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Abstract: Let f be a Borel measurable function of the complex plane to itself. We
consider the nonlinear operator Tf defined by Tf [g] = f ◦ g, when g belongs to a certain
subspace X of the space BMO(Rn) of functions with bounded mean oscillation on the
Euclidean space. In particular, we investigate the case in which X is the whole of BMO,
the case in which X is the space VMO of functions with vanishing mean oscillation,
and the case in which X is the closure in BMO of the smooth functions with compact
support. We characterize those f ’s for which Tf maps X to itself, those f ’s for which Tf
is continuous from X to itself, and those f ’s for which Tf is differentiable in X.

1 Introduction and main results.

In this paper, we characterize those Borel measurable functions f of the complex plane C
to itself such that the nonlinear superposition operator Tf defined by

Tf [g] := f ◦ g

takes BMO(Rn) and several spaces related to BMO(Rn) to themselves. Also continuity
and differentiability of Tf will be discussed.

This paper may be considered as a continuation of the investigations of Fominykh [6],
of Chevalier [3], and of Brezis and Nirenberg [2]. Whereas Fominykh and Chevalier have
characterized all functions f such that Tf (BMO) ⊆ BMO in cases n = 1, and n ≥ 1,
respectively, Brezis and Nirenberg have shown that the uniform continuity of f suffices to
ensure that Tf acts in VMO(Rn).

We are going to consider Tf in BMO(Rn), in VMO(Rn), in CMO(Rn) and in their
respective inhomogeneous counterparts bmo(Rn), vmo(Rn) and cmo(Rn). For the defi-
nition of these spaces, we refer to Section 2. (The reader should be aware of the fact
that the symbols VMO and CMO are used with different meanings at different places in
the literature.) It turns out that the behaviour of Tf can differ strongly on these various
classes.

We start by analyzing the acting condition of Tf .
Here and in the sequel we require, without further reference, the validity of the following

Assumption f is a Borel measurable function of C to itself.

We first introduce the following more general form of Fominykh-Chevalier Theorem.

Theorem 1 The following properties are equivalent.

(i) sup
x,y∈C

(1 + |x− y|)−1|f(x)− f(y)| < +∞.

(ii) Tf [BMO(Rn)] ⊆ BMO(Rn).

(iii) Tf [bmo(Rn)] ⊆ bmo(Rn).
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(iv) Tf [cmo(Rn)] ⊆ BMO(Rn).

Furthermore, if any of the above properties is satisfied, then Tf maps bounded subsets of
BMO(Rn) to bounded subsets of BMO(Rn), and bounded subsets of bmo(Rn) to bounded
subsets of bmo(Rn).

Next we extend the result of Brezis and Nirenberg which we mentioned before by
establishing the necessity of the uniform continuity in case of VMO.

Theorem 2 The following properties are equivalent.

(a) f is uniformly continuous.

(b) Tf [VMO(Rn)] ⊆ VMO(Rn).

(c) Tf [vmo(Rn)] ⊆ vmo(Rn).

(d) Tf [cmo(Rn)] ⊆ VMO(Rn).

Furthermore, if any of the above properties is satisfied, then Tf maps bounded subsets of
VMO(Rn) to bounded subsets of VMO(Rn), and bounded subsets of vmo(Rn) to bounded
subsets of vmo(Rn).

In cases of cmo and CMO, we have the following nice conclusion, which can be deduced
from Theorem 2 and from a continuity result for Tf (cf. Proposition 2 of Section 5.)

Corollary 1 The following two statements hold.

• We have Tf [cmo(Rn)] ⊆ cmo(Rn) if and only f is uniformly continuous and f(0) =
0.

• We have Tf [CMO(Rn)] ⊆ CMO(Rn) if and only f is uniformly continuous.

We now turn to discuss the continuity of the operator Tf . Brezis and Nirenberg [2,
Lem. A.8, p. 238] have proved that if f is a uniformly continuous function, and if M is a
compact Riemann manifold, then Tf is continuous from BMO(M) to itself at all points
of VMO(M). By exploiting the same arguments, we can prove that Tf is continuous from
bmo(Rn) to itself at all points of vmo(Rn), and that Tf is continuous from BMO(Rn) to
itself at all points of CMO(Rn) (cf. Proposition 2 of Section 5.) With this respect, we
observe that whenM is compact, there is no difference between CMO(M) and VMO(M).
Instead, CMO(Rn) 6= VMO(Rn) and, as we shall see in Theorem 4, the uniform continuity
of f does not suffice to guarantee the continuity of Tf at the points of VMO(Rn). By
combining such continuity result with Theorem 2 and with Corollary 1, we obtain the
following characterization.

Theorem 3 The following two statements hold.

(J) Tf is continuous from vmo(Rn) to itself or from CMO(Rn) to itself if and only if f
is uniformly continuous.

(JJ) Tf is continuous from cmo(Rn) to itself if and only if f is uniformly continuous and
f(0) = 0.

By Theorem 2, by Corollary 1, and by Theorem 3, we can immediately deduce the following
characterization, inspired by the famous corresponding result for superposition operators
acting in first order Sobolev spaces of Marcus and Mizel [9].

2



Corollary 2 Let X be either vmo(Rn), or cmo(Rn), or CMO(Rn). Then the following
properties are equivalent.

(1) Tf [X] ⊆ X, i.e., Tf acts in X.

(2) Tf maps bounded subsets of X to bounded subsets of X.

(3) Tf is continuous from X to itself.

Very different instead, are the cases of bmo(Rn), BMO(Rn) and VMO(Rn). Brezis and
Nirenberg [2, p. 240] have proved that even the Lipschitz continuous function max{0, t}
does not generate a continuous superposition operator on bmo(Rn). A more complete
picture is given by the following degeneracy result.

Theorem 4 Let X be either BMO(Rn), or VMO(Rn), or bmo(Rn). Then Tf is contin-
uous from X to BMO(Rn) if and only if f is R-affine.

We now turn to consider the differentiability of the operator Tf , and we present the
following degeneracy result.

Theorem 5 Tf is R-differentiable from D(Rn) endowed with the norm of bmo(Rn) to
BMO(Rn) if and only if f is R-affine.

This paper is organized as follows. In Section 2, we recall the definitions of BMO
and of its subspaces. Sections 3 and 4 are devoted to the proofs of Theorems 1 and 2,
respectively. Section 5 is devoted to the proof of the continuity statements and of Corollary
1, Section 6 is devoted to the proof of the statement concerning the differentiability. The
last section is an Appendix, where we collect some technical facts, known in large part,
which we exploit in the proofs.

2 Function spaces.

We recall that BMO(Rn) is the set of complex-valued locally integrable functions g on
Rn such that

‖g‖BMO := sup
Q

∫
Q

∣∣∣g −∫ Qg∣∣∣ < +∞ ,

where the supremum is taken on all cubes Q with sides parallel to the coordinate axes and
where ∫

Qg

denotes the mean value of the function g on Q. The quotient space of BMO(Rn) with
the above seminorm over the constant functions is a Banach space. Since the operator Tf
is clearly not defined on the quotient space, we prefer to consider BMO(Rn) as a Banach
space of ‘true’ functions with the following norm:

‖g‖∗ := ‖g‖BMO +
∫
Q0
|g| ∀g ∈ BMO(Rn),

where Q0 is the unit cube [−1/2,+1/2]n. We denote by bmo(Rn) the linear subspace of
BMO(Rn) consisting of those functions g which satisfy also the following condition

sup
|Q|≥1

∫
Q|g| < +∞ ,

where |Q| denotes the Lebesgue measure of Q or, equivalently,

sup
|Q|=1

∫
Q|g| < +∞
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(cf. Lemma 7 of the Appendix.) It turns out that bmo(Rn) is a Banach space for the norm

‖g‖bmo := ‖g‖BMO + sup
|Q|=1

∫
Q|g| ∀g ∈ bmo(Rn).

We denote by cmo(Rn) the closure of the set D(Rn) of the C∞ functions with compact
support in bmo(Rn), and we endow cmo(Rn) with the norm of bmo(Rn). Similarly, we
denote by CMO(Rn) the closure of D(Rn) in BMO(Rn), and we endow CMO(Rn) with
the norm of BMO(Rn).

According to Sarason [10], a function g of BMO(Rn) which satisfies the limiting con-
dition

lim
a→0

(
sup
|Q|≤a

∫
Q

∣∣∣g −∫ Qg∣∣∣
)

= 0 (1)

is said to be of vanishing mean oscillation. The subspace of BMO(Rn) consisting of the
functions of vanishing mean oscillation is denoted VMO(Rn), and we endow VMO(Rn)
with the norm of BMO(Rn). We note that the space VMO(Rn) considered by Coifman
and Weiss [4] is different from that considered by Sarason, and it coincides with our
CMO(Rn). As it is well known, VMO(Rn) $ BMO(Rn). For example, the function
log |x| belongs to BMO(Rn), but not to VMO(Rn) (cf. e.g., Stein [12, Ch. IV, §. I.1.2],
and Brezis and Nirenberg [2, p. 211].) We set

vmo(Rn) := VMO(Rn) ∩ bmo(Rn) ,

and we endow the space vmo(Rn) with the norm of bmo(Rn).
For the convenience of the reader, we display all the subspaces of BMO(Rn) we have

introduced in the following diagram:

bmo(Rn) $ BMO(Rn)
∪ / ∪ /

vmo(Rn) $ VMO(Rn)
∪ / ∪ /

cmo(Rn) $ CMO(Rn)

where all inclusions are proper and continuous.

3 Proof of Theorem 1.

3.1 Alternative formulations of condition (i).

Proposition 1 The condition (i) of Theorem 1 is equivalent to each of the following
properties.

(j) There exist two constants α > 0 and C > 0 such that |f(x) − f(y)| ≤ C, for all
complex numbers x, y satisfying inequality |x− y| ≤ α.

(k) f is the sum of a bounded Borel measurable function and of a Lipschitz continuous
function.

Proof. Obviously, condition (k) implies condition (i), and condition (i) implies con-
dition (j). By a standard argument, condition (i) follows by condition (j). By Lemma 6
of the Appendix, condition (k) follows by condition (i).
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3.2 Condition (i) implies conditions (ii), (iii) and (iv).

By Proposition 1, it suffices to consider separately, the case in which f is Lipschitz con-
tinuous, and the case in which f is bounded.

Assume first that f is Lipschitz continuous, with Lipschitz constant denoted Lip(f).
Then we have ∫

Q

∣∣∣f ◦ g − f (∫ Qg)∣∣∣ ≤ Lip(f)‖g‖BMO

and ∫
Q|f ◦ g| ≤

∫
Q|f ◦ g − f(0)| + |f(0)| ≤ Lip(f)

(∫
Q|g|

)
+ |f(0)| ,

for all g ∈ BMO(Rn) and for all cubes Q. By inequality (21) of the Appendix, we obtain

‖f ◦ g‖BMO ≤ 2 Lip(f)‖g‖BMO , (2)

‖f ◦ g‖∗ ≤ 2 Lip(f)‖g‖∗ + |f(0)| ,

‖f ◦ g‖bmo ≤ 2 Lip(f)‖g‖bmo + |f(0)| .

Assume now that f is bounded. Then Tf takes BMO(Rn) into L∞(Rn), a subspace
of bmo(Rn).

3.3 Condition (iv) of Theorem 1 implies condition (j) of Proposition 1.

As customary in this type of problems (cf. e.g., Katznelson [8, ch. VIII, § 8.3]), we first
prove that the acting condition of Tf implies a property of local boundedness on bounded
sets for Tf .

Lemma 1 If conditions Tf [cmo(Rn)] ⊆ BMO(Rn) and f(0) = 0 hold, then there exist a
cube Q and two constants C1, C2 > 0 such that ‖f ◦ g‖∗ ≤ C2 for any g ∈ cmo(Rn) with
supp g ⊆ Q and ‖g‖bmo ≤ C1.

Proof. We argue by contradiction. We assume that for any cube Q and for any positive
numbers C1, C2, there exists g ∈ cmo(Rn) with supp g ⊆ Q, ‖g‖bmo ≤ C1 and ‖f ◦ g‖∗ >
C2. Let (Qj)j≥1 be a sequence of disjoint cubes. Let Q̃j be the cube with the same center
as that of Qj , and with sidelength equal to one half of that of Qj . Let φj ∈ D(Rn) be such

that φj(x) = 1 on Q̃j and φj(x) = 0 out of Qj . According to Lemma 11 of the Appendix,
there exists γj > 0 such that

‖gφj‖∗ ≤ γj‖g‖∗ , (3)

for all g ∈ BMO(Rn). By the contradiction assumption, there exist functions gj ∈
cmo(Rn) such that

supp gj ⊆ Q̃j , ‖gj‖bmo ≤ 2−j , ‖f ◦ gj‖∗ > jγj .

Now we set g :=
∞∑
j=1

gj . Then g ∈ cmo(Rn). Moreover, since

∞∑
j=1

∫
Q
|gj | ≤

∞∑
j=1

‖gj‖bmo <∞ ,

for all unit cubes Q of Rn, then

∞∑
j=1

|gj(x)| < +∞ a.e. in Rn .
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Thus we also have

g(x) =

∞∑
j=1

gj(x) a.e. in Rn .

Then by condition f(0) = 0, we deduce that

(f ◦ g)φj = f ◦ gj a.e. in Rn .

By assumption, we have f ◦ g ∈ BMO(Rn). Then inequality (3) implies that

jγj ≤ γj‖f ◦ g‖∗ ∀j ≥ 1 ,

a contradiction.

We now prove the following Lemma, which we also employ in the rest of the paper,
and which is inspired by an argument of Bourdaud [1].

Lemma 2 Assume that there exist constants c1 > 0, c2 > 0, c3 ≥ 0, and a cube K such
that

sup
|Q|<c2

∫
Q

∣∣∣f ◦ g − (∫ Qf ◦ g)∣∣∣ ≤ c3, (4)

whenever g ∈ D(Rn) and ‖g‖bmo ≤ c1, supp g ⊆ K, then there exists a constant k > 0
depending only on the cube K such that

sup {|f(a)− f(b)| : a, b ∈ C, |a− b| ≤ kc1} ≤ 4n+1c3 . (5)

Proof. By translation invariance of the norm in bmo(Rn) and of the supremum in (4),
and by Lemma 12 of the Appendix, and by replacing c1 and c2 by α1c1 and α2c2, for some
strictly positive constants α1 and α2 depending only on K, we can assume that K = Q0.
Then we take φ ∈ D(Rn) such that φ = 1 on 1

2Q0 and suppφ ⊆ Q0, 0 ≤ φ ≤ 1. Let a, b
be two complex numbers such that

|a− b| ≤ α1c1
6

. (6)

According to Lemma 8 of the Appendix, there exist a function θ ∈ D(Rn) and an integer
j ≥ 1 such that supp θ ⊆ Q0, θ = 1 on the cube 2−jQ0, 2−nj ≤ α2c2, and

|a|‖θ‖bmo ≤
α1c1

2
. (7)

Now we set
g(x) = (b− a)φ(2j+1x) + aθ(x) ∀x ∈ Rn.

Clearly, g ∈ D(Rn) and supp g ⊆ Q0. Then by the inequalities (6) and (7), by the
boundedness of φ, and by inequality ‖ · ‖bmo ≤ 3‖ · ‖∞, we have

‖g‖bmo ≤ α1c1.

Thus by our assumption, we have∫
2−jQ0

∣∣∣f ◦ g − (∫ 2−jQ0
f ◦ g

)∣∣∣ ≤ c3.
Clearly, f(g(x)) = f(b) on 2−j−2Q0, and f(g(x)) = f(a) on 2−jQ0 \ 2−j−1Q0. Thus we
obtain

|f(b)− f(a)| ≤∣∣∣f(b)−
(∫

2−jQ0
f ◦ g

)∣∣∣+
∣∣∣f(a)−

(∫
2−jQ0

f ◦ g
)∣∣∣ ≤ c34n+1,
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and we can take k = α1/6.

Next we assume that Tf [cmo(Rn)] ⊆ BMO(Rn). By possibly subtracting f(0), we can
assume that f(0) = 0. Then condition (j) holds by Lemma 1 and by Lemma 2.

4 Proof of Theorem 2 .

Brezis and Nirenberg [2, Lem. A.7, p. 238] have proved that condition (b) follows by
condition (a). Solely for the sake of completeness, we report here their proof.

We say that a function ω of [0,∞[ to itself is a modulus of continuity for the function
f provided that

|f(x)− f(y)| ≤ ω(|x− y|) ∀x, y ∈ C, lim
t→0

ω(t) = 0 , (8)

Now let f be a uniformly continuous function. As it is well known, there exists a concave
increasing modulus of continuity ω for f (cf. e.g., DeVore and Lorentz [5, Lem. 6.1, p. 43].)
Thus by Jensen’s inequality and by inequality (22) of the Appendix, we have∫

Q

∣∣∣f ◦ g − (∫ Qf ◦ g)∣∣∣ ≤ (9)

≤ ω
(∫

Q

∫
Q |g(x)− g(y)| dxdy

)
≤ ω

(
2
∫
Q

∣∣∣g − (∫ Qg)∣∣∣)
for all cubes Q, and for all g ∈ BMO(Rn). Inequality (9) implies the validity of condition
(b). Since condition (b) implies condition (iv) of Theorem 1, then, by Theorem 1, condition
(b) implies condition (c). Since condition (d) clearly follows by condition (c), it remains
to prove that condition (d) implies the uniform continuity of f .

4.1 Condition (d) implies condition (a).

We need the following technical lemma.

Lemma 3 If conditions Tf [cmo(Rn)] ⊆ VMO(Rn) and f(0) = 0 hold, then for every
ε > 0, there exist a cube K contained in the cube Q0, and two constants c1 > 0, c2 > 0
such that ∫

Q

∣∣∣f ◦ g − (∫ Qf ◦ g)∣∣∣ ≤ ε,
for all g ∈ cmo(Rn) with supp g ⊆ K, ‖g‖bmo ≤ c1, and for all cubes Q with |Q| ≤ c2.

Proof. By contradiction, we assume that there exists ε̄ > 0 such that for any cube K
contained in K0 := Q0, and for all positive numbers c1 > 0, c2 > 0, there exist g ∈ cmo(Rn)
with support in K, ‖g‖bmo ≤ c1, and |Q| ≤ c2 such that

ε̄ ≤
∫
Q

∣∣∣f ◦ g − (∫ Qf ◦ g)∣∣∣ .
We now define a family of disjoint cubes contained in K0. Namely, we take

Kj := 2−1(j + 1)−2K0 + j−1e1 ,

for j natural, j ≥ 3, e1 := (1, 0, . . . , 0). Now let φ ∈ D(Rn), with φ = 1 on 1
2K0, and with

suppφ ⊆ K0, φj(x) := φ
(
2(j + 1)2(x− j−1e1)

)
. Clearly, ‖∇φj‖∞ = 2(j + 1)2‖∇φ‖∞. By

7



our contradiction assumption, there exist functions gj ∈ cmo(Rn) and cubes Qj such that
supp gj ⊆ K ′j := 2−2(j + 1)−2K0 + j−1e1, ‖gj‖bmo ≤ 2−j , |Qj | ≤ 2−jn,

ε̄ ≤
∫
Qj

∣∣∣f ◦ gj − (∫ Qj
f ◦ gj

)∣∣∣ .
Since gj vanishes outside Kj and f(0) = 0, we have Qj ∩ Kj 6= ∅, and thus Qj ⊆ K0

for j ≥ 3. Now, we set g :=
∑∞

j=3 gj . Then g ∈ cmo(Rn). Moreover, as in the proof of
Lemma 1, we have (f ◦ g)φj = f ◦ gj . By assumption, we have f ◦ g ∈ VMO(Rn). Thus
by our contradiction assumption, by inequality j ≤ 2| log |Qj || and by Lemma 10 of the
Appendix, we obtain

ε̄ ≤ 2
[∫

Qj

∣∣∣f ◦ g − (∫ Qj
f ◦ g

)∣∣∣]+

+2
√
n|Qj |1/n (1 + 2| log |Qj ||)2 ‖∇φ‖∞

[
C‖f ◦ g‖BMO (1 + |log |Qj ||) +

∣∣∣∫K0
f ◦ g

∣∣∣] ,
for all j ≥ 3. Then by letting j tend to infinity and by observing that f ◦ g ∈ VMO(Rn),
we obtain a contradiction.

Next we assume that Tf [cmo(Rn)] ⊆ VMO(Rn). By possibly subtracting f(0), we can
assume that f(0) = 0. Then by Lemma 3 and by Lemma 2, the function f is uniformly
continuous.

5 Proof of the continuity statements for Tf .

We first introduce a continuity statement for Tf , which we prove by an argument of Brezis
and Nirenberg.

Proposition 2 Let f be uniformly continuous. If g ∈ vmo(Rn), then Tf is continuous at
g as a map of bmo(Rn) to itself. If g ∈ CMO(Rn), then Tf is continuous at g as a map
of BMO(Rn) to itself.

Proof. The proof is based on an inequality which we present in the following Lemma.

Lemma 4 If f has a concave increasing modulus of continuity ω as in (8), then we have∫
Q|f ◦ (g + v)− f ◦ g −

∫
Q (f ◦ (g + v)− f ◦ g) |

≤ min
(

2ω(2
∫
Q|g −

∫
Qg|) + ω(2

∫
Q|v −

∫
Qv|), 2ω(

∫
Q|v|)

)
,

for all locally integrable functions g and v on Rn, and for all cubes Q.

Proof. The left hand side of the above inequality is less than or equal to

I :=
∫
Q

∫
Q|f(g(x) + v(x))− f(g(x))− f(g(y) + v(y)) + f(g(y))| dx dy .

Then we have

I ≤
∫
Q

∫
Q(|f(g(x) + v(x))− f(g(x) + v(y))|+ |f(g(x))− f(g(y))|+

+|f(g(x) + v(y))− f(g(y) + v(y))|) dx dy ≤

≤ ω
(∫

Q

∫
Q|v(x)− v(y)| dx dy

)
+ 2ω

(∫
Q

∫
Q|g(x)− g(y)| dx dy

)
≤
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≤ ω
(

2
∫
Q|v −

∫
Qv|
)

+ 2ω
(

2
∫
Q|g −

∫
Qg|
)
.

On the other hand

I ≤
∫
Q

∫
Q (|f(g(x) + v(x))− f(g(x))|+ |f(g(y) + v(y))− f(g(y))|) dx dy ≤

≤ 2ω
(∫

Q

∫
Q|v(x)| dx dy

)
= 2ω

(∫
Q|v|

)
.

Thus the proof of the Lemma is complete.

We now return to the proof of Proposition 2. We find it convenient to introduce some
notation. If Q is a cube with center a, and sidelength r > 0, then we set τ(Q) := |a|+ r,

WR := sup
τ(Q)≥R

∫
Q

∣∣∣g −∫ Qg∣∣∣ and Mc := sup
|Q|≤c

∫
Q

∣∣∣g −∫ Qg∣∣∣ .
Furthermore, for any function v ∈ BMO(Rn), we set

IQ(v) :=
∫
Q

∣∣∣f ◦ (g + v)− f ◦ g −
∫
Q (f ◦ (g + v)− f ◦ g)

∣∣∣ .
Let ω be a concave increasing modulus of continuity for f .

Let g ∈ vmo(Rn) and ε > 0. By definition of vmo(Rn), there exists 0 < c ≤ 2−1 such
that

ω(2Mc) ≤ ε. (10)

Then we can take η > 0 such that
ω(η/c) ≤ ε.

Now let v ∈ bmo(Rn) with ‖v‖bmo ≤ η. Let Q be a cube. If |Q| ≤ c, then by Lemma 4
and by (10), we have

IQ(v) ≤ 2ε+ ω(2‖v‖bmo) ≤ 3ε .

If c < |Q| ≤ 1, we have ∫
Q|v| ≤ c

−1‖v‖bmo
and thus

IQ(v) ≤ 2ω
(
c−1‖v‖bmo

)
≤ 2ε.

Moreover, if |Q| = 1, then∫
Q|f ◦ (g + v)− f ◦ g| ≤ ω

(∫
Q|v|

)
≤ ω (‖v‖bmo) .

Finally, we obtain

sup
|Q|≤1

IQ(v) + sup
|Q|=1

∫
Q|f ◦ (g + v)− f ◦ g| ≤ 4ε,

for all ‖v‖bmo ≤ η. Then by Lemma 7 of the Appendix, the operator Tf is continuous
from bmo(Rn) to itself at g.

Now we assume that g ∈ CMO(Rn). Again, we choose 0 < c ≤ 2−1 such that (10)
holds. By Lemma 15 of the Appendix, there exists some R ≥ 1 such that

ω(2WR) ≤ ε. (11)

By applying Lemma 9 of the Appendix to |v|, there exists a constant C(n, c,R) ≥ 2, such
that ∫

Q|v| ≤ C(n, c,R)‖v‖∗,
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for all v ∈ BMO(Rn), and for all cubes Q such that |Q| > c and τ(Q) < R. Then we
choose η > 0 such that ω(ηC(n, c,R)) ≤ ε and ω(η/c) ≤ ε.

Now let v ∈ BMO(Rn) such that ‖v‖∗ ≤ η. If |Q| ≤ c or if τ(Q) ≥ R, then by (10),
and by (11), and by Lemma 4, we have IQ(v) ≤ 3ε. If |Q| > c and τ(Q) < R, we have
IQ(v) ≤ 2ω(‖v‖∗C(n, c,R)) ≤ 2ε. We conclude that supQ IQ(v) ≤ 3ε. Moreover,∫

Q0
|f ◦ (g + v)− f ◦ g| ≤ ω

(∫
Q0
|v|
)
≤ ε,

and thus the proof of Proposition 2 is complete.

5.1 Proof of Corollary 1.

If Tf acts in cmo(Rn) or in CMO(Rn), then Tf [cmo(Rn)] ⊆ VMO(Rn) and, by The-
orem 2, f is uniformly continuous. If Tf [cmo(Rn)] ⊆ cmo(Rn), then the constant function
f(0) = Tf [0] belongs to cmo(Rn). Then by Lemma 13 of the Appendix, we have f(0) = 0.

Now assume that f is uniformly continuous. By Theorem 2 and by Proposition 2, we
know that Tf is continuous from CMO(Rn) to VMO(Rn), and from cmo(Rn) to vmo(Rn).
Thus, it suffices to prove the following two inclusions.

Tf [D(Rn)] ⊆ CMO(Rn) , (12)

Tf [D(Rn)] ⊆ cmo(Rn) if f(0) = 0 . (13)

If f(0) = 0, then Tf [D(Rn)] is included in the space Cc(Rn) of continuous functions with
compact support. Since any such function is a uniform limit of functions of D(Rn), we
obtain Cc(Rn) ⊆ cmo(Rn). Thus the proof of (13) is complete. If f(0) 6= 0, we apply (13)
to the function f − f(0). Then, for all g ∈ D(Rn), we have f ◦ g − f(0) ∈ cmo(Rn). By
Lemma 14 of the Appendix, all constant functions belong to CMO(Rn). Thus we obtain
f ◦ g ∈ CMO(Rn), for all g ∈ D(Rn).

5.2 Proof of Theorem 3.

Statement (J) is an immediate consequence of Theorem 2, of Corollary 1 and of Proposi-
tion 2. By definition of cmo(Rn), statement (JJ) is an immediate consequence of statement
(J), and of Corollary 1.

5.3 Proof of Theorem 4.

We first introduce the following preliminary Lemma.

Lemma 5 If the superposition operator Tf of the space D(Rn) endowed with the norm
‖ · ‖bmo to BMO(Rn) is continuous at the constant function 0, then f is uniformly con-
tinuous.

Proof. By possibly subtracting f(0) from f , we can assume that f(0) = 0. Accordingly,
Tf [0] = 0. Let ε > 0 be arbitrary. By continuity of Tf at 0, there exists r > 0 such that
‖f ◦ g‖∗ ≤ ε if g ∈ D(Rn) and if ‖g‖bmo ≤ r. Then by Lemma 2, we conclude that f is
uniformly continuous.
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We are now ready to prove Theorem 4. As usual, we can assume that f(0) = 0. Let
α, β be two arbitrary complex numbers.

First we assume that Tf is continuous from bmo(Rn) to BMO(Rn). By Lemma 8 of
the Appendix, there exists a sequence (θj)j≥1 of functions such that θj(x) = 1 on the cube
Kj = [−j−1, j−1]n, and limj→∞ ‖θj‖bmo = 0. Let γ denote the characteristic function of
[0, 1]n. Clearly,

cj :=
∫
Kj

(f ◦ (βγ + α)− f ◦ (βγ))

= 2−njn

[∫
[0,j−1]n

(f(βγ(x) + α)− f(βγ(x))) dx

+

∫
Kj\[0,j−1]n

(f(βγ(x) + α)− f(βγ(x))) dx

]
= 2−n(f(β + α)− f(β)) + f(α)(1− 2−n) .

Then we have

‖Tf [βγ + αθj ]− Tf [βγ]‖BMO ≥ 2−njn
∫
[0,j−1]n

|f ◦ (βγ + α)− f ◦ (βγ)− cj |

= 2−n |f(β + α)− f(β)− cj |
= 2−n(1− 2−n) |f(β + α)− f(β)− f(α)| .

By taking the limit as j tends to infinity, we obtain

f(α+ β) = f(α) + f(β) ∀α , β ∈ C .

Then by the continuity of f , which follows from Lemma 5, and by a classical argument,
we can easily deduce that f is R-linear.

We now assume that Tf is continuous from VMO(Rn) to BMO(Rn). Again, Lemma 5
implies the continuity of f . Let M be a sufficiently large positive constant. Let Kj ,K

′
j ,K

′′
j

be the cubes of center aj = 2M4je1 and halfsidelength 2j , 2j + 1, and 2j+1, respectively.
We note that

|K ′j \Kj | = O(2j(n−1)) as j → +∞ (15)

and that the cubes K ′′j are pairwise disjoint. Let (φj)j≥1 be a sequence of functions of
D(Rn) such that

φj(x) = 1 forx ∈ [−1, 1]n , φj(x) = 0 forx /∈ [−1− 2−j , 1 + 2−j ]n

and
|φj | ≤ 2, sup

j≥1
2−j‖∇φj‖∞ < +∞ . (16)

We define the function g by setting

g(x) = φj

(
x− aj

2j

)
if x ∈ K ′′j for some j ≥ 1,

and g(x) = 0 elsewhere. From (16) we deduce that g and ∇g are bounded. Hence
g ∈ VMO(Rn). Let (ψj)j≥1 be the sequence of functions introduced in Lemma 8 of the

11



Appendix. Let uj(x) := ψj
(
M−1(x− aj)

)
. Then uj ∈ D(Rn), ‖uj‖BMO = ‖ψj‖BMO and

uj(x) = 0 on Q0, for j sufficiently large. Thus we have

lim
j→+∞

‖uj‖∗ = 0

and uj(x) = 1 on the cube K ′′j . We now set

cj :=
∫
K′′j

(f ◦ (βg + αuj)− f ◦ (βg)) .

Clearly,

cj =
1

|K ′′j |
(
|Kj |(f(β + α)− f(β)) + |K ′′j \K ′j |f(α) +Aj

)
,

where Aj =

∫
K′j\Kj

(f ◦ (βg + αuj)− f ◦ (βg)). By (15) and by the uniform continuity of

f , we deduce that Aj = O(2j(n−1)). Moreover,

|K ′′j \K ′j | = (2n − 1)|Kj | − |K ′j \Kj | .

Hence
cj = 2−n(f(β + α)− f(β)) + (1− 2−n)f(α) + εj ,

with limj→∞ εj = 0. Then we have

‖Tf [βg + αuj ]− Tf [βg]‖BMO ≥
1

|K ′′j |

∫
Kj

|f ◦ (βg + αuj)− f ◦ (βg)− cj | =

= 2−n
∣∣(1− 2−n)(f(β + α)− f(β)− f(α))− εj

∣∣ .
Thus by taking the limit as j → +∞, we obtain f(β + α) = f(β) + f(α).

5.4 Open questions.

We end this section by mentioning some open problems concerning the continuity of Tf .
1. By Theorem 4, there are no nonlinear uniformly continuous function f for which Tf

is continuous from the whole of BMO(Rn), or of VMO(Rn), or of bmo(Rn) to BMO(Rn).
However, we did not characterize the points of continuity of Tf .

2. Are there nonlinear functions f for which Tf is locally Hölder continuous on
vmo(Rn), cmo(Rn) or CMO(Rn)?

6 Proof of Theorem 5.

A function f of C to itself can be viewed as a function of two real variables, say y1, y2. As
a first step, we prove that ∂f

∂y1
and ∂f

∂y2
exist. We consider for example ∂f

∂y1
. Let φ ∈ D(Rn)

be real valued and equal to one on Q0. Since Tf is differentiable at cφ for all c ∈ C, we
have

lim
t→0

t−1 {Tf [cφ+ tφ]− Tf [cφ]} = dTf [cφ](φ) in BMO(Rn). (17)

Since BMO(Rn) is continuously imbedded in the space of locally summable functions, we
deduce that there exists a sequence (jk)k≥1 in N such that limk→∞ jk =∞ and

lim
k→∞

jk
{
f ◦ (cφ+ j−1k φ)− f ◦ (cφ)

}
= dTf [cφ](φ) a.e. in Rn. (18)
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Since the argument of the limit in (18) is constant on Q0 for each k, such limit must exist
and have a constant value βc for all x ∈ Q0. Now let (tl)l≥1 be an arbitrary sequence
in R \ {0} converging to 0. We show that an arbitrary subsequence of (tl)l≥1 has a

subsequence (tlk)k≥1 such that limk→∞ t
−1
lk

{
f(c+ t−1lk )− f(c)

}
= βc. Then the existence

of ∂f
∂y1

(c) = βc will follow by a standard argument. By (17), there exists a subsequence
(tlk)k≥1 such that

lim
k→∞

t−1lk {f ◦ (cφ+ tlkφ)− f ◦ (cφ)} = dTf [cφ](φ) a.e. in Rn. (19)

By arguing as above, such limit exists at all points of Q0, and has a constant value β′c.
Moreover, β′c = dTf [cφ](φ) a.e. in Q0. Then we have βc = β′c. Thus we can conclude that
∂f
∂y1

(c) exists for all c ∈ C. Now let u, v ∈ D(Rn), v1 := Re v, v2 := Im v. Clearly,

dTf [u](v1) = lim
t→0

t−1 {f ◦ (u+ tv1)− f ◦ u} =

(
∂f

∂y1
◦ u
)
v1 in BMO(Rn),

dTf [u](iv2) = lim
t→0

t−1 {f ◦ (u+ tiv2)− f ◦ u} =

(
∂f

∂y2
◦ u
)
v2 in BMO(Rn).

Thus by R-linearity of the differential dTf [u], we have

dTf [u](v1 + iv2) =

(
∂f

∂y1
◦ u
)
v1 +

(
∂f

∂y2
◦ u
)
v2 .

If Tf is R-differentiable at u = 0, then so is the function that takes u = u1 + iu2 to

Tf [u] − u1 ∂f∂y1 (0) − u2 ∂f∂y2 (0) − f(0). Thus there is no loss of generality in assuming that

f(0) = ∂f
∂y1

(0) = ∂f
∂y2

(0) = 0. Now we set

σ(t) := sup

{
‖Tf [u]‖BMO

‖u‖bmo
: u ∈ D(Rn), 0 < ‖u‖bmo ≤ t

}
∀t > 0.

Then by conditions Tf [0] = 0 and dTf [0] = 0, we have

lim
t→0

σ(t) = 0. (20)

Clearly, ‖Tf [u]‖BMO ≤ tσ(t) whenever u ∈ D(Rn) and ‖u‖bmo ≤ t. Thus by applying
Lemma 2 with K = Q0, we conclude that

|f(a)− f(b)| ≤ 4n+1k−1|a− b|σ(k−1|a− b|) ,

if |a− b| is sufficiently small, where k is the constant of Lemma 2. Thus (20) implies that
f is differentiable, and that its differential is identically zero.

Remark. By Theorem 5, there are no nonlinear uniformly continuous functions f for
which Tf is differentiable from the whole of vmo(Rn) to vmo(Rn) or to VMO(Rn). How-
ever, we did not characterize the points of differentiability of Tf .

7 Appendix.

For the convenience of the reader, we collect in this Appendix some known results and
some more or less elementary facts.
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Lemma 6 Let h be a measurable function of Rn to C such that

sup
x,y∈Rn

(1 + |x− y|)−1|h(x)− h(y)| < +∞ .

Then h is the sum of a bounded measurable function and of a continuously differentiable
function with bounded first order derivatives.

Proof. Let µ be a Radon measure on Rn such that∫
Rn

(1 + |y|) d|µ|(y) < +∞ ,

and µ(Rn) = 0. By assumption, we have

|h ∗ µ(x)| = |
∫
Rn

(h(x− y)− h(x)) dµ(y)| ≤ C
∫
Rn

(1 + |y|) d|µ|(y) .

Thus h ∗ µ is a bounded measurable function. Let φ ∈ D(Rn) be such that
∫
Rn φ = 1. By

taking µ equal to δ − φdx and to ∂jφdx, for j = 1, . . . , n, we deduce that h − h ∗ φ and
h ∗ ∂jφ are bounded and measurable. Then, by a classical argument, we see that h ∗ φ is
a function of class C1 with bounded gradient.

We now turn to more specific properties of BMO functions. First we note that if g is
a locally summable function in Rn and if Q is a cube, then∫

Q

∣∣∣g − (∫ Qg)∣∣∣ ≤ 2
∫
Q|g − c| ∀c ∈ C , (21)

and ∫
Q|g −

∫
Qg| ≤

∫
Q

∫
Q|g(x)− g(y)| dx dy ≤ 2

∫
Q|g −

∫
Qg| . (22)

Lemma 7 A locally integrable function g on Rn belongs to bmo(Rn) if and only if

sup
|Q|≤1

∫
Q

∣∣∣g −∫ Qg∣∣∣+ sup
|Q|=1

∫
Q|g| < +∞ ,

and the above expression defines an equivalent norm on bmo(Rn).

Proof. If the cube K has sidelength equal to an integer N ≥ 1, then K is the union of
Nn nonoverlapping cubes Kj of sidelength equal to 1. Hence∫

K |g| =
1

Nn

∑
j

∫
Kj
|g| ≤ sup

|Q|=1

∫
Q|g| .

If the cube K has a noninteger sidelength r > 1, then K ⊂ K ′, where the sidelength of
K ′ is [r] + 1. Then we have∫

K |g| ≤
|K ′|
|K|

∫
K′ |g| ≤ 2n sup

|Q|=1

∫
Q|g| .

Finally, for a cube such that |Q| > 1, we have∫
Q

∣∣∣g −∫ Qg∣∣∣ ≤ 2
∫
Q|g| .
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Lemma 8 There exist two sequences (θj)j≥1 and (ψj)j≥1 of functions of D(Rn) such that

• θj(x) = 1 for |x| ≤ 2−j, θj(x) = 0 for |x| ≥ 1, 0 ≤ θj ≤ 1, for all j ≥ 1, and
limj→∞ ‖θj‖bmo = 0.

• ψj(x) = 1 for |x| ≤ 2j, ψj(x) = 0 for |x| ≥ 4j, 0 ≤ ψj ≤ 1, for all j ≥ 1, and
limj→∞ ‖ψj‖BMO = 0.

Proof. As we have pointed out in Section 2, the function log2 | · | belongs to BMO(Rn).
Let αn be its BMO-seminorm. Let u ∈ C∞(Rn) be such that 0 ≤ u ≤ 1, and

u(t) = 1 for t ≤ −1 , u(t) = 0 for t ≥ 0 .

Let θj and ψj be defined as follows.

θj(x) = u

(
log2 |x|
j

)
, ψj(x) = u

(
log2 |x|
j

− 2

)
.

By inequality (2), we have

‖θj‖BMO ≤ 2j−1αn‖u′‖∞ , ‖ψj‖BMO ≤ 2j−1αn‖u′‖∞ .

Moreover, if Q is a unit cube, we have∫
Q
|θj(x)| dx ≤

∫
Rn

u

(
log2 |x|
j

)
≤ j−1‖u′‖∞

∫
|x|≤1

| log2 |x|| dx .

Thus by Lemma 7, the sequences (θj)j≥1 and (ψj)j≥1 have the required properties.

Then we have the following Lemma, which can be proved as the corresponding statement
for BMO functions on the unit circle (cf. e.g., Stegenga [11].)

Lemma 9 There exists a constant C > 0 depending only on n such that∣∣∣∫ Qg −∫ Q′g∣∣∣ ≤ C (1 +

∣∣∣∣log
|Q′|
|Q|

∣∣∣∣) ‖g‖BMO ,

for all cubes Q, Q′ with Q ∩Q′ 6= ∅, and for all g ∈ BMO(Rn).

By Lemma 9, we can deduce the following.

Lemma 10 There exists a constant C > 0, depending only on n, such that∫
Q

∣∣∣gφ− (∫ Qgφ)∣∣∣ ≤ 2‖φ‖∞
(∫

Q

∣∣∣g − (∫ Qg)∣∣∣)+

+
√
n|Q|1/n‖∇φ‖∞

[
C‖g‖BMO

(
1 + log

|Q′|
|Q|

)
+
∣∣∣∫ Q′g∣∣∣]

for all cubes Q, Q′ with Q ⊆ Q′, for all g ∈ BMO(Rn), and for all bounded Lipschitz
continuous functions φ of Rn to C.

Proof. Let a be the center of the cube Q. By inequality (21), we have∫
Q

∣∣∣gφ− (∫ Qgφ)∣∣∣ ≤ 2
∫
Q

∣∣∣gφ− (∫ Qg)φ(a)
∣∣∣ ≤

≤ 2‖φ‖∞
(∫

Q

∣∣∣g −∫ Qg∣∣∣)+
∣∣∣∫ Qg∣∣∣√n|Q|1/n‖∇φ‖∞.

Then the statement follows by Lemma 9.
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Lemma 11 For each φ ∈ D(Rn), there exists a constant M(φ) > 0, depending only on φ
and n, such that

‖gφ‖bmo ≤M(φ) ‖g‖∗ , (23)

for all g ∈ BMO(Rn).

Proof. We denote by M a constant depending solely on n and φ whose value may change
from equation to equation. Let R > 0 be such that suppφ ⊆ [−R,R]n. Let Q be any cube
such that |Q| ≤ 1 and Q ∩ suppφ 6= ∅. Then we have

Q ⊆ Q1 := [−2−R, 2 +R]n.

By applying Lemma 9 to |g|, to the unit cube Q0 and to Q1, we obtain∫
Q1
|g| ≤M‖g‖∗.

Then by Lemma 10 , with Q′ = Q1, we have∫
Q

∣∣∣gφ− (∫ Qgφ)∣∣∣ ≤M‖g‖∗.
Moreover, if |Q| = 1, then∫

Q|gφ| ≤ ‖φ‖∞|Q1|
∫
Q1
|g| ≤M‖g‖∗.

Hence,

sup
|Q|≤1

∫
Q

∣∣∣gφ− (∫ Qgφ)∣∣∣+ sup
|Q|=1

∫
Q |gφ| ≤M‖g‖∗ ,

and Lemma 7 yields the conclusion.

Remark. Inequality (23) does not follow immediately from the known characterizations
of the multiplier spaces for BMO and bmo (cf. Janson [7], Stegenga [11]) because of the
specific type of norms employed in both hand sides of inequality (23).

Lemma 12 There exists c > 0 depending only on n such that

‖g(λ(·))‖bmo ≤ c‖g‖bmo ,

for all λ ≥ 1 and for all g ∈ bmo(Rn).

Proof. Since the BMO seminorm is invariant by dilations, it suffices to estimate the
means on the cubes with sidelength equal to 1. If K is such a cube, we obtain∫

K |g(λ(·))| =
∫
λK |g| ≤ sup

|Q|≥1

∫
Q|g| .

By Lemma 7, sup|Q|≥1
∫
Q|g| can be estimated in terms of a constant multiple of ‖g‖bmo,

and thus the proof is complete.

Lemma 13 If g ∈ cmo(Rn), then

lim
a→∞

∫
Qa

|g| = 0,

where Qa denotes the unit cube in Rn with center a. In particular, if g is constant, then
g is zero.
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Proof. The seminorm N on bmo(Rn) defined by N(g) := lim supa→∞
∫
Qa
|g| is easily seen

to be continuous. Moreover, N has value zero on D(Rn). Thus N(g) = 0 for all elements
g of cmo(Rn).

Lemma 14 Any constant function belongs to CMO(Rn).

Proof. Let ψj be the functions of Lemma 8. We have ψj = 1 on the unit cube Q0. Hence
‖1− ψj‖∗ = ‖ψj‖BMO, which tends to 0 as j tends to infinity.

Lemma 15 If g ∈ CMO(Rn), then we have

lim
R→∞

(
sup

τ(Q)≥R

∫
Q

∣∣∣g −∫ Qg∣∣∣
)

= 0,

where τ(Q) denotes the sum |a| + r of the modulus |a| of the center a of Q, and of
r := |Q|1/n.

Proof. The seminorm N on BMO(Rn) defined by

N(g) := lim
R→∞

(
sup

τ(Q)≥R

∫
Q

∣∣∣g −∫ Qg∣∣∣
)

is easily seen to be continuous. Moreover, N has value zero on D(Rn). Thus N(g) = 0 for
all elements g of CMO(Rn).
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