x− x′)

∣∣∣∣ < ε

provided that 0 < |h| < δ. Then by setting x′ = x0, we obtain the following inequal-
ity:

(4.3)

∣∣∣∣f(ξ0 + σ(x− x0) + h)− f(ξ0 + h)

σ(x− x0)
− f(ξ0 + σ(x− x0))− f(ξ0)

σ(x− x0)

∣∣∣∣ < ε,

for 0 < |x− x0| < e−1, which holds whenever 0 < |h| < δ.
By [?, p. 414], the function f is locally Lipschitz continuous, and thus f ′ exists

almost everywhere. We now show by contradiction that f ′ exists everywhere. Thus
we assume that there exists ξ0 ∈ R such that

L̄ := lim sup
t→0

f(ξ0 + t)− f(ξ0)

t
> L := lim inf

t→0

f(ξ0 + t)− f(ξ0)

t
.

Since f is locally Lipschitz continuous, L̄ and L are both finite. Let {τj}j∈N, {tj}j∈N
be sequences in [−e−1, e−1] \ {0} converging to 0 and such that

L̄ = lim
j→∞

f(ξ0 + tj)− f(ξ0)

tj
, L = lim

j→∞

f(ξ0 + τj)− f(ξ0)

τj

Now let x′j, x
′′
j ∈ R be such that |x′j − x0| < e−1, |x′′j − x0| < e−1, and such that

σ(x′j − x0) = tj, σ(x′′j − x0) = τj.

Moreover, let {hl}l∈N be a sequence in R\{0} such that liml→∞ hl = 0, and such that
f ′ is differentiable at all points of the set {ξ0 +hl : l ∈ N}. Now let ε̄ ∈]0, (L̄−L)/4[.
As we have observed above, there exists δ̄ > 0 such that (??) holds with ε = ε̄, and
for all 0 < |h| < δ̄. Then we obtain∣∣∣∣f(ξ0 + tj + hl)− f(ξ0 + hl)

tj
− f(ξ0 + tj)− f(ξ0)

tj

∣∣∣∣ < ε̄,∣∣∣∣f(ξ0 + τj + hl)− f(ξ0 + hl)

τj
− f(ξ0 + τj)− f(ξ0)

τj

∣∣∣∣ < ε̄,

for all j ∈ N, and for all l ∈ N such that |hl| < δ̄. Now we let j tend to infinity in
(??), and we obtain

|f ′(ξ0 + hl)− L̄| ≤ ε̄, |f ′(ξ0 + hl)− L| ≤ ε̄,

for all l ∈ N such that |hl| < δ̄. Accordingly, |L̄− L| ≤ 2ε̄, a contradiction. Thus we
conclude that f ′(ξ0) exists for all ξ0 ∈ R. We now prove that f ′ is continuous at ξ0.
Let ε > 0 be given arbitrarily. Then there exists δ > 0 such that (??) holds, and by
taking the limit as x tends to x0 in (??), we obtain

|f ′(ξ0 + h)− f ′(ξ0)| ≤ ε,

for 0 < |h| < δ. Thus f ′ is continuous at ξ0. �
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4.3.2. The case r = 0, s = 1. The following result relies upon ideas of Sobolevskij
[?], who has considered Hölder spaces.

Proposition 11. Let f : R→ R. If Tf is continuous from C1(Rn) to itself, then we
have

lim
t→0+

(
sup
ξ∈K

|f(ξ + t) + f(ξ − t)− 2f(ξ)|
γ(t)

)
= 0,

for all compact subsets K of R.

Proof. By Proposition ??, the function f is continuously differentiable. Then, for all
η > 0, the averaged function fη, defined by

fη(ξ) :=
1

η

∫ ξ+η

ξ

f(τ) dτ =

∫ 1

0

f(ξ + τη) dτ ∀ξ ∈ R,

is of class C2. Formula (??) implies that

(4.4) lim
t→0+

(
sup
ξ∈K

|fη(ξ + t) + fη(ξ − t)− 2fη(ξ)|
γ(t)

)
= 0,

for all compact intervals K of R. Now we set

gξ(x) := ξ + σ(x).

Since σ is odd, then we have gξ(±h) = ξ±σ(h), for all h, ξ ∈ R. Now we assume that
0 < t < 1/e. Clearly, there exists a unique number h ∈ ]0, 1/e[ such that t = h | log h|.
By (??), we have γ(t) ≥ h. From the identities

(f − fη)(ξ + εt) =

∫ 1

0

(f(gξ(εh))− f(gξ+τη(εh))) dτ (ε = −1, 0, 1) ,

we deduce that

sup
ξ∈K
|(f − fη)(ξ + t) + (f − fη)(ξ − t)− 2(f − fη)(ξ)| ≤

≤ γ(t) sup
ξ∈K

sup
0≤τ≤1

‖f ◦ gξ+τη − f ◦ gξ‖ .

Then by (??), we obtain

lim sup
t→0+

(
sup
ξ∈K

|f(ξ + t) + f(ξ − t)− 2f(ξ)|
γ(t)

)
≤ sup

ξ∈K
sup

0≤τ≤1
‖f ◦ gξ+τη − f ◦ gξ‖ ,

for each fixed η > 0. By exploiting the uniform continuity of Tf on the compact
subset

{gξ+y : ξ ∈ K, y ∈ [0, 1]}

of the space C1(R), we see that the above right hand side is arbitrarily small with
η. �
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4.3.3. The case r = 0, s > 1. By arguing so as to prove [?, prop. 4.21], we have the
following.

Proposition 12. Let s > 1. Let f : R → R. If the operator Tf is continuous from
Cs(Rn) to itself, then fθ belongs to the closure of C∞b in Cs, for all θ ∈ D(R).

Proof. It clearly suffices to consider the case n = 1. According to section 4.2, Tθ is
continuous on Cs(R), for all θ ∈ D(R). Since Cs(R) is a Banach algebra, Tfθ is also
continuous on Cs(R). Thus we can assume that f has compact support and show
that f itself belongs to the closure of C∞b in Cs. Let R > 0 be such that f(x) = 0 for
|x| ≥ R. Let ψ ∈ C∞b such that ψ(x) = x for |x| ≤ R and |ψ(x)| > R for |x| > R.
Since f is bounded, we already know that (f ∗ ϕj) ◦ ψ ∈ C∞b (cf. section 2.4). We
now note that the maps y 7→ ψ−y and ϕj are continuous from R to Cs(R), and from
R to itself, respectively. By our assumption, the map Fj of R to Cs(R) defined by

Fj(y) := (f ◦ (ψ − y)− f ◦ ψ) ϕj(y)

is continuous and satisfies limy→∞ ‖Fj(y)‖yk = 0 for all k ∈ N. Then Fj is Bochner
integrable, and we have

(4.5)

∥∥∥∥∫
R

Fj(y) dy

∥∥∥∥ ≤ ∫
R

‖Fj(y)‖ dy .

For all δ > 0, one has∫
R

‖Fj(y)‖ dy ≤ ‖ϕ‖1 sup
|y|≤δ
‖f ◦ (ψ − y)− f ◦ ψ‖+ 2‖f‖∞

∫
|y|>δ
|ϕj(y)| dy .

By exploiting the fact that lim
j→∞

∫
|y|>δ
|ϕj(y)| dy = 0 and the continuity of Tf on

Cs(Rn), we obtain

lim
j→∞

∫
R

‖Fj(y)‖ dy = 0.

Going back to (??), we see that

lim
j→∞

(f ∗ ϕj) ◦ ψ = f ◦ ψ in Cs(R).

Since f ◦ ψ = f , we conclude that f belongs to the closure of C∞b (R) in Cs(R). �

4.3.4. End of the proof of Theorem 7. Assume that Tf is r times continuously differ-
entiable from Cs(Rn) to itself. We first consider case s = 1 and prove, by induction
on r, that f satisfies condition 2 of Theorem 7. By Propositions ?? and ??, we
know that the statement holds for r = 0. Thus we now assume that the statement
holds for r, and we prove it for r + 1. We argue as in [?, p. 474]. Let g ∈ C1(Rn),
h ∈ C1(Rn) \ {0}. The differentiability of Tf at g implies that

lim
t→0

∥∥∥∥f ◦ (g + th)− f ◦ g
t‖h‖

− dTf [g]

(
h

‖h‖

)∥∥∥∥ = 0.

Since we already know that f ′ exists at all points of R, we deduce that

(f ′ ◦ g)h = dTf [g](h), ∀h ∈ C1(Rn).
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Since Tf is (r + 1) times continuously differentiable, then dTf [·] is r times contin-
uously differentiable from C1(Rn) to L (C1(Rn), C1(Rn)), and since the evaluation
map A 7→ A[1] at the constant function 1 ∈ C1(Rn) is linear and continuous from
L (C1(Rn), C1(Rn)) to C1(Rn), we conclude that the map g 7→ Tf [g](1) = f ′ ◦ g is
r times continuously differentiable from C1(Rn) to itself. Then, by the inductive
assumption, f ′ satisfies condition 2 of Theorem 7 and thus f satisfies the same con-
dition with r + 1 instead of r. The case s > 1 can be treated similarly by exploiting
Propositions 5 and ??. We now consider case 0 < s < 1. The same inductive argu-
ment of case s = 1 reduces the proof to case r = 0. Case r = 0 can be treated by a
straightforward modification of the proof of Drábek [?].
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