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1. Introduction

As it is well-known (cf. e.g. Goluzin [10]), given a doubly connected domain in the
complex plane, bounded by an inner simple closed curve ζ i and by an outer simple
closed curve ζo, there exist a unique r[ζ] ∈]0, 1[ depending on ζ ≡ (ζ i, ζo) and a
unique holomorphic homeomorphism g[ζ] of the annulus

Ar[ζ] ≡ {z ∈ C : r[ζ] < |z| < 1}

onto the doubly connected annular domain A[ζ] enclosed by ζ i, ζo, which satisfies a
suitable normalizing condition which we specify later.

We prove that the nonlinear operator which takes the pair ζ ≡ (ζ i, ζo) to the

triple of maps
(

r−1[ζ]g(−1)

[ζ]
◦ ζ i, g(−1)

[ζ]
◦ ζo, r[ζ]

)

≡ (hi[ζ], ho[ζ], r[ζ]) ≡ (h[ζ], r[ζ])

is real analytic in Schauder spaces. This problem is strictly related to that of the
dependence of g[ζ] upon the pair of curves ζ, and arises in questions of hydrodynamics,
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of aerodynamics, and of composite materials. At the end of the paper, we briefly
outline some potential applications of our analyticity theorem.

In connection to our present work on doubly connected domains, we mention the
classical result of Radó [26], which asserts the continuity of the Riemann Map of
a simply connected Jordan domain upon the boundary curve in the topology of the
uniform convergence. For extensive references to the contributions of different authors
to this question, we refer the reader to the monographs of Gaier [7], of Kantorovich
and Krylov [13], and of Goluzin [10]. More recently, Coifman and Meyer [4] have
proved the analyticity of an operator related to that considered in this paper for
unbounded simply connected domains with boundary assigned with an arc-length
parametrized curve with direction of the tangent vector prescribed by a function of
class BMO. Wu [31], with the advice of Coifman, and with the ideas of Coifman and
Meyer [4], has obtained two analyticity statements for arc-length parametrized Jordan
domains which have certain symmetries and for curves which are close to a circle.
Lanza [17] has shown, in the frame of Schauder spaces, the analyticity of an operator
related to that of this paper for Jordan domains by exploiting a PDE approach,
which views the simply connected Jordan domain as parametrized by a function of
the unit disk of the complex plane to the complex plane. Lanza and Rogosin [20]
have presented an integral equation approach to prove the analyticity of an operator
related to that considered in Lanza [17]. To the best of the authors’ knowledge

however, the analytic dependence of operators as
(

r−1[ζ]g(−1)

[ζ]
◦ ζ i, g(−1)

[ζ]
◦ ζo, r[ζ]

)

upon ζ for doubly connected domains has not been treated.
We are developing here the approach proposed by Lanza and Rogosin [20] for the

case of simply connected Jordan domains. While for simply connected domains,
the problem can be reduced to study a nonlinear integral equation with singular
kernel, for a doubly connected domain, we are led to derive and study a system
of integral equations which contains both singular and nonsingular integrals. As a
first step, we derive a system of integral equations involving ζ, h[ζ], r[ζ], which
generalizes to doubly connected domains the equation proposed in Lanza [16], Lanza
and Rogosin [20], and we show that the set of solutions (ζ,h[ζ], r[ζ]) of such system
coincides with the graph of the function ζ $→ (h[ζ], r[ζ]). At this point, it would be
natural to try to deduce the smoothness of the solution set by applying the Implicit
Function Theorem, but we observe that the corresponding linearized problem is not
well-posed. Thus we introduce a modified system of equations, which we show to
have the same solutions of the original system, and we deduce the analyticity of h[·]
and of r[·] by applying the Implicit Function Theorem to the modified system of
equations.

Technically, we encounter mainly three difficulties. The first is inherent with ob-
taining a few results for conformal maps of annuli to doubly connected domains
bounded by curves in Schauder spaces, which are known to hold for simply con-
nected domains. The second difficulty is inherent with the regularity of the nonlinear
operators involved in the modified system of equations, and we overcome it by em-
ploying a theorem of Lanza and Preciso [19], which can be considered as a Schauder
space version for Jordan domains of the known result of Coifman and Meyer [4]. The
third difficulty is connected with the unique solvability of the linearized problem for
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the modified system of equations. To overcome this difficulty, we use the theory of
linear singular integral equations developped in Muskhelishvili [22], Gakhov [8], and
in Gohberg and Krupnik [9], as well as the related theory of boundary value problems
for holomorphic functions (cf. Gakhov [8].) In particular, we mention that the well-
posedness of the linearized system associated to the modified system of equations has
been established by a two step argument. As a first step, we prove the existence of a
unique solution with a certain regularity and we represent such solution explicitly in
terms of certain integral operators. Then by using such representation formulas and
by exploiting certain properties of the involved integral operators, we show that the
solution has in fact the required regularity.

2. Notation and Auxiliary Results

The inverse function of a function f is denoted by f (−1) as opposed to the reciprocal
of a complex-valued function g, which is denoted by g−1. We denote by D the open
unit disk in C, by T the boundary of D, and by clD the closure on D. For all
r ∈]0,+∞[, rT denotes the circle {z ∈ C : |z| = r}, and rD denotes the disk
{z ∈ C : |z| < r}. If r ∈]0, 1[, then Ar denotes the annulus {z ∈ C : r < |z| < 1}.
We denote by idT the identity map in T. As customary, ℜ z and ℑ z stand for the real
and imaginary part of z ∈ C, respectively. For all open subsets S of C, we denote by
H(S) the space of all holomorphic functions in S. By

∫

T
f(s) ds we understand the line

integral of the function f of T to C computed with respect to the parametrization
θ $→ eiθ, θ ∈ [0, 2π] of T. Let N be the set of nonnegative integers including 0.
Let m ∈ N, r ∈]0,+∞[. Then Cm(rT,C) denotes the space of m times continuously
differentiable functions from rT to C. Cm,α(rT,C) denotes the subspace of Cm(rT,C)
of those functions, which have m-th order derivatives that are Hölder continuous with
exponent α ∈]0, 1]. Let B ⊆ C. We set Cm,α(rT, B) ≡ {f ∈ Cm,α(rT,C) : f(rT) ⊆
B}. It is well-known that the space Cm,α(rT,C) endowed with the norm

∥f∥m,α ≡
m
∑

j=0

sup
t∈rT

|Djf(t)|+ sup

{

|Dmf(s)−Dmf(t)|

|s− t|α
: s, t ∈ rT, s ̸= t

}

is a Banach space. Similarly, if S is an open bounded subset of C, we define
Cm,α(cl S,R) to be the space of m-times continuously differentiable real-valued func-
tions in S such that all the partial derivatives up to order m admit a continuous
extension to cl S, and such that the partial derivatives of order m are α-Hölder con-
tinuous. By Cm,α(cl S,R2) we understand (Cm,α(cl S,R))2, and we take as norm of
a pair of functions the sum of the norms of the components. It can be readily ver-
ified that for any fixed r > 0 the restriction to the boundary of a function of class
Cm,α(cl rD,C) is of class Cm,α(rT,C). Similarly, if r ∈]0, 1[ and f ∈ Cm,α(clAr,C),
then f|T ∈ Cm,α(T,C), and f|rT ∈ Cm,α(rT,C). For standard definitions of calculus
in normed spaces, we refer e.g. to Berger [3] and to Prodi and Ambrosetti [25].

The following Theorem collects known facts related to singular integrals with
Cauchy kernels and to Cauchy type integrals.

Theorem 2.1. Let α ∈]0, 1[, m ∈ N, r ∈]0,+∞[. Then the following statements
hold.
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(i) For all f ∈ Cm,α(rT,C), the singular integral

Sr[f ](τ) ≡
1

πi

∫

rT

f(σ)

σ − τ
dσ, ∀τ ∈ rT,(2.1)

exists in the sense of the principal value, and Sr[f ](·) ∈ Cm,α(rT,C). The opera-
tor Sr defined by (2.1) is linear and continuous from Cm,α(rT,C) to Cm,α(rT,C).

(ii) For all f ∈ Cm,α(rT,C), the function Cr[f ] of C \ {rT} to C defined by

Cr[f ](z) ≡
1

2πi

∫

rT

f(σ)

σ − z
dσ, ∀z ∈ C \ {rT},

is holomorphic. The function Cr[f ]|rD admits a continuous extension to cl rD,
which we denote by C+

r [f ], and the function Cr[f ]|C\cl rD admits a continu-
ous extension to C \ rD, which we denote by C−

r [f ]. Then we have C+
r [f ] ∈

Cm,α(cl rD,C) ∩ H(rD), C−
r [f ] ∈ C0(C \ rD) ∩ Cm,α(rT,C) ∩ H(C \ cl rD).

Furthermore, limz→∞Cr[f ](z) = 0, and the Sokhotsky-Plemelj formulas

C±
r [f ](t) = ±

1

2
f(t) +

1

2
Sr[f ](t), ∀t ∈ rT.

hold.
(iii) Let I be the identity operator in Cm,α(rT,C). The function f ∈ Cm,α(rT,C)

satisfies the equation

(I− Sr)[f ] = 0,

if and only if there exists a function F ∈ Cm,α(cl rD,R2) ∩H(rD) such that

F (t) = f(t), ∀t ∈ rT.

(iv) Let r ∈]0, 1[. Let I be the identity operator in Cm,α(sT,C), for all s > 0. The
pair of functions f ≡ (f i, f o) ∈ Cm,α(rT,C)× Cm,α(T,C) satisfies the system

{

(I+ Sr) [f i]− 2C1[f o] = 0 on rT,

(I− S1) [f o] + 2Cr[f i] = 0 on T,

if and only if there exists F ∈ Cm,α(clAr)∩H(Ar) such that F|rT = f i, F|T = f o.
If such F exists, then

F (z) = C1[f
o](z)−Cr[f

i](z), ∀z ∈ Ar.

(v) If f ∈ Cm,α(rT,R), there exists a unique function Hrf ∈ Cm,α(rT,R) such that
f + iHrf is the restriction to rT of a function F ∈ Cm,α(cl rD,R2) ∩ H(rD)
which satisfies the condition ℑF (0) = 0. Furthermore

iHr[f ] = Sr[f ]−
1

2πi

∫

rT

f(σ)

σ
dσ,

Hr ◦Hr[f ] = −f +
1

2πi

∫

rT

f(σ)

σ
dσ.

(vi) If f ∈ C1,α(rT,C), then D(Sr[f ]) = Sr[Df ]. If 0 < s ̸= r, then D(Cr[f ])(z) =
Cr[Df ](z), for all z ∈ sT.
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(vii) Let r ∈]0, 1[. Let (f i, f o) ∈ Cm,α(rT,R)×Cm,α(T,R) be such that
∫

rT
f i(σ)
σ dσ =

∫

T

fo(σ)
σ dσ. Then there exists a unique element F of Cm,α(clAr) ∩H(Ar) such

that ℜF|rT = f i, ℜF|T = f o, ℑF (1) = 0. We denote such unique F by
Σr[f i, f o]. The operator Σr of
{

(f i, f o) ∈ Cm,α(rT,R)× Cm,α(T,R) :

∫

rT

f i(σ)

σ
dσ =

∫

T

f o(σ)

σ
dσ

}

to Cm,α(clAr) ∩H(Ar), which takes (f i, f o) to Σr[f i, f o] is linear.

For statements (i), (ii) see Gakhov [8, p. 25] together with Vekua [28, pp. 21, 22].
For statement (iii) see Gakhov [8, p. 27] together with Vekua [28, p. 21]. Statement
(iv) can be derived by the Cauchy formula and by statements (ii), (iii). For statement
(v) see Gakhov [8, p. 45] and Wegert [30, p. 23] together with Vekua [28, p. 21]. For
statement (vi), see Gakhov [8, p. 31]. For statement (vii), see Gaier [7, pp. 196–198]
together with Theorem 2.1 (i), (ii).

We collect in the following Lemma a few known facts we need on the space Cm,α.

Lemma 2.1. Let m ∈ N, α ∈]0, 1[, r > 0.

(i) If m > 0, f ∈ Cm,α(rT,C), g ∈ Cm,α(rT, rT), then f ◦ g ∈ Cm,α(rT,C).
(ii) If m > 0, f ∈ Cm,α(rT, rT), f is bijective and f ′(t) ̸= 0, for all t ∈ rT, then

the inverse function f (−1) belongs to Cm,α(rT, rT) and D(f (−1))(t) ̸= 0, for all
t ∈ rT.

(iii) The pointwise product in Cm,α(rT,C) is bilinear and continuous.
(iv) The nonlinear operator ζ $→ ζ−1 (the reciprocal of ζ) is real analytic from {ζ ∈

Cm,α(rT,C) : ζ(t) ̸= 0, ∀t ∈ rT} to Cm,α(rT,C).
(v) Cm+1(rT,C) is continuously imbedded in Cm,α(rT,C). If 0 < α < β < 1, then

Cm,β(rT,C) is compactly imbedded in Cm,α(rT,C).

For appropriate references to a proof of Lemma 2.1, we refer to Lanza and Ro-
gosin [20, Lemma 2.2].

3. Determination of a Nonlinear Integral Equation for the

Conformal Representation

In this section, we begin by introducing the Riemann map for a doubly connected
domain of class Cm,α, and by presenting an argument that shows that such Riemann
map is actually of class Cm,α, as we need later in the paper (cf. Theorem 3.1.) Then we
derive a system of integral equations for the boundary correspondence of the Riemann
map (cf. Theorem 3.2.) Then we recast such system in the form of an abstract
nonlinear operator equation P[ζ,h, r] = 0, involving ζ, the unknown radius r, and
an unknown function h, which determines the boundary values of the Riemann map.
At this point, it would be natural to think of applying the Implicit Function Theorem
to equation P[ζ,h, r] = 0 in order to deduce the regularity of the dependence of h, r
upon ζ. However, we discover that the corresponding linearized problem is not well-
posed. Hence, we introduce a modified problem (cf. Theorem 3.5), whose linearized
problem will reveal to be well-posed.
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We now note that a regular curve is often defined as an equivalence class of regular
parametrizations. However, we need to distinguish the different parametrizations.
Thus we define a curve of class C1 to be a map ζ of class C1 from the boundary T of
the unit disk D to C. By a simple curve of class C1, we understand an injective map
of class C1 from T to C. Also, a curve ζ should not be confused with ζ(T).

If ζ is a simple closed curve of class C1, we denote by I[ζ ] the bounded connected
component of C \ ζ(T) and by E[ζ ] the unbounded connected component of C \ ζ(T).

Now we assume that ζ i, ζo are two given C1 simple closed curves, and that ζ i(T) ⊆
I[ζo]. Then we set ζ ≡ (ζ i, ζo), and

A[ζ] ≡ I[ζo] ∩ E[ζ i].

By applying the Jordan Theorem to the curves ζ i and ζo, it is easy to see that

∂A[ζ] = ζ i(T) ∪ ζo(T).(3.1)

By a simple contradiction argument, it can be readily verified that the following holds
(cf. Lanza and Antman [18, p. 1201], Lanza [15, p. 124].)

Lemma 3.1. The set

Z ≡

{

ζ ∈ C1(T,C) : inf

{∣

∣

∣

∣

ζ(s)− ζ(t)

s− t

∣

∣

∣

∣

: s, t ∈ T, s ̸= t

}

> 0

}

coincides with the set of simple curves ζ of class C1(T,C) with nowhere vanishing ζ ′.
The set Z is open in C1(T,C), and the set

Z ≡
{

ζ ≡ (ζ i, ζo) ∈ Z2 : ζ i(T) ⊆ I[ζo]
}

is open in (C1(T,C))
2
.

Let ζ ∈ Z. We denote by w[ζ ] the winding number of the map θ $→ ζ(eiθ),
θ ∈ [0, 2π], with respect to any of the points of I[ζ ]:

w[ζ ] ≡
1

2πi

∫

T

ds

s− z
∀z ∈ I[ζ ].

The map w[·] is well-known to be constant on the open connected components of Z.
Since the curves of Z are simple, we have w[ζ ] ∈ {−1, 1}, for all ζ ∈ Z. Then we
have the following Theorem, which collects a few known facts on the Riemann map
of a doubly connected domain.

Theorem 3.1. Let α ∈]0, 1[, m ∈ N \ {0}. Let ζ ≡ (ζ i, ζo) ∈ (Cm,α(T,C))2 ∩ Z.
Then there exist a unique r[ζ] ∈]0, 1[, and a unique holomorphic homeomorphism g[ζ]

of the set

Ar[ζ] ≡ {z ∈ C : r[ζ] < |z| < 1}

onto A[ζ] such that g[ζ ] admits a continuous extension of class Cm,α(clAr[ζ],R
2),

which we still denote by g[ζ ], and such that

g[ζ](1) = ζo(1).

Furthermore, g[ζ ] is a homeomorphism of clAr[ζ] onto clA[ζ], and d
dzg[ζ](z) ̸= 0, for

all z ∈ clAr[ζ].



ANALYTICITY OF A NONLINEAR OPERATOR 7

Proof. We first consider the existence. There is clearly no loss of generality in as-
suming that 0 ∈ I[ζ i]. The existence is well-known to hold if ζ i and ζo are real
analytic. Thus we now reduce the proof to the real analytic case. For all simple
closed curves ζ ∈ Cm,α(T,C) with ζ ′(t) ̸= 0 for all t ∈ T, 0 ∈ I[ζ ], we denote
by fζ the unique holomorphic homeomorphism of D onto I[ζ ] such that fζ(0) = 0,
f ′
ζ(0) > 0. It is well-known that fζ extends to a homeomorphism of clD onto cl I[ζ ],
and that fζ ∈ Cm,α(clD,R2), f ′

ζ(z) ̸= 0 for all z ∈ clD (cf. e.g. Pommerenke [24,

Thms. 3.5, 3.6, pp. 48–49].) Now we set q1(z) ≡
[

f1/ζi(1/z)
]−1

, for all z ∈ C \ D.
Clearly, q1 is the Riemann map of E[idT] onto E[ζ i], normalized by q1(∞) = ∞,

q′1(∞) > 0. Furthermore, q1|T ∈ Cm,α(T,C). Since ζo ∈ Cm,α(T,C), and q(−1)
1

is holomorphic on a neighborhood of ζo(T), we have q(−1)
1 ◦ ζo ∈ Cm,α(T,C), and

q(−1)
1 ◦ ζo(T) ⊆ E[idT]. Thus the map q2 ≡ f

q(−1)
1 ◦ζo

belongs to Cm,α(clD,R2). Now

we set ζ̃ ≡ (ζ̃ i, ζ̃o) ≡
(

q(−1)
2 ◦ q(−1)

1 ◦ ζ i, q(−1)
2 ◦ q(−1)

1 ◦ ζo
)

. Clearly, q(−1)
2 ◦ q(−1)

1 is a

holomorphic homeomorphism of A[ζ] onto A[ζ̃], which extends to a homeomorphism

of clA[ζ] onto clA[ζ̃]. Now we note that ζ̃ i(T) = q(−1)
2 ◦ q(−1)

1 ◦ ζ i(T) = q(−1)
2 (T),

and that ζ̃o(T) = q(−1)
2 ◦ q(−1)

1 ◦ ζo(T) = T. Thus we have A[ζ̃] = A

[(

q(−1)
2 , idT

)]

.

Since q(−1)
2 |T, and idT are restrictions to ∂D of holomorphic functions, then it is

well-known (cf. e.g. Goluzin [10, Thms. 1, 2, p. 208]), that there exists a unique

r ∈]0, 1[, and a unique holomorphic homeomorphism q of Ar onto A

[(

q(−1)
2 , idT

)]

,

such that q extends to a homeomorphism of clAr onto clA
[(

q(−1)
2 , idT

)]

, and such

that q(1) = q(−1)
2 ◦ q(−1)

1 ◦ ζo(1). A standard argument implies that q can be extended
holomorphically to an open neighborhood of clAr, and that q′(z) ̸= 0, for all z ∈ clAr

(cf. e.g. Ahlfors [1, pp. 233, 234].) Now we set g
[
˜ζ]

≡ q1 ◦ q2 ◦ q. It can be readily

verified that g
[
˜ζ ]
satisfies the properties of the statement. If g#

[
˜ζ]
is another map which

satisfies the properties of the statement, then the map q(−1)
2 ◦ q(−1)

1 ◦ g#
[
˜ζ ]

satisfies the

same properties of q, and thus q = q(−1)
2 ◦ q(−1)

1 ◦ g#
[
˜ζ]
by uniqueness of the map q.

Then we can consider the nonlinear operator which takes a pair ζ ≡ (ζ i, ζo) ∈ Z to
the triple of maps (h[ζ], r[ζ]) ≡ (hi[ζ], ho[ζ], r[ζ]), where

h[ζ] ≡
(

hi[ζ], ho[ζ]
)

≡
(

r−1[ζ]g(−1)

[ζ]
◦ ζ i, g(−1)

[ζ]
◦ ζo

)

.(3.2)

By definition, hi[ζ], ho[ζ] are both self maps of T. We now prove the following tech-
nical fact.

Lemma 3.2. Let α ∈]0, 1[, m ∈ N \ {0}, r ∈]0, 1[. Let f ≡ (f i, f o) ∈ Cm,α(rT,C)×
Cm,α(T,C). Then

{

(I+ Sr)[f
i]− 2C1[f

o] = 0 on rT,

(I− S1)[f
o] + 2Cr[f

i] = 0 on T,
(3.3)
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holds if and only if

⎧

⎪

⎨

⎪

⎩

ℜ
{

(I+ Sr)[f
i]− 2C1[f

o]
}

= 0 on rT,

ℜ
{

(I− S1)[f
o] + 2Cr[f

i]
}

= 0 on T,

ℑ
{

C1[f
o](0)−Cr[f

i](0)
}

= 0.

(3.4)

Proof. Obviously, if (3.3) holds, then the first two equations of (3.4) hold. Fur-
thermore, by Theorem 2.1 (iv), there exists F ∈ C0 (clAr) ∩ H (Ar) such that
F∣
∣rT

= f i, F∣
∣T

= f o. Since F (z)
z is holomorphic in Ar, and continuous on clAr,

we have 1
2πi

∫

rT
F (s)
s ds = 1

2πi

∫

T

F (s)
s ds, and thus the third equation of (3.4) holds.

Conversely, let f ≡ (f i, f o) satisfy (3.4). Then by Sokhotsky-Plemelj formulas, we
have ℜ

{

−2C−
1 [f

o] + 2Cr[f i]
}

= 0 on T. Since −2C−
1 [f

o]+2Cr[f i] belongs to H(C\
clD)∩C0(C \D) and vanishes at infinity, we have −2C−

1 [f
o] + 2Cr[f i] = 0 on C \D.

Then by Sokhotsky-Plemelj formulas we obtain the second equation of (3.3). We now
prove the first equation of (3.3). By Theorem 2.1, the function 2C+

r [f
i] − 2C1[f o]

belongs to C0 (cl rD,R2) ∩H (rD). By Sokhotsky-Plemelj formulas, and by the first
equation of (3.4), we obtain ℜ {2C+

r [f
i]− 2C1[f o]} = 0 on rT. Therefore 2C+

r [f
i]−

2C1[f o] equals a purely imaginary constant on cl rD, and thus by the third equation
of (3.4) we obtain −2C1[f o](z) + 2C+

r [f
i](z) = iℑ {−2C1[f o](0) + 2C+

r [f
i](0)} = 0,

for all z ∈ cl rD.

A simple topological argument based on connectivity of T shows immediately the
validity of the following.

Remark 3.1. If h is in Z and if h(T) ⊆ T, then h is a bijection of T onto T.

Theorem 3.2. Let α ∈]0, 1[, m ∈ N \ {0}. Let A be the set defined by

A ≡

{

(ζ,h, r) ∈ (Cm,α(T,C))4×]0, 1[: ζ ≡ (ζ i, ζo) ∈ Z,h ≡ (hi, ho) ∈ (Z)2,

rhi(T) ∩ ho(T) = ∅, 0 ∈ I[hi], 0 ∈ I[ho], ℜ {ho(1)} > 0

}

.
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Let P be the nonlinear operator of A to (Cm,α(T,R))4 × R2 defined by

P[ζ,h, r](τ) ≡ (Pj[ζ,h, r](τ))j=1,...,6 ≡
(

ℜ

{

ζ i(τ) +
w[hi]

πi

∫

T

ζ i(σ)hi′(σ)

hi(σ)− hi(τ)
dσ −

w[ho]

πi

∫

T

ζo(σ)ho′(σ)

ho(σ)− rhi(τ)
dσ

}

,

ℜ

{

ζo(τ)−
w[ho]

πi

∫

T

ζo(σ)ho′(σ)

ho(σ)− ho(τ)
dσ +

w[hi]

πi

∫

T

ζ i(σ)hi′(σ)

hi(σ)− r−1ho(τ)
dσ

}

,

hi(τ) · hi(τ)− 1,

ho(τ) · ho(τ)− 1,

ℑ

{

w[hi]

2πi

∫

T

ζ i(σ)hi′(σ)

hi(σ)
dσ −

w[ho]

2πi

∫

T

ζo(σ)ho′(σ)

ho(σ)
dσ

}

,

ℑ {ho(1)}

)

.

If ζ ∈ (Cm,α(T,C))2 ∩Z, then the function h[ζ] defined in (3.2) and the radius r[ζ]
defined in Theorem 3.1 satisfy (ζ,h[ζ], r[ζ]) ∈ A and P[ζ,h[ζ], r[ζ]] = 0. Conversely,
if (ζ,h, r) ∈ A, and if P[ζ,h, r] = 0, then r equals r[ζ], h ≡ (hi, ho) equals h[ζ],
and in particular, both functions hi and ho are bijections of T onto T. Finally, the
domain A of P is open in the real Banach space (Cm,α(T,C))4 × R.

Proof. We first assume that ζ ∈ (Cm,α(T,C))2 ∩ Z . By Theorem 3.1, by (3.2), and
by Lemma 2.1 (i), (ii), we can conclude that h[ζ] ∈ (Cm,α(T,C))2 , that both hi[ζ]
and ho[ζ] are bijections of T onto T, that 0 ∈ I[hi[ζ]] ∩ I[ho[ζ]], that ho[ζ](1) = 1,
and that d

dτ h
i[ζ](τ) ̸= 0, d

dτ h
i[ζ](τ) ̸= 0 for all τ ∈ T. Then h[ζ] ∈ Z2 by Lemma

3.1. In particular, (ζ,h[ζ], r[ζ]) ∈ A. By equality hi[ζ](T) = T = ho[ζ](T) we
conclude that P3[ζ,h[ζ], r[ζ]] = P4[ζ,h[ζ], r[ζ]] = 0. Since g[ζ](1) = ζo(1), we

obtain equality P6[ζ,h[ζ], r[ζ]] = 0. By applying Theorem 2.1 (iv) to the function
g[ζ], by (3.2), and by changing the variables in the improper integrals, we conclude

that Pj[ζ,h[ζ], r[ζ]] = 0, j = 1, 2. Since
g
[ζ ]

(z)

z is holomorphic in Ar[ζ], and continuous

in clAr[ζ] we deduce the validity of P5[ζ,h[ζ], r[ζ]] = 0.

Conversely, assume that (ζ,h, r) is an element of A and that P[ζ,h, r] = 0. By
Remark 3.1, we have hi(T) = T and ho(T) = T. Thus by Lemma 2.1, the pair

of functions defined by (gi(t), go(t)) ≡
(

ζ i ◦ hi(−1)
(r−1t), ζo ◦ ho(−1)(t)

)

belongs to

Cm,α(rT,C) × Cm,α(T,C). By equality P[ζ,h, r] = 0, and by the formula of change
of variables in improper integrals we obtain

⎧

⎨

⎩

ℜ
{

(I+ Sr)[g
i]− 2C1[g

o]
}

= 0 on rT,
ℜ
{

(I− S1)[g
o] + 2Cr[g

i]
}

= 0 on T,
ℑ
{

C1[g
o](0)−Cr[g

i](0)
}

= 0.
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By Theorem 2.1 (iv), and by Lemma 3.2, there exists g ∈ Cm,α(clAr,R2) ∩ H(Ar)
such that g∣

∣rT
(t) = gi(t), for all t ∈ rT, g∣

∣T
(t) = go(t), for all t ∈ T. Since g is injective

on the boundary rT ∪ T of Ar, g is injective on Ar by the Argument Principle. By
the Open Mapping Theorem (cf. e.g. Ahlfors [1, Cor. 1, p. 132]) g maps open subsets
of Ar to open subsets of C. Accordingly, g(Ar) is an open bounded connected subset
of C. We now prove that ∂g(Ar) ⊆ g(rT ∪ T). If p ∈ ∂g(Ar), then there exists a se-
quence {ξn}n∈N in Ar such that limn→∞ g(ξn) = p. By possibly selecting a convergent
subsequence, we can assume that the sequence {ξn}n∈N converges to some ξ ∈ clAr.
Since g is open in Ar, we must have ξ ∈ rT ∪ T. Thus p = g(ξ) ∈ g(rT ∪ T). Then a
simple topological argument based on the connectivity of E[g(rT)], I[g(T)],A[ζ], and
on the fact that A[ζ] is doubly connected and bounded, shows that g(Ar) = A[ζ]. In
particular g is a holomorphic homeomorphism of Ar onto A[ζ]. Since ho(T) ⊆ T and
ℜ {ho(1)} > 0, condition P6[ζ,h, r] = 0 implies that ho(1) = 1. Thus go(1) = ζo(1).
Hence by the uniqueness inferred by Theorem 3.1, we conclude that g = g[ζ] and

that r = r[ζ]. Since the norm of Cm,α(T,C) is stronger than that of the uniform
convergence, we can invoke Lemma 3.1 to conclude that the set A is open.

We note that the appearance of the winding numbers w[hi
0], w[h

o
0] in the statement

of Theorem 3.2 is associated to the application of the rule of change of variables in
the line integrals, performed in order to obtain the equation P[ζ,h, r] = 0, and with
the fact that our curves ζ i, ζo may have all possible orientations.

In view of the validity of Theorem 3.2, it is natural to think of proving a regular-
ity theorem for the nonlinear operator (h[·], r[·]) by applying the Implicit Function
Theorem to the equation P[ζ,h, r] = 0 in A. To do so, we need to prove that P is
regular. Thus we state the following result of Lanza and Preciso [19], which may be
regarded as an extension of the corresponding result of Coifman and Meyer [4].

Theorem 3.3. Let α ∈]0, 1[, m ∈ N \ {0}. Then the (nonlinear) operator which
takes (ζ , h) to the function 1

πi

∫

T

ζ(σ)h′(σ)
h(σ)−h(τ)dσ is real analytic from (Cm,α(T,C) ∩ Z)×

{h ∈ Cm,α(T,C) ∩ Z : 0 ∈ I[h]} to Cm,α(T,C). Furthermore, if (ζ0, h0) belongs to
(Cm,α(T,C) ∩ Z) × {h ∈ Cm,α(T,C) ∩ Z : 0 ∈ I[h]}, then the real differential at h0

of the map h $→ 1
πi

∫

T

ζ0(σ)h′(σ)
h(σ)−h(τ)dσ is delivered by the map

µ $→
1

πi

∫

T

µ(τ)− µ(σ)

h0(σ)− h0(τ)
ζ ′0(σ)dσ,

for all µ ∈ Cm,α(T,C).

Then by the previous theorem, by Theorem 2.1 (i), by Lemma 2.1 (iii), (iv), by
standard calculus in normed spaces, and by integration by parts, we deduce the
following.

Theorem 3.4. Let α ∈]0, 1[, m ∈ N \ {0}. Then the operator P is real analytic on
A. Furthermore, for all (ζ0,h0, r0) ∈ A the real differential ∂(h,r)P[ζ0,h0, r0] of P
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with respect to (h, r) ≡ (hi, ho, r) at the point (hi
0, h

o
0, r0) is delivered by the formula

∂(h,r)P[ζ0,h0, r0](µ
i, µo, d) =

=

(

ℜ

{

w[hi
0]

πi

∫

T

µi(τ)− µi(σ)

hi
0(σ)− hi

0(τ)
ζ i0

′
(σ)dσ +

w[ho
0]

πi

∫

T

µo(σ)ζo0
′(σ)

ho
0(σ)− r0hi

0(τ)
dσ

−
µi(τ)r0w[ho

0]

πi

∫

T

ζo0
′(σ)dσ

ho
0(σ)− r0hi

0(τ)
−

hi
0(τ)w[h

o
0]d

πi

∫

T

ζo0
′(σ)dσ

ho
0(σ)− r0hi

0(τ)

}

,

ℜ

{

−
w[ho

0]

πi

∫

T

µo(τ)− µo(σ)

ho
0(σ)− ho

0(τ)
ζo0

′(σ)dσ −
w[hi

0]

πi

∫

T

µi(σ)ζ i0
′
(σ)

hi
0(σ)− r−1

0 ho
0(τ)

dσ

+
µo(τ)w[hi

0]

r0πi

∫

T

ζ i0
′
(σ)dσ

hi
0(σ)− r−1

0 ho
0(τ)

−
ho
0(τ)w[h

i
0]d

r20πi

∫

T

ζ i0
′
(σ)dσ

hi
0(σ)− r−1

0 ho
0(τ)

}

,

hi
0(τ) · µi(τ) + µi(τ) · hi

0(τ),

ho
0(τ) · µ

o(τ) + µo(τ) · ho
0(τ),

− ℑ

{

w[hi
0]

2πi

∫

T

µi(σ)

hi
0(σ)

ζ i0
′
(σ)dσ −

w[ho
0]

2πi

∫

T

µo(σ)

ho
0(σ)

ζo0
′(σ)dσ

}

,

ℑ {µo(1)}

)

.

By the previous Theorem, we deduce the following.

Proposition 3.1. Let α ∈]0, 1[, m ∈ N \ {0}. Let (ζ0,h0, r0) ∈ A. If P[ζ0,h0, r0] =
0, then

1

2πi

∫

T

∂(h,r)P2[ζ0,h0, r0](µ
i, µo, d)

ho
0
′(σ)

ho
0(σ)

dσ = 0,(3.5)

for all (µi, µo, d) ∈ (Cm,α(T,C))2 × R.

Proof. By Theorem 3.2, we have ho
0(T) = T and (ζo0 ◦ h

o
0
(−1))′ = g′

ζ0

on T. By setting

ko
0 ≡ ho

0
(−1) and ki

0 ≡ hi
0
(−1)

and by applying Theorem 2.1 (iv), we have

(ζo0 ◦ k
o
0(t))

′ −
1

πi

∫

T

(ζo0 ◦ k
o
0(s))

′

s− t
ds = −

1

r0πi

∫

T

(ζ i0 ◦ k
i
0(s))

′

s− r−1
0 t

ds ∀t ∈ T.

Then by changing the variable with the function ko
0 ≡ ho

0
(−1) in (3.5), and by

Sokhotsky-Plemelj formulas, we obtain that the integral in (3.5) is equal to

−w[ho
0]

2πi

∫

T

ℜ

{

−2C−
1 [(µ

o ◦ ko
0)(ζ

o
0 ◦ k

o
0)

′](s)+

+2r0Cr0 [(µ
i ◦ ki

0)(r
−1
0 ·)((ζ i0 ◦ k

i
0)(r

−1
0 ·))′](s) +

sd

r0
2Cr0[((ζ

i
0 ◦ k

i
0)(r

−1
0 ·))′](s)

}

ds

s
.
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Now the function F of C \ D to C defined by

F (z) ≡ −2C−
1 [(µ

o ◦ ko
0)(ζ

o
0 ◦ k

o
0)

′](z) + 2r0Cr0[(µ
i ◦ ki

0)(r
−1
0 ·)((ζ i0 ◦ k

i
0)(r

−1
0 ·))′](z)

+
zd

r0
2Cr0 [((ζ

i
0 ◦ k

i
0)(r

−1
0 ·))′](z), ∀z ∈ C \ D,

is holomorphic in C \ clD, continuous in C \ D and vanishes at infinity. Then
1
2πi

∫

T

F ( 1
σ
)

σ dσ = 0, and thus 1
2πi

∫

T

F (s)
s ds = 0. Consequently 1

2π

∫ 2π
0 ℜ {F (eiθ)} dθ = 0,

and the validity of the statement follows.

Remark 3.2. By the previous proposition, we deduce that ∂(h,r)P[ζ0,h0, r0] cannot
be surjective onto the target space (Cm,α(T,R))4 × R2 of P. On the other hand we

cannot impose the condition 1
2πi

∫

T
f(σ)h

o′(σ)
ho(σ) dσ = 0 on the second component of the

sestuples of the target space of P because such condition depends on ho. Thus we
cannot apply the Implicit Function Theorem directly to equation P = 0 around a
certain (ζ0,h0, r0) ∈ A to deduce the regularity of (h[·], r[·]).

To circumvent the difficulty outlined in Remark 3.2, we employ an argument of Lanza
and Rogosin [20] and we introduce a modified equation with the same solutions of
equation P[ζ,h, r] = 0. To do so, we need the following two preliminary technical
statements.

Remark 3.3. For all h ∈ Z such that 0 ∈ I[h], we have

w[h] =
1

2πi

∫

T

h′(σ)

h(σ)
dσ ∈ {−1, 1}.(3.6)

Indeed, w[h] equals the winding number of θ $→ h(eiθ), θ ∈ [0, 2π] with respect to
zero, and h is a simple closed curve of class C1.

Lemma 3.3. Let α ∈]0, 1[, m ∈ N \ {0}. If (ζ,h, r) ∈ A, and if hi(T) = ho(T) = T,
then

(3.7)
w[ho]

2πi

∫

T

ℜ

{

ζo(τ)−
w[ho]

πi

∫

T

ζo(σ)ho′(σ)

ho(σ)− ho(τ)
dσ+

+
w[hi]

πi

∫

T

ζ i(σ)hi′(σ)

hi(σ)− r−1ho(τ)
dσ

}

ho′(τ)

ho(τ)
dτ = 0.

Proof. By assumption, ho is a diffeomorphism of T. Thus by changing variable in
all the integrals of (3.7) by means of the functions ko ≡ ho(−1), ki ≡ hi(−1)

(cf.
Gakhov [8, p. 17]), we can show that the left hand side of (3.7) equals

w[ho]

2πi

∫

T

ℜ
{

−2C−
1 [ζ

o ◦ ko](t) + 2Cr[ζ
i ◦ ki(r−1·)](t)

} dt

t
.

Now, the function F of C \ D to C defined by

F (z) ≡ −2C−
1 [ζ

o ◦ ko](z) + 2Cr[ζ
i ◦ ki(r−1·)](z) ∀z ∈ C \D,

is holomorphic in C \ clD, continuous in C \ D and vanishes at infinity. Then
1
2πi

∫

T

F ( 1
σ
)

σ dσ = 0, and thus 1
2πi

∫

T

F (s)
s ds = 0 and (3.7) follows.
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We are now ready to introduce the modified equation mentioned above.

Theorem 3.5. Let α ∈]0, 1[, m ∈ N \ {0}. Let (ζ0,h0, r0) ∈ A, and ho
0(T) = T. Let

Πho
0
be the map of (Cm,α(T,R))4 × R2 to itself defined by

Πho
0
[βi, βo, γi, γo, a, b] ≡

(

βi, βo − w−1[ho
0]

1

2πi

∫

T

βo(σ)ho
0
′(σ)

ho
0(σ)

dσ, γi, γo, a, b

)

.

The map Πho
0
is linear and continuous and maps its domain onto the space

V m,α
ho
0

≡

{

(βi, βo, γi, γo, a, b) ∈ (Cm,α(T,R))4 × R
2 :

1

2πi

∫

T

βo(σ)ho
0
′(σ)

ho
0(σ)

dσ = 0

}

.

The restriction of Πho
0
to V m,α

ho
0

is the identity map. An element (ζ,h, r) ∈ A satisfies
the equation

P[ζ,h, r] = 0,(3.8)

if and only if it satisfies the equation

Πho
0
P[ζ,h, r] = 0.(3.9)

Proof. Since ho
0 ∈ Z and ho

0(T) = T, ho
0 is a diffeomorphism of T to itself and

1
2πi

∫

T

βo(σ)ho
0
′(σ)

ho
0(σ)

dσ is real when βo is real-valued. Then by calculating the integral in

the definition of V m,α
ho
0

, we can easily verify that Πho
0
maps its domain to V m,α

ho
0

. Obvi-

ously Πho
0
restricts the identity on V m,α

ho
0

and is linear and continuous. In particular,
Πho

0
is surjective. It is also clear that the equality (3.8) implies (3.9). Assume now

conversely that (3.9) holds. Then we have

P2[ζ,h, r](τ)− w−1[ho
0]

1

2πi

∫

T

P2[ζ,h, r](σ)
ho
0
′(σ)

ho
0(σ)

dσ = 0,(3.10)

and hi(T) ⊆ T, ho(T) ⊆ T. We now multiply (3.10) by 1
2πi

ho′(τ)
ho(τ) and integrate in

τ ∈ T. By Remark 3.1 and by (3.6), (3.7), we obtain

w[ho]w−1[ho
0]

1

2πi

∫

T

P2[ζ,h, r](σ)
ho
0
′(σ)

ho
0(σ)

dσ = 0.(3.11)

By (3.6) we have w[ho] ̸= 0. Then by definition of Πho
0
and of P, we have P[ζ,h, r] =

Πho
0
P[ζ,h, r].

We now investigate the regularity of the nonlinear operator h from (Cm,α(T,C))2∩Z

to (Cm,α(T,C))2 defined in formula (3.2), and of the nonlinear operator r[·] from
(Cm,α(T,C))2 ∩Z to ]0, 1[ defined in Theorem 3.1, by means of an application of the
Implicit Function Theorem to the equation

Πho
0
P[ζ,h, r] = 0,(3.12)

around (ζ0,h0, r0) ∈ A. In the next section we turn our attention to the linearized
problem.



14 M. LANZA DE CRISTOFORIS AND S. V. ROGOSIN

4. A Preliminary Existence and Uniqueness Theorem for the

Linearized Problem

In this section, we first rewrite the linearization of the modified equation delivered
at the end of the previous section (cf. (3.12)) in a suitable form (cf. Lemma 4.1.)
Then we show that such linearized problem has a unique solution of class Cm−1,α,
when the data are of class Cm,α. Also, we exibit a representation formula for the
solution of the linearized problem (cf. (4.11), (4.13)), which involves certain integral
operators, such as the Schwarz operator. We now turn to study the linear operator
∂(h,r)

(

Πho
0
◦P
)

. It clearly suffices to consider the linear operator ∂(h,r)P. Thus we
introduce the following.

Lemma 4.1. Let α ∈]0, 1[, m ∈ N \ {0}. Let (ζ0,h0, r0) ∈ A, and P[ζ0,h0, r0] = 0.

Let ki
0 ≡ (hi

0)
(−1)

, ko
0 ≡ (ho

0)
(−1). Let (β,γ, a, b) ≡ (βi, βo, γi, γo, a, b) be an element of

(Cm,α(T,R))4 ×R2. Then the triple (µ, d) ≡ (µi, µo, d) ∈ (Cm,α(T,C))2 ×R satisfies

∂(h,r)P[ζ0,h0, r0](µ, d) = (β,γ, a, b),(4.1)

if and only if the triple (ν, d) ≡ (νi, νo, d) ≡ (µi ◦ ki
0, µ

o ◦ ko
0, d) ∈ (Cm,α(T,C))2 × R

satisfies the following system

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ℜ

{

−r0g
′
[ζ0]

(t)νi(r−1
0 t)− r0Sr0 [g

′
[ζ0]

(·)νi(r−1
0 ·)](t) + 2C+

1 [g
′
[ζ0]

(·)νo(·)](t)

−
d · t

r0
2C+

1 [g
′
[ζ0]

(·)](t)

}

= (βi ◦ ki
0)(r

−1
0 t) ∀t ∈ r0T,

ℜ

{

−g′
[ζ0]

(t)νo(t) + S1[g
′
[ζ0]

(·)νo(·)](t)− 2r0C
−
r0 [g

′
[ζ0]

(·)νi(r−1
0 ·)](t)

−
d · t

r0
2C−

r0 [g
′
[ζ0]

(·)](t)

}

= (βo ◦ ko
0)(t) ∀t ∈ T,

2ℜ
{r0

t
νi(r−1

0 t)
}

= (γi ◦ ki
0)(r

−1
0 t) ∀t ∈ r0T,

2ℜ

{

νo(t)

t

}

= (γo ◦ ko
0)(t) ∀t ∈ T,

−ℑ
{

r0Cr0[g
′
[ζ0]

(·)νi(r−1
0 ·)](0)−C1[g

′
[ζ0]

(·)νo(·)](0)
}

= a,

ℑ
{

ν0(1)
}

= b.

(4.2)

Proof. By Remark 3.1, both functions hi
0 and ho

0 are bijections of T onto T. Hence
we can change the variables of integration in the first, second, and fifth equation of
the formula for the differential of P of Theorem 3.4 by setting σ = ki

0(r
−1
0 s), where

σ is in the argument of (ζ i0)
′(·), and by setting σ = ko

0(s), where σ is in the argument
of (ζo0)

′(·). Then we set τ = ki
0(r

−1
0 t) in the first and in the third equation of (4.1),

and τ = ko
0(t) in the second and fourth equation of (4.1). Furthermore, we note that

g′
[ζ0]

(t) =

{

d
dt

(

(ζ i0 ◦ k
i
0)(r

−1
0 t)

)

∀t ∈ r0T,
d
dt ((ζ

o
0 ◦ k

o
0)(t)) ∀t ∈ T,
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and that g′
[ζ0]

∈ Cm−1,α(clAr0 ,R
2) ∩ H(Ar0). Then we can apply Theorem 2.1 to

deduce (4.2). By performing the inverse change of variables, we obtain (4.1) from
(4.2).

We are now in position to prove our preliminary result on existence and uniqueness
for the system (4.2).

Theorem 4.1. Let α ∈]0, 1[, m ∈ N\{0}. Let (ζ0,h0, r0) ∈ A, and P[ζ0,h0, r0] = 0.
If (β,γ, a, b) ∈ V m,α

ho
0

, then there exists a unique solution (ν, d) ∈ (Cm−1,α(T,C))
2×R

of system (4.2).

Proof. We adopt the following strategy. We first assume that for a given (β,γ, a, b) ∈
V m,α
ho
0

, system (4.2) has a solution (ν, d) ∈ (Cm−1,α(T,C))
2 × R. Then we show that

(ν, d) must necessarily be delivered by a certain formula which involves (β,γ, a, b).
Finally, we exploit such formula to deduce the existence and uniqueness of a solution
(ν, d) ∈ (Cm−1,α(T,C))

2 × R.
Now let (β,γ, a, b) ∈ V m,α

ho
0

. To simplify the form of our formulas, we set

⎧

⎨

⎩

φi ≡ r0g
′
[ζ0]

(t)νi(r−1
0 t) t ∈ r0T,

φo ≡ g′
[ζ0]

(t)νo(t) t ∈ T.
(4.3)

Clearly φi ∈ Cm−1,α(r0T,C) and φo ∈ Cm−1,α(T,C). Now we note that since the

functions βi ◦ ki
0, and β

o ◦ ko
0 are real-valued and since 1

2πi

∫

T

βo◦ko0(s)
s ds = 0, we can

use Theorem 2.1 (ii), (v) and write

{

(βi ◦ ki
0)(r

−1
0 t) = ℜ

{

2C+
r0[β

i ◦ ki
0(r

−1
0 ·)](t)−Cr0[β

i ◦ ki
0(r

−1
0 ·)](0)

}

,
(βo ◦ ko

0)(t) = ℜ
{

−2C−
1 [β

o ◦ ko
0(·)](t)

}

.

Then by Theorem 2.1 (ii), and by (4.2), we deduce the following system of equations
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⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ℜ

{

2C+
1 [φ

o](t)− 2C+
r0[φ

i](t)−
d · t

r0
2C+

1 [g
′
ζ0

](t)

− 2C+
r0 [β

i ◦ ki
0(r

−1
0 ·)](t) +Cr0[β

i ◦ ki
0(r

−1
0 ·)](0)

}

= 0 ∀t ∈ r0T,

ℜ

{

2C−
1 [φ

o](t)− 2C−
r0[φ

i](t)−
d · t

r0
2C−

r0[g
′
[ζ0]

](t)

+ 2C−
1 [β

o ◦ ko
0(·)](t)

}

= 0 ∀t ∈ T,

ℜ

⎧

⎨

⎩

C+
r0[φ

i](t)−C−
r0 [φ

i](t)

tg′
[ζ0]

(t)

⎫

⎬

⎭

=
1

2
(γi ◦ ki

0)(r
−1
0 t) ∀t ∈ r0T,

ℜ

⎧

⎨

⎩

C+
1 [φ

o](t)−C−
1 [φ

o](t)

tg′
[ζ0]

(t)

⎫

⎬

⎭

=
1

2
(γo ◦ ko

0)(t) ∀t ∈ T,

−ℑ
{

Cr0 [φ
i](0)−C1[φ

o](0)
}

= a,

ℑ

⎧

⎨

⎩

C+
1 [φ

o](1)−C−
1 [φ

o](1)

g′
[ζ0]

(1)

⎫

⎬

⎭

= b.

(4.4)

The term in braces in the first equation of (4.4) is the restriction to r0T of a function
which is holomorphic in r0D, continuous on cl (r0D), and with zero real part on r0T.
Thus such function is a purely imaginary constant, whose value is determined at
0 by the fifth equation of (4.4) and by the equality ℑ

{

Cr0[β
i ◦ ki

0(r
−1
0 ·)](0)

}

= 0.
Similarly, the term in braces of the second equation of (4.4) is the restriction to T of
a function which is holomorphic in C \ clD, continuous on C \D, and which has zero
real part on T and limiting value at infinity equal to d

r0πi

∫

r0T
g′
[ζ0]

(s)ds = 0. Thus we

conclude that such function is 0 in C \ D. Then we have the following.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

C+
r0 [φ

i](z) =C+
1 [φ

o](z)−
d · z

r0
C+

1 [g
′
ζ0

](z) +

−C+
r0[β

i ◦ ki
0(r

−1
0 ·)](z) +

1

2
Cr0 [β

i ◦ ki
0(r

−1
0 ·)](0)− ia ∀z ∈ r0D,

C−
1 [φ

o](z) =C−
r0[φ

i](z) +
d · z

r0
C−

r0[g
′
[ζ0]

](z)−C−
1 [β

o ◦ ko
0(·)](z) ∀z ∈ C \ clD.

(4.5)

Now we set

Ω(z) ≡
C+

1 [φ
o](z)−C−

r0 [φ
i](z)

zg′
[ζ0]

(z)
−

C+
1 [g

′
[ζ0]

](z)d

r0g′
[ζ0]

(z)
,(4.6)
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and we note that condition g′
[ζ0]

∈ H(Ar0) ∩Cm−1,α(clAr0 ,R
2), which holds by The-

orem 3.1, and Theorem 2.1 (iv) imply that

C+
1 [g

′
[ζ0]

]−C−
r0[g

′
[ζ0]

] = g′
[ζ0]

.(4.7)

Then by the third, the fourth, the sixth equation of (4.4), and by (4.5), the function
Ω must satisfy the system

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

ℜΩ(t) =ℜ

⎧

⎨

⎩

C+
r0[β

i ◦ ki
0(r

−1
0 ·)](t)− 1

2Cr0[β
i ◦ ki

0(r
−1
0 ·)](0) + ia

tg′
[ζ0]

(t)

⎫

⎬

⎭

+

+
1

2
(γi ◦ ki

0)(r
−1
0 t) ≡ δi(t) ∀t ∈ r0T,

ℜΩ(t) =ℜ

⎧

⎨

⎩

−C−
1 [β

o ◦ ko
0(·)](t)

tg′
[ζ0]

(t)
−

d

r0

⎫

⎬

⎭

+
1

2
(γo ◦ ko

0)(t) ≡ δo(t) ∀t ∈ T,

ℑΩ(1) =b−ℑ

⎧

⎨

⎩

C−
1 [β

o ◦ ko
0(·)](1)

g′
[ζ0]

(1)

⎫

⎬

⎭

.

(4.8)

To shorten our notation, we find convenient to set

ωi(t) ≡
C+

r0 [β
i ◦ ki

0(r
−1
0 ·)](t)− 1

2Cr0[β
i ◦ ki

0(r
−1
0 ·)](0) + ia

t
∀t ∈ r0T,

ωo(t) ≡
−C−

1 [β
o ◦ ko

0(·)](t)

t
∀t ∈ T.

(4.9)

By Theorem 2.1 (ii), the function Ω(z)
z is holomorphic in Ar0 and continuous on clAr0 .

Then we must have
1

2πi

∫

r0T

Ω(s)

s
ds =

1

2πi

∫

T

Ω(s)

s
ds.(4.10)

Then by taking the real part in (4.10), we have

1

2πi

∫

T

⎧

⎨

⎩

−
d

r0
+

1

2
(γo ◦ ko

0)(t)− ℜ

⎧

⎨

⎩

C−
1 [β

o ◦ ko
0(·)](s)

sg′
[ζ0]

(s)

⎫

⎬

⎭

⎫

⎬

⎭

ds

s
=

1

2πi

∫

r0T

δi(s)

s
ds,

and thus by solving for d, we obtain

d =
r0
2πi

∫

T

⎧

⎨

⎩

1

2
(γo ◦ ko

0)(t)− ℜ

⎧

⎨

⎩

C−
1 [β

o ◦ ko
0(·)](s)

sg′
[ζ0]

(s)

⎫

⎬

⎭

⎫

⎬

⎭

ds

s
−

r0
2πi

∫

r0T

δi(s)

s
ds.

(4.11)

By Theorem 2.1 (vii), we have

Ω = Σr0

[

δi, δo
]

+ i

⎧

⎨

⎩

b−ℑ

⎧

⎨

⎩

C−
1 [β

o ◦ ko
0(·)](1)

g′
[ζ0]

(1)

⎫

⎬

⎭

⎫

⎬

⎭

,(4.12)
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with (δi, δo) defined in (4.8), and with d defined as in (4.11). Then by combining
(4.3), (4.5), the definition (4.6) of Ω, equality (4.7), and (4.12), we obtain

νi(r−1
0 t) =

t

r0

⎧

⎨

⎩

Σr0

[

δi, δo
]

(t)−
ωi(t)

g′
[ζ0]

(t)

⎫

⎬

⎭

+

it

r0

⎧

⎨

⎩

b− ℑ

⎧

⎨

⎩

C−
1 [β

o ◦ ko
0(·)](1)

g′
[ζ0]

(1)

⎫

⎬

⎭

⎫

⎬

⎭

∀t ∈ r0T,

νo(t) =t

⎧

⎨

⎩

Σr0

[

δi, δo
]

(t)−
ωo(t)

g′
[ζ0]

(t)
+

d

r0

⎫

⎬

⎭

+

+ it

⎧

⎨

⎩

b−ℑ

⎧

⎨

⎩

C−
1 [β

o ◦ ko
0(·)](1)

g′
[ζ0]

(1)

⎫

⎬

⎭

⎫

⎬

⎭

∀t ∈ T,

(4.13)

where ωi and ωo have been defined in (4.9). By (4.11) and (4.13), we see that
if (β,γ, a, b) = 0, then (ν, d) = 0, which implies the uniqueness for system (4.2).
Finally, by using Theorem 2.1, it is easy to verify that if (β,γ, a, b) ∈ V m,α

ho
0

, then

(ν, d), defined by (4.11) and (4.13) is in (Cm−1,α(T,C))
2 × R and satisfies system

(4.2).

5. A Regularity Theorem for the Linearized Problem

The aim of this section is to show that the solution ν ∈ (Cm−1,α(T,C))
2
of sys-

tem (4.2), whose existence has been proved in Theorem 4.1, actually belongs to
(Cm,α(T,C))2, when (β,γ, a, b) ∈ V m,α

ho
0

. It clearly suffices to show that the pair of

functions ν determined by formula (4.13) belongs to (Cm,α(T,C))2 , when (β,γ, a, b)
belongs to V m,α

ho
0

. We note however that such fact is by no means obvious. Indeed,
the function g′

[ζ0]
which appears on the right-hand side of (4.13), is only of class

Cm−1,α(clAr0,R
2).

We first introduce two technical Lemmas. The following is basically a restatement
of Lanza and Rogosin [20, Lemma 5.1].

Lemma 5.1. Let α ∈]0, 1[, r > 0. Let ψ ∈ C0,α(rT,C),ω ∈ C1,α(rT,C). Then for
all t ∈ rT, the integral

Q(t) ≡
1

πi

∫

rT

ψ(s)
ω(s)− ω(t)

s− t
ds

is convergent in the sense of an improper Riemann integral. Moreover, Q(·) ∈
C1,α(rT,C).

Proof. By changing the variable with s = r−1σ, we reduce the integral on rT to an
integral on T. Then the Lemma follows by Lanza and Rogosin [20, Lemma 5.1].
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Lemma 5.2. Let α ∈]0, 1[, m ∈ N \ {0}, r ∈]0, 1[. If ψ ∈ Cm−1,α(clAr,R2) ∩H(Ar)
and if ω ∈ Cm,α(∂Ar,C), then

(I+ Sr) [ωψ] ∈ Cm,α(rT,C), (I− S1) [ωψ] ∈ Cm,α(T,C).(5.1)

Proof. We first prove the second part of (5.1). Let m = 1. By Theorem 2.1 (iv), we
have

ψ = S1[ψ]− 2Cr[ψ] on T.

Thus,

ω(t)ψ(t)− S1[ωψ](t) = −
1

πi

∫

T

ψ(s)
ω(s)− ω(t)

s− t
ds− ω(t)

1

πi

∫

rT

ψ(s)

s− t
ds,(5.2)

for all t ∈ T. By Theorem 2.1 (ii), the last integral of (5.2) belongs to C∞(T,C).
Thus Lemma 5.1 implies the validity of the second part of (5.1) for m = 1. To prove
the statement for m > 1, we note that Theorem 2.1 implies that

Dm−1 {(I− S1) [ωψ]} = (I− S1)
[

Dm−1(ωψ)
]

=

=
m−1
∑

l=0

(

m− 1

l

)

(I− S1)
[

Dm−1−lωDlψ
]

on T.

Since C1(T,C) ⊆ C0,α(T,C) and C1(clAr,R2) ⊆ C0,α(clAr,R2), our assumptions on
ω,ψ imply that Dm−1−lω ∈ C1,α(T,C) and that Dlψ ∈ C0,α(clAr,R2)∩H(Ar). Thus
we obtain the conclusion for m > 1 by exploiting the case m = 1. The proof of the
first part of (5.1) is analogous.

We are now in a position to prove that formulas (4.13) actually determine a solution
of class Cm,α.

Theorem 5.1. Let α ∈]0, 1[, m ∈ N \ {0}. Let (ζ0,h0, r0) ∈ A satisfy equation
P[ζ0,h0, r0] = 0. For all (β,γ, a, b) ∈ V m,α

ho
0

, the pair of functions ν ≡ (νi, νo)

delivered by (4.13) belongs to (Cm,α(T,C))2 .

Proof. First we note that if we set d1 ≡ d− d2, with d defined by (4.11), and with d2
defined by the equality

1

2πi

∫

r0T

{

1

2
(γi ◦ ki

0)(r
−1
0 s)

}

ds

s
=

1

2πi

∫

T

{

1

2
(γo ◦ ko

0)(s)−
d2
r0

}

ds

s
,

then by (4.9) we have 1
2πi

∫

r0T
ℜ

(

ωi

g′
[ζ0]

)

ds
s = 1

2πi

∫

T

{

ℜ

(

ωo

g′
[ζ0]

)

− d1
r0

}

ds
s , and thus

by Theorem 2.1 (vii) we can write

Σr0

[

δi, δo
]

= Σr0

⎡

⎣ℜ

⎛

⎝

ωi

g′
[ζ0]

⎞

⎠ ,ℜ

⎛

⎝

ωo

g′
[ζ0]

⎞

⎠−
d1
r0

⎤

⎦+

+
1

2
Σr0

[

(γi ◦ ki
0)(r

−1
0 ·), (γo ◦ ko

0)(·)−
2d2
r0

]

.
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Thus by (4.9), (4.13) it suffices to prove that if ψ ∈ Cm−1,α(clAr0 ,R
2) ∩H(Ar0) and

if ω = (ωi,ωo) ∈ Cm,α(r0T,C)× Cm,α(T,C), and if

1

2πi

∫

r0T

ℜ (ωi(s)ψ(s))
ds

s
=

1

2πi

∫

T

ℜ (ωo(s)ψ(s))−
d1
r0

ds

s
,

then the following holds
⎧

⎪

⎪

⎨

⎪

⎪

⎩

Σr0

[

ℜ (ωiψ),ℜ (ωoψ)−
d1
r0

]

− ωiψ ∈ Cm,α(r0T,C),

Σr0

[

ℜ (ωiψ),ℜ (ωoψ)−
d1
r0

]

−

(

ωoψ −
d1
r0

)

∈ Cm,α(T,C).

(5.3)

By definition of the Schwarz operator for the annulus Σr0[·, ·] (cf. Theorem 2.1 (vii)),
it suffices to show that the imaginary parts of the left hand sides of (5.3) belong to
Cm,α(r0T,C), and to Cm,α(T,C), respectively. By Theorem 2.1 (vii), the function

Σr0

[

ℜ (ωiψ),ℜ (ωoψ)− d1
r0

]

belongs to Cm−1,α(clAr0,R
2) ∩H(Ar0). Thus we have

ξi ≡ Σr0

[

ℜ (ωiψ),ℜ (ωoψ)−
d1
r0

]

|r0T

∈ Cm−1,α(r0T,C),

ξo ≡ Σr0

[

ℜ (ωiψ),ℜ (ωoψ)−
d1
r0

]

|T

∈ Cm−1,α(T,C).

By Theorem 2.1 (iv), (vii), the following holds
{

ℑ {ξi(t)}+ ℑ {Sr0[ℜ {ξi}](t)}+ ℑ {iSr0 [ℑ {ξi}](t)} = 2ℑ {C1[ξ
o](t)} ∀t ∈ r0T,

ℑ {ξo(t)}−ℑ {S1[ℜ {ξo}](t)}−ℑ {iS1[ℑ {ξo}](t)} = −2ℑ {Cr0[ξ
i](t)} ∀t ∈ T.

Then by Theorem 2.1 (v), we obtain
{

ℑ {ξi(t)} = −Hr0 [ℜ {ξi(·)}](t)−Cr0 [ℑ {ξi(·)}](0) + 2ℑ {C1[ξ
o(·)](t), t ∈ r0T,

ℑ {ξo(t)} = H1[ℜ {ξo(·)}](t) +C1[ℑ {ξo(·)}](0)− 2ℑ {Cr0[ξ
i(·)](t), t ∈ T.

By Theorem 2.1 (ii), the last two terms on the right-hand sides of the last two
equations are of class C∞. Then, it suffices to show that

{

ℑ {(ωiψ)(·)}+Hr0

[

ℜ {ξi(·)}
]

(·) ∈ Cm,α(r0T,C),

ℑ {(ωoψ)(·)− d1r
−1
0 }−H1 [ℜ {(ξo(·)}] (·) ∈ Cm,α(T,C).

(5.4)

We consider the second part of (5.4), the first part can be proved similarly . By
Theorem 2.1 (ii) it follows that

(I− S1)[ω
oψ](t) = (I− S1)[ω

oψ − d1r
−1
0 ](t) =

=
{

ℜ (ωoψ)(t)− d1r
−1
0 +H1[ℑ {ωoψ}](t)

}

+

+ i
{

ℑ (ωoψ)(t)−H1

[

ℜ {ωoψ}− d1r
−1
0

]

(t)
}

+

−C1

[

ℜ {ωoψ}− d1r
−1
0

]

(0)− iC1 [ℑ {ωoψ}] (0) on T.

Since ℜ {ωoψ}−d1r
−1
0 = ℜ ξo on T, then the second part of (5.4) follows immediately

from Lemma 5.2.
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Corollary 5.1. Let α ∈]0, 1[, m ∈ N \ {0}. Let (ζ0,h0, r0) ∈ A, be such that
P[ζ0,h0, r0] = 0. For all (β,γ, a, b) ∈ V m,α

ho
0

, there exists a unique solution (ν, d) ∈

(Cm,α(T,C))2 × R of system (4.2).

Proof. By Theorem 4.1, there exists a unique solution (ν, d) ∈ (Cm−1,α(T,C))2 × R

given by formulas (4.11), (4.13). Moreover, Theorem 5.1 shows that the functions
νi, νo determined by formulas (4.13) are in fact of class Cm,α(T,C).

6. Analiticity of the Nonlinear Operators h[·], and r[·]

We are ready to prove our main result.

Theorem 6.1. Let α ∈]0, 1[, m ∈ N \ {0}. Then the set (Cm,α(T,C))2 ∩ Z is open
in (Cm,α(T,C))2 and the (nonlinear) operator (h[·], r[·]) of (Cm,α(T,C))2 ∩ Z to

(Cm,α(T,C))2×]0, 1[ defined by (h[ζ], r[ζ]) ≡
(

r−1[ζ]g(−1)

[ζ]
◦ ζ i, g(−1)

[ζ]
◦ ζo, r[ζ]

)

is real

analytic.

Proof. By Theorem 3.2 the graph of (h[·], r[·]) coincides with the set of zeros of P
in A. Then it suffices to show that the set of zeros of P is (locally around each of
its points) the graph of a real analytic operator. We now fix (ζ0,h0, r0) ∈ A with
P[ζ0,h0, r0] = 0 and prove that the set of zeros of P around (ζ0,h0, r0) is the graph of
a real analytic operator. By Theorem 3.2 we have hi

0(T) = T, and ho
0(T) = T. Thus

by Theorem 3.5, the set of zeros of the operator P coincides with the set of zeros of
operator Πho

0
◦P, which maps A to V m,α

ho
0

. We now check that the assumptions of the
Implicit Function Theorem for real analytic maps (cf. e.g. Prodi and Ambrosetti [25,
Thm. 11.6, p. 101]) are fulfilled. The analiticity of Πho

0
◦ P follows from that of P

(cf. Theorem 3.4), and by the linearity and continuity of Πho
0
(cf. Theorem 3.5).

Thus it suffices to show that ∂(h,r)
(

Πho
0
◦P
)

[ζ0,h0, r0](·) is a linear homeomorphism

of (Cm,α(T,C))2 × R onto V m,α
ho
0

. By the linearity of Πho
0
we have

∂(h,r)
(

Πho
0
◦P
)

[ζ0,h0, r0] = Πho
0
◦ ∂(h,r)P[ζ0,h0, r0].

Since the restriction of Πho
0
to V m,α

ho
0

is the identity map, it suffices to show that the

linear operator ∂(h,r)P[ζ0,h0, r0] is a homeomorphism of (Cm,α(T,C))2×R onto V m,α
ho
0

.

By Corollary 5.1, the operator ∂(h,r)P[ζ0,h0, r0](·) is a bijection of (Cm,α(T,C))2 ×
R onto V m,α

ho
0

. Since ∂(h,r)P[ζ0,h0, r0](·) is continuous, the Open Mapping Theorem

implies that the map ∂(h,r)P[ζ0,h0, r0](·) is a homeomorphism of (Cm,α(T,C))2 × R

onto V m,α
ho
0

, and thus the proof is complete.

We now briefly indicate a few potential applications of our final Theorem 6.1. First
of all, we remark that the number r[ζ] is the reciprocal of the so-called conformal
modulus of the domain A[ζ] and depends on the geometry of the domain. Thus,
as a corollary of our analyticity statement, we obtain that the conformal modulus
of the domain A[ζ] (cf. e.g., Gaier [7, p. 185]) depends real analytically upon the
domain itself. In particular, since r[ζ] depends analytically on ζ, the inner radius
of the annulus of definition of the Riemann Mapping of a doubly connected domain
varies analytically as the domain itself is perturbed analytically. This fact may be
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of interest in the applications. For example, in the study of the Hele-Shaw moving
boundary value problem (cf. Gustaffson [11]), the region occupied at the instant t
by a fluid sucked from a narrow channel is represented as the image of a certain
univalent function f(·, t), which is assumed to satisfy a certain initial boundary value
problem, which for brevity we do not state here. Now, if the region occupied by
the fluid is simply connected, the domain of the function f(·, t) is taken to be the
unit disk D, and a local result for small positive t has been proved by Reissig and
Rogosin [27], under a certain regularization condition of the given problem, which is
ill-posed. However, if one considers the case in which the fluid may occupy a doubly
connected domain (cf. Gustaffson [12]), then the problem becomes more difficult and
the domain of f(·, t) should be chosen as an annulus of inner radius r depending
on the domain, and thus on t. Thus Theorem 6.1 may be employed to study such
dependence, as well as the dependence of the boundary values of the Riemann map
upon the boundary curves of the domain.

Finally, one could consider two disjoint Jordan domains bounded by two plane
curves ζ1, ζ2, and consider them as sections of electrically conducting cylinders in
the presence of an electrostatic field uniform at infinity in C \ {I[ζ1] ∪ I[ζ2]}. As it is
well-known, the complex potential of the electric field is determined by a conformal
map of C \ {I[ζ1] ∪ I[ζ2]} onto some doubly connected domain conformally equivalent
to an annulus. Thus our Theorem 6.1 could be employed to study the dependence of
the electric field on the boundary curves ζ1, ζ2, as ζ1, ζ2 are varied. Similarly, if I[ζ1]
and I[ζ2] are thought as sections of two impermeable cylinders in the presence of an
incompressible, inviscid, irrotational potential flow with constant velocity at infinity
in C \ {I[ζ1] ∪ I[ζ2]}, one could study the dependence of the velocity field and of the
pressure field on the boundary curves ζ1 and ζ2, as ζ1, ζ2 are varied.
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