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Abstract 

Dystrophinopathies are a group of X-linked recessive neuromuscular disorders due to 

mutations in the DMD gene. Truncating mutations, causing dystrophin absence in 

skeletal and cardiac muscle, cause the more severe form of dystrophinopathy, 

Duchenne muscular dystrophy (DMD). Conversely, mutations which respect the open 

reading frame, and give rise to quantitatively or qualitatively altered dystrophin, cause 

the milder allelic variant known as Becker muscular dystrophy (BMD). 

DMD is a devastating disorder. Progressive muscle wasting and weakness causes 

disability since childhood, and the natural history is characterized by loss of independent 

ambulation (LoA) around 10 - 15 years of age, and reduced life expectancy because of 

respiratory and cardiac complications in young adults. Glucocorticoid corticosteroids 

(GCs) might delay disease progression, and there are promising novel molecular 

treatments, but a definitive cure remains elusive. Promising molecular treatments 

include antisense oligonucleotides (AONs) inducing exon skipping in out-of-frame 

deletions and premature stop codon readthrough compounds. 

There is relevant variability in the severity and rate of progression of muscle wasting and 

weakness in DMD, which is not explained, if not in a minor proportion, by the disease-

causing mutation, as all DMD patients have a complete, or near to complete dystrophin 

defect. Recently, our group and other authors have described genetic modifiers of DMD, 

i.e. common single nucleotide polymorphisms (SNPs) associated to more or less severe 

DMD expressivity. These include rs28357094, a SNP in the promoter of the SPP1 gene, 

enconding the cytokine osteopontin, and a coding haplotype in the LTBP4 gene, 

enconding Latent Transforming growth factor β-Binding Protein 4. These variants 

modulate the expression (SPP1), or alter the aminoacid sequence (for LTBP4) of 

corresponding proteins, both of which are involved in inflammatory and pro-fibrotic 

pathways. They were both identified by candidate gene approaches (respectively, 

expression profiling studies and a murine genome scan). 
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The first aim of this thesis was to provide an independent validation of the genetic 

association of the SPP1 rs28357094 SNP and the LTBP4 haplotype with age at LoA in 

DMD. This was achieved using data from the Cooperative International Neuromuscular 

Research Group Duchenne Natural History Study (CINRG-DNHS) of 340 DMD patients 

from 20 worldwide Centers. In this population, the minor allele G at rs28357094 was 

associated to a 2-year delay of LoA in CINRG-DNHS participants who had been treated 

with glucocorticoids (p < 0.05), and no significant effect in untreated patients, 

suggesting that the SNP might be a pharmacodynamic biomarker of GC response. 

Furthermore, the homozygous LTBP4 haplotype “IAAM” was associated to a 2-year 

delay of LoA in participants of European descent (p < 0.05), but not in the whole multi-

ethinc CINRG-DNHS cohort, highlighting the relevance of population stratification in 

genetic modifier studies. 

The second aim was to test for associations between specific DMD mutations and age at 

LoA in the CINRG-DNHS. We confirmed previous reports that deletions bordering exon 

44 (and thus amenable to AON treatment for skipping of this exon), as well as the 

deletion of exons 3-7, were associated to later LoA (p < 0.01 and < 0.05 respectively). 

These findings have repercussions on clinical trial design and prognosis. 

A third aim was to study age at LoA as a long-term outcome of several different GC 

regimens currently adopted in DMD. In this observational study, we found that the use 

of daily deflazacort was associated to 2.7-year later LoA than daily prednisone (p < 

0.001), an unexpected finding that may be confirmed by ongoing randomized trials. 

As a fourth aim, we genotyped 175/340 CINRG-DNHS participants with an Exome Chip, 

including thousands of functional (regulatory or coding) variants, and performed a 

genome-wide association study (GWAS) of age at LoA in a subgroup of 109 unrelated 

participants of European ancestry. While no SNP surpassed the Bonferroni-corrected 

significance threshold, we performed a hypothesis-driven prioritization of findings, 

focused on inflammatory and pro-fibrotic pathways, and identified a hit in a gene 

involved in inflammation and cell-mediated immunity. The GWAS association of earlier 

LoA with the minor allele at the identified locus (p < 9.9*10
-5

) was validated in a 



PhD Thesis  PhD Candidate: Dr. Luca Bello 

  3

collaborative cohort of 660 DMD patients from the University of Padova, the European 

Bio-NMD network, and the United Dystrophinopathy Project in the USA (p < 0.05). 

Finally, the fifth aim focused on BMD, which features a milder, but even more variable 

clinical picture than DMD. In BMD, most patients have in-frame deletions leading to 

internally deleted dystrophin protein. We quantified dystrophin by Western Blot, 

performed a retrospective study of LoA and loss of the ability to run, and a 1-year 

longitudinal study of motor function (6 Minute Walk Test [6MWT], North Star 

Ambulatory Assessment [NSAA], timed function tests [TFTs]) in 69 BMD patients at the 

University of Padova. We found that deletions bordering exon 45 were associated with 

frequent loss of the ability to run, risk of LoA in adults, and overt muscle weakness; 

while some deletion groups, like those bordering exon 51, or limited to exon 48, were 

preserved from these signs of disease progression. This is relevant not only to BMD 

prognosis and genetic counseling, but also to outcomes of exon skipping AON 

treatments which aim to reproduce the same deletions at the transcript level in DMD. 

Furthermore, we observed that NSAA and 6MWT, which we mutuated from DMD 

studies and had not been applied to BMD, were feasible, clinically meaningful, and able 

to identify disease progression at 1 year, suggesting their adequacy as outcome 

measure for future BMD clinical trials. 

Altogether, the work presented here provides novel insights into the mechanisms of 

phenotypic and clinical variability in dystrophinopathy, which will be useful in delivering 

improved care for these disabling diseases. 
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Esposizione riassuntiva in lingua italiana 

Le distrofinopatie sono un gruppo di malattie legate al cromosoma X in modalità 

recessiva, dovute a mutazioni nel gene DMD. La forma più severa, la distrofia muscolare 

di Duchenne (DMD), è causata da mutazioni troncanti, che provocano una completa 

assenza della proteina distrofina nel muscolo scheletrico e cardiaco. Al contrario, la 

forma allelica più mite, nota come distrofia muscolare di Becker (BMD), è causata da 

mutazioni che rispettano la cornice di lettura del gene, dando origine a distrofina 

quantitativamente e/o qualitativamente alterata. 

La DMD è una malattia devastante, caratterizzata da una progressiva degenerazione del 

tessuto muscolare, con deficit di forza e disabilità sin dall’infanzia. La storia naturale è 

caratterizzata da perdita della deambulazione autonoma attorno all’età di 10 - 15 anni, 

e da ridotta aspettativa di vita a causa di complicanze respiratorie e cardiache nei 

giovani adulti. I glucocorticoidi (GC) possono ritardare la progressione della malattia, ma 

una cura definitiva non è ancora disponibile. Fra i trattamenti molecolari innovativi più 

promettenti, annoveriamo gli oligonucleotidi antisenso (AON) che inducono l’“exon 

skipping” di specifici esoni nelle mutazioni “out-of-frame”, e i composti che inducono il 

“readthrough” dei codoni di stop prematuri. 

Vi è una rilevante variabilità nella severità e velocità di progressione del deficit di forza e 

della degenerazione del tessuto muscolare nella DMD, che non si spiega, se non in 

piccola parte, in base alle diverse mutazioni patogenetiche, dal momento che tutti i 

pazienti presentano una completa o quasi completa assenza di distrofina. 

Recentemente, il nostro gruppo e altri autori hanno descritto modificatori genetici della 

DMD, cioè polimorfismi di singolo nucleotide (SNP) associati a espressività più o meno 

severa del fenotipo DMD: lo SNP rs28357094 nel promotere del gene SPP1, codificante 

per la citochina osteopontina, e un aplotipo codificante nel gene LTBP4 (Transforming 

growth factor β-Binding Protein 4). Queste varianti modulano l’espressione (SPP1) o 

alterano la sequenza aminoacidica (LTBP4) delle rispettive proteine, entrambe le quali 

sono coinvolte in vie di segnale pro-infiammatorie e pro-fibrotiche. Questi geni sono 
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stati identificati come modificatori candidati con approcci diversi (rispettivamente, studi 

di profili di espressione e mappatura genomica di un modello murino). 

Il primo obiettivo di questa tesi è stato di ottenere una validazione indipendente 

dell’associazione genetica dello SNP rs28357094 nel gene SPP1 e dell’aplotipo LTBP4 con 

l’età di perdita della deambulazione nella DMD. Questo risultato è stato conseguito 

utilizzando dati raccolti nel Duchenne Natural History Study del Cooperative 

International Neuromuscular Research Group (CINRG-DNHS), condotto su 340 pazienti 

DMD in 20 Centri in tutto il mondo. In questa coorte, l’allele minore G dello SNP 

rs28357094 era associato a un prolungamento della deambulazione di 2 anni nei 

partecipanti al CINRG-DNHS che erano stati trattati con GC (p < 0.05), ma a nessun 

effetto nei partecipanti non trattati. Ciò suggerisce che questo SNP potrebbe essere un 

biomarcatore farmacodinamico di risposta ai GC. L’aplotipo omozigote “IAAM” di LTBP4, 

invece, era associato a un prolungamento della deambulazione di 2 anni nei partecipanti 

di origine europea (p < 0.05), ma non nell’intera coorte multietnica CINRG-DNHS, 

evidenziando la rilevanza della stratificazione di popolazione negli studi sui modificatori 

genetici. 

Il secondo obiettivo è stato rivolto alla identificazione di eventuali associazioni fra 

specifiche mutazioni DMD e perdita della deambulazione nel CINRG-DNHS. Le delezioni 

confinanti con l’esone 44 (e quindi eleggibili per trattamento con AON che provocano lo 

“skipping” di questo esone) erano associate a perdita della deambulazione più tardiva, 

così come la delezione degli esoni dal 3 al 7 (rispettivamente p < 0.01 e < 0.05). Questi 

risultati potranno avere ripercussioni rilevanti sulla prognosi e sulla progettazione di trial 

clinici.  

Come terzo obiettivo, abbiamo studiato l’età alla perdita della deambulazione come 

esito a lungo termine di diversi regimi di GC attualmente utilizzati nella DMD. In questo 

studio osservazionale, abbiamo osservato che l’uso del deflazacort quotidiano era 

associato perdita della deambulazione più tardiva di 2.7 anni rispetto al prednisone 

quotidiano (p < 0.001), un risultato inaspettato che potrebbe essere confermato da 

studi clinici randomizzati attualmente in corso. 



PhD Thesis  PhD Candidate: Dr. Luca Bello 

  6

Come quarto obiettivo, abbiamo genotipizzato 175/340 partecipanti al CINRG-DNHS con 

Exome Chip, un chip di genotipizzazione che include migliaia di varianti funzionali 

(regolatorie e codificanti), e abbiamo condotto un “genome-wide association study” 

(GWAS) del fenotipo :età alla perdita della deambulazione in un sottogruppo di 109 

pazienti di origine europea (o europea-americana) non imparentati fra loro. Dal 

momento che nessuno SNP sorpassava la soglia di significatività corretta per test 

multipli secondo Bonferroni, abbiamo priorizzato i risultati focalizzandoci sui geni 

coinvolti in vie di segnale pro-infiammatorie e pro-fibrotiche. Abbiamo identificato così 

uno SNP in un gene coinvolto nell’infiammazione e nell’immunità cellulo-mediata. 

L’associazione dell’allele minore al locus identificato con una più precoce perdita della 

deambulazione (p < 9.9*10
-5

) è stata successivamente validata in una coorte 

collaborativa di 660 pazienti DMD raccolta presso l’Università di Padova, il network Bio-

NMD, e il network statunitense United Dystrophinopaty Project (p < 0.05).  

Infine, il quinto obiettivo si è rivolto alla BMD, che presenta un quadro clinico più mite, 

ma anche più variabile rispetto alla DMD. La maggioranza dei pazienti BMD ha delezioni 

che rispettano la cornice di lettura con espressione di distrofina internamente deleta. 

Abbiamo quantificato la distrofina tramite Western Blot, e condotto uno studio 

retrospettivo della perdita della deambulazione e della capacità di correre, e uno studio 

longitudinale di 1 anno delle funzioni motorie (“6 Minute Walk Test” [6MWT], “North 

Star Ambulatory Assessment” [NSAA] e “timed function tests” [TFTs]) in 69 pazienti 

BMD seguiti presso l’Università di Padova. Abbiamo osservato che le delezioni che 

terminano sull’esone 45 presentavano frequente perdita della capacità di correre, 

occasionale perdita della deambulazione e un franco deficit di forza, mentre altri gruppi 

di delezioni, come quelle che terminano sull’esone 51, o limitate al solo esone 48, 

presentavano una funzione muscolare migliore. Questi risultati sono rilevanti non solo 

per la prognosi e la consulenza genetica nella BMD, ma consentono anche di poter 

predire un possibile esito della terapia con AON per la DMD. Gli AON mirano infatti a 

riprodurre a livello di trascritto le medesime delezioni osservate nei pazienti BMD. 

Inoltre, abbiamo osservato che le misure funzionali 6MWT e NSAA, mutuate da studi 
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sulla DMD e non ancora utilizzate nella BMD, sono di semplice applicazione, 

clinicamente rilevanti, e in grado di identificare la progressione di malattia a un anno. 

Questi risultati suggeriscono che esse siano appropriate misure di esito funzionale in 

futuri studi clinici. 

Complessivamente, i lavori qui presentati offrono nuove prospettive sui meccanismi di 

variabilità fenotipica e clinica nelle distrofinopatie, che risulteranno utili per offrire cure 

migliori ai pazienti affetti da queste malattie disabilitanti. 
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Introduction and aims 

Dystrophinopathies are a group of genetic disorders mainly affecting skeletal and 

cardiac muscle, caused by deficiency of the protein dystrophin in the sarcolemma of 

muscle fibers [Hoffman et al., 1987]. Dystrophin is encoded by the Duchenne muscular 

dystrophy gene (DMD), linked to the short arm of the X chromosome at the Xp21 locus. 

Dystrophinopathies are inherited as X-linked recessive disorders, hemizygote males 

being affected by the disease and heterozygote females being mostly asymptomatic 

carriers. The mutation rate is high, with about one third of cases with negative familiar 

history arising from de novo mutations [van Essen et al., 1992]. 

Duchenne muscular dystrophy (DMD, MIM #310200) is the severe form of 

dystrophinopathy caused by a complete deficiency of dystrophin protein, affecting 1 in 

3800 ~ 5000 newborn males [Mostacciuolo et al., 1987; van Essen et al., 1992; Stark, 

2015] and representing one of the most common lethal childhood disorders. Boys 

affected with DMD suffer loss of independent ambulation around the beginning of the 

second decade, and death by dilated cardiomyopathy (DCM) and/or respiratory 

insufficiency in the third or fourth decade. Becker muscular dystrophy (BMD, MIM 

#300376) is the relatively milder condition caused by the presence of a reduced and/or 

partially functional dystrophin protein [Monaco et al., 1988; Hoffman et al., 1988; 

Hoffman et al., 1989]. BMD phenotypes are highly variable, ranging from severe forms, 

which are similar to DMD, to milder clinical pictures with retainment of independent 

ambulation through adulthood; the association of DCM is likewise variable, and strongly 

influences life expectancy. Disease manifestations are relatively rare in DMD/BMD 

carriers (~10%) [Moser and Emery, 1974], but may include severe phenotypes [Pegoraro 

et al., 1995]. 

A partial dystrophin defect may also cause familiar X-linked DCM (MIM #302045) with 

no substantial muscular abnormalities [Melacini et al., 1996; Ferlini et al., 1999] or mild 

phenotypes such as quadriceps myopathy, cramp and myalgia syndrome with or 
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without myoglobinuria [Gospe et al., 1989; Doriguzzi et al., 1993], and asymptomatic 

elevation of serum creatin kinase (CK) [Morrone et al., 1997]. 

To date, dystrophinopathies have no definitive cure, but the implementation of a 

multidisciplinary care protocol comprising a combination of palliative pharmacological 

interventions (i.e. steroid therapy) [Bushby et al., 2010a], cardiological therapy, 

antibiotic therapy, ventilatory assistance, physiotherapy, osteoarticular surgery, and 

screening for prevention of complications, has led to a substantial improvement of life 

quality and expectancy in DMD and severe forms of BMD [Sejerson et al., 2009; Bushby 

et al., 2010b]; moreover, increasing knowledge about the molecular basis of 

dystrophinopathies has offered patients and families accurate genetic counseling, and, 

more recently, experimental molecular and genetic therapies [Guglieri and Bushby, 

2010; Hoffman et al., 2011]. 

BMD encompasses a wide spectrum of clinical manifestations. The severe end of this 

spectrum includes patients with a clinical presentation almost indistinguishable from 

DMD, despite the presence of dystrophin protein detected by biochemical essays 

[Hoffman et al., 1991]; the mild end comprises adult-onset disorders without any clinical 

manifestation in the first 3-4 decades of life, independent ambulation being retained 

even in the old age. Many different intermediate phenotypes are possible. In “typical” 

forms, the onset of symptoms is around 12 years of age, loss of ambulation may ensue 

from adolescence onward, and life expectancy is around 50 years [Emery et al., 2002]. 

The incidence of BMD is about 5 times lower than DMD (1 in ~ 18,000 live born males) 

[Mostacciuolo et al., 1987], but may be partially underestimated because of 

undiagnosed mild cases. As in DMD, muscle weakness and wasting are evident 

proximally more than distally, and usually greater in lower than in upper limbs. The 

anterior compartment of the thigh is more prominently affected, and exclusively 

affected in the “quadriceps myopathy” phenotype. Calf hypertrophy is very frequent 

and joint retractions may develop in the presence of relevant weakness, especially at 

the ankles. Hyperlordosis and scoliosis are less common than in DMD, and are usually 
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observed in the severe end of the phenotypical spectrum. Macroglossia is rarely 

observed. Atypical clinical presentation is much more common in BMD than in DMD: 

possible examples are cramps and recurrent myoglobinuria [Bushby et al., 1991] or life-

threatening adverse reactions to general anesthesia [Bush and Dubowitz, 1991]. 

Although some authors include pauci- or asymptomatic forms of dystrophinopathy in 

the BMD spectrum, the nosographic definition of BMD does not correctly apply to 

patients without actual dystrophic alterations of skeletal muscle, whom may be better 

described as having mild dystrophinopathy. 

Despite DMD patients all carrying (by definition) truncating mutations which cause a 

complete dystrophin defect, extensive natural history studies have shown considerable 

inter-patient variation in DMD onset and progression [McDonald et al., 2013; Henricson 

et al., 2013; Pane et al., 2014a]. Daily treatment with glucocorticoids is considered 

standard of care [Bushby et al., 2010a], yet there is variable patient-patient response to 

treatment, both in terms of efficacy (improved gross motor skills) and side effect 

profiles [Henricson et al., 2013; Bello et al., 2015a]. Also, there is considerable variation 

in the practice of prescription and use of glucocorticoids [Griggs et al., 2013; Bello et al., 

2015b]. 

Multiple factors contribute to the observed clinical variation in DMD, including 

standards of care, glucocorticoid use, and genetic background (modifying 

polymorphisms, ethnicity). These variables are not independent. For example, a 

patient’s geographic location has effects on ethnicity, standards of care, and 

glucocorticoid use [Bello et al., 2015b]. The inter-dependent nature of these variables 

can make it challenging to isolate a single variable and define its contribution to disease 

expressivity. Furthermore, specific types of DMD mutation, despite being predicted to 

be out-of-frame at the genomic level, may show relatively milder phenotypes because 

of alternative splicing, as demonstrated for mutations in the N-terminal domain 

[Muntoni et al., 1994; Winnard et al., 1995; Gualandi et al., 2006], some nonsense 
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mutations [Flanigan et al., 2011], or deletions bordering exon 44 [van den Bergen et al., 

2014a; Pane et al., 2014b]. 

Despite these various sources of clinical variability and the challenges in identifying their 

specific roles, the identification of modifier variants of DMD in other genes, acting in 

epistasis with the disease-causing mutation, is broadly felt to be important, and initial 

progress has been made using a candidate gene approach [Vo and McNally, 2015]. The 

SPP1 gene locus, encoding the osteopontin protein (OPN), was identified as a candidate 

by mRNA profiling studies of muscle biopsies from clinically mild and severe patients 

[Pegoraro et al., 2011]. A polymorphism in the promoter of the SPP1 gene (rs28357094) 

known to change SPP1 mRNA expression by 5-fold, was found to be associated with age 

at loss of ambulation (LoA) in an Italian cohort, and grip strength in the Cooperative 

International Neuromuscular Research Group Duchenne Natural History Study (CINRG-

DNHS) [Pegoraro et al., 2011]. The association of rs28357094 with ambulation 

phenotypes was validated in a second Italian multi-center cohort [Bello et al., 2012]. 

However, the same association of rs28357094 with LoA was not seen in a European 

multicenter cohort (Bio-NMD) [van den Bergen et al., 2015] and in a United States 

multicenter cohort (United Dystrophinopathy Project, UDP) [Flanigan et al., 2013]. As 

the proportion of patients treated with glucocorticoids vary from cohort to cohort, 

glucocorticoid treatment is an important covariate to include in statistical models 

studying genetic modifiers, and the variable rate of glucocorticoid use in different 

cohorts might confounded validation results. The effects of the rs28357094 SPP1 locus 

was also studied in adult volunteer populations, where it was found to be associated 

with upper arm muscle volume [Hoffman et al., 2013] and response to eccentric activity-

induced muscle damage [Barfield et al., 2014] in young adult females. 

A second modifier of muscular dystrophy was identified by genetic linkage with disease 

severity in an outbred murine γ-sarcoglycan deficient model [Heydemann et al., 2009], 

which pointed to the Ltbp4 murine gene. This finding translated to human DMD, as a 

coding haplotype in LTBP4 was associated with age at LoA [Flanigan et al., 2013]. This 
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association was replicated in the Bio-NMD cohort [van den Bergen et al., 2015] and in 

participants of European ancestry in the CINRG cohort [Bello et al., 2015a], although not 

in an Italian multi-center cohort [Barp et al., 2015]. 

The candidate gene approach has led to the identification of two robust genetic 

modifier loci, SPP1 and LTBP4. The products of both these genes are involved in 

secondary inflammation and tissue remodeling, which appear to be key modifier 

pathways of muscular dystrophy [Chen at al., 2005; Ceco and McNally, 2014]. SPP1 is 

heavily upregulated by activation of NF-κB signaling during bouts of degeneration and 

regeneration in skeletal muscle [Hoffman et al., 2013]. NF-κB signaling is triggered in 

DMD by necrotic cells liberating damage-associated molecular patterns, which stimulate 

Toll-like receptors (TLRs) [Rosenberg et al., 2015]. In turn, upregulated osteopontin 

modulates TGFβ-mediated signals [Vetrone et al., 2009], which dictate either successful 

(reparative) or unsuccessful (fibrotic) regeneration. The LTBP4 protein also regulates 

TGFβ signaling by binding TGFβ in a latent complex in the extracellular matrix [Flanigan 

et al., 2013], and modifier haplotypes appear to influence susceptibility to proteolitic 

cleavage and subsequent TGFβ signaling activation [Ceco et al., 2014]. 

 However, the candidate gene approach for identification of genetic associations is 

known to be subject to various biases [Wills et al., 2009]. Genome-wide association 

studies (GWAS) are broadly felt to show less bias in genetic association discovery. GWAS 

studies typically employ highly parallel statistical tests of genetic association, where 

thousands to millions of polymorphic loci are tested simultaneously. In order to 

withstand multiplicity adjustment of association p-values, large populations have to be 

studied for typical effect sizes. This requirement works against utilization of GWAS to 

identify rare monogenic disease modifiers, as collecting and phenotyping large patient 

populations is challenging, so that specific methods would be needed to overcome this 

issue. 

BMD, compared to DMD, presents milder, but even more variable skeletal muscle 

wasting and weakness. Genotype-phenotype correlation studies have shown that loss of 
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functionally crucial actin- or dystroglycan-binding domains, respectively at the N- or C-

terminus, can result in DMD-like phenotypes despite detectable protein [Hoffman et al., 

1991; Aartsma-Rus et al., 2006; Kesari et al., 2008]. Deletions in the large dystrophin rod 

domain, which harbours the majority of BMD causing mutations, might differently affect 

the physical properties of resulting internally deleted dystrophin, depending on the 

preservation or loss of structural “phase” between spectrin repeats and hinge regions 

[Kaspar et al., 2009]. Some specific deletions, such as deletions of in-frame exons in the 

proximal rod domain [Angelini et al., 1994a], and deletions including the hinge 3 domain 

encoded by exons 50 and 51 [Carsana et al., 2005; Anthony et al., 2011], have been 

more frequently associated to mild or asymptomatic cases; while frequently observed 

deletions situated in the DMD mutational hotspot around exon 45-53 [White and Den 

Dunnen, 2006], but not including exons 50-51, have been linked with a typical clinical 

picture of BMD [Bushby et al., 1993; Anthony et al., 2014a; van den Bergen et al., 

2014b]. Moreover, a quantitative correlation between dystrophin content in muscle and 

BMD severity has been described, both as a linear or threshold effect [Angelini et al., 

1994a; Angelini et al., 1996; Comi et al., 1994; Anthony et al., 2011; van den Bergen et 

al., 2014b]. Recently, renewed interest has been kindled in this field, as some BMD-

causing deletions can be regarded as naturally occurring models of the in-frame 

deletions produced at the transcript level by splice-modulating antisense 

oligonucleotides (AONs), employed in the treatment of DMD with the exon skipping 

approach [Aartsma-Rus, 2012; Arechevala-Gomez et al., 2012]. 

In summary, the mechanisms underlying phenotype variability in Duchenne and Becker 

muscular dystrophy are manifold and complex. Their relevance for potential treatments 

is intuitive, because a molecular mechanism which can modify disease severity could be 

pharmacologically modulated with the purpose of slowing disease progression. 

Furthermore, genetic variants associated to faster or slower disease progression could 

be used as prognostic biomarkers for better design of clinical trials and interpretation of 

their results. The object of this thesis is to improve our knowledge of these mechanisms. 

To this end, we formulated the following specific aims: 
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Aim 1: Validate known genetic modifiers of DMD, i.e. the SPP1 rs28357094 single 

nucleotide polymorphism (SNP) and the LTPB4 “IAAM” haplotype, in the Cooperative 

International Neuromuscular Research Group Duchenne Natural History Study (CINRG-

DNHS). 

Aim 2: Assess phenotype differences between participants in the CINRG-DNHS with 

different types of out-of-frame DMD mutations. 

Aim 3: Assess phenotype differences between participants in the CINRG-DNHS who had 

been treated with different glucocorticoid corticosteroid (GC) regimens. 

Aim 4: Identify novel genetic modifier genes of DMD by a genome-wide association 

study (GWAS) of age at loss of ambulation (LoA) in the CINRG-DNHS. 

Aim 5: Assess phenotype differences between BMD patients with different types of in-

frame DMD mutations in the BMD cohort referring to the Neuromuscular Clinic at the 

University of Padova. 

Note that while this Introduction provides the background which led to the formulation 

of the specific Aims, and serves as a preamble to the whole thesis, in each of the 

following five Chapters, each dedicated to a specific Aim, more focused and detailed 

background information is provided, so that each Chapter may be read as a stand-alone 

research paper. Therefore, there might be redundancy between this Introduction and 

the Background section of each Chapter.  
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Aim 1: Validation of known genetic modifiers of DMD in the 

CINRG-DNHS 

Background 

Duchenne muscular dystrophy (DMD) is caused by the absence of the protein 

dystrophin in myofibers, due to truncating dystrophin gene mutations [Hoffman et al., 

1987]. Despite this homogeneous molecular defect, variability in phenotype severity is 

commonly observed, e.g. variable age at loss of ambulation (LoA). This is due to 

environmental factors, such as implementation of standards of care (glucocorticoid 

corticosteroid [GC] treatment, physical therapy, management of contractures, fracture 

prevention) [Bushby et al., 2010a-b], and to the genetic background. Two genetic 

modifiers of DMD, i.e. common polymorphisms that modulate disease severity 

combined with a pathogenic mutation, have been described: a single nucleotide 

polymorphism (SNP) in the promoter of the SPP1 (secreted phosphoprotein 1, or 

osteopontin) gene, and a coding LTBP4 (Latent Transforming growth factor β Binding 

Protein 4) haplotype. The association of the SPP1 rs28357094 rare G allele with earlier 

LoA, in a dominant inheritance model, was originally reported in 106 Italian DMD 

patients [Pegoraro et al., 2011]. SPP1 encodes an inflammatory cytokine involved in 

tissue damage response, and is part of the transforming growth factor β (TGFβ) pathway 

[Ceco and McNally, 2013]. The rs28357094 polymorphism alters transcription, at 

baseline [Giacopelli et al., 2004] and in response to steroid hormones [Barfield et al., 

2014]. 

The LTBP4 locus was identified by genome-wide mapping in a murine model of muscular 

dystrophy [Heydemann et al., 2009]. Subsequently, a LTBP4 haplotype was associated 

with variable LoA in 254 patients with severe dystrophinopathy (United 

Dystrophinopathy Project, UDP) [Flanigan et al., 2013]. The haplotype consists of four 

coding SNPs in strong linkage disequilibrium (LD), one of which, rs10880, was 

independently associated with age at LoA. Homozygotes for the minor allele T at 
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rs10880 (T1140M), in LD with the haplotype IAAM, showed later LoA. The proposed 

mechanism is that the “IAAM” protein isoform results in a more stable latent TGFβ 

complex, reducing TGFβ signaling. In the same paper, the authors found no association 

of SPP1 genotype with age at LoA. 

Validation of genetic associations in independent cohorts is essential to establish 

genetic modifiers of Mendelian diseases [Nelson and Griggs, 2011], but may be 

exaggerated or obscured by confounding variables, such as ancestry-dependent 

differences in allele frequency and haplotype configuration, which associate with 

variations of standards of care and other environmental factors, and lead to population 

stratification [Enoch et al., 2006; Tian et al., 2008; Genin et al., 2008]. Disparities in 

diagnostics [Holtzer et al., 2011], standards of care [Fox et al., 2014], and phenotype 

severity [Bortolini and Zatz, 1987] between DMD patients of different ethnic 

backgrounds have in fact been reported. The Cooperative International Neuromuscular 

Research Group Duchenne Natural History Study (CINRG-DNHS) comprises participants 

from 20 Centers in 4 continents, constituting an ethnically diverse cohort. 

We have expanded analysis of the CINRG-DNHS cohort, from the baseline cross-

sectional analysis of grip strength in 156 participants, to a longitudinal study (average 

follow-up 4 years) of all 340 participants [McDonald et al., 2013; Henricson et al., 2013]. 

Here we sought to test the effect of SPP1 and LTBP4 genotypes on LoA in the CINRG-

DNHS population, controlling for GC treatment and population stratification. 
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Methods 

The institutional review board or ethics review board at each participating Institution 

approved the study protocol, consent and assent documents. Informed consent/assent 

was obtained for each participant prior to conducting study procedures.  

Inclusion and exclusion criteria. The inclusion and exclusion criteria for the CINRG-

DNHS have been previously described [McDonald et al., 2013; Henricson et al., 2013]. 

Recruitment was aimed at obtaining a population representing an age span from very 

young to adult (age 2-28 years at baseline). On the other hand, recruitment was not 

specifically aimed at obtaining sub-populations with homogeneous ancestry for genetic 

association analysis. For all analyses focused on SPP1 and LTBP4 genotypes, we excluded 

patients with no available genomic DNA for SNP genotyping. 

LoA and GC treatment definitions. LoA was defined as patient-reported continuous 

wheelchair use, verified by inability to walk 10 meters unassisted. GC treatment history 

was recorded both retrospectively at baseline, and longitudinally during the study, and 

the population was dichotomized into treated at least 1 year with GCs before LoA, and 

untreated or treated less than 1 year before LoA. This included patients who had gone 

on and off GC treatment one or more times, but were cumulatively treated for at least 1 

year before LoA. The 1-year treatment threshold was chosen based on the clinical 

rationale that a long term effect of GC treatment, like delaying disease milestones, 

cannot be reasonably expected from a short-term treatment. Data were also re-

analyzed with a 6-month treatment threshold, as in Flanigan et al., in order to compare 

LTBP4 data with the same methodology as the original report of this modifier. 

Race and ethnicity definitions. Self-identification of participants into one of the 

following racial categories was recorded: African American, Asian, Caucasian, Mixed, or 

Other; self-identification into non-Hispanic or Hispanic ethnicity was specified as 

separate option, according to official U.S. census categories 

(http://www.whitehouse.gov/omb/fedreg_1997standards/). Here, we clustered this 
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information into the following groups: African American, Asian, non-Hispanic Caucasian, 

Hispanic Caucasian, Hispanic (i.e. participants self-identifying their ethnicity as Hispanic, 

and race as Mixed/Other), and Other (i.e. participants self-identifying their ethnicity as 

non-Hispanic, and race as Mixed or Other); and distinguished as South Asian those 

participants recruited at the Study Center in Chennai, India (for these participants no 

DNA samples were available because of local regulations that did not allow the 

shipment of DNA for the purposes of our study). 

Targeted genotyping. Targeted genotyping was carried out by TaqMan allele 

discrimination assays. For SPP1 rs28357094, a dominant model for the minor allele G 

was adopted [Pegoraro et al., 2011]. For LTBP4 association studies, we focused mainly 

on the rs10880 SNP (T1140M), which is in strong LD with the IAAM haplotype, and 

showed an independent association with LoA in the original report, in a recessive model 

[Flanigan et al., 2013]. Focusing initially on a single significant SNP allowed inclusion of 

larger numbers of participants in the analyses. In order to confirm association with the 

full haplotype in carriers of the rs10880 T allele, we genotyped rs2303729 (V194I), 

rs1131620 (T787A), and rs1051303 (T820A). LTBP4 haplotypes were phased with PLINK 

[Purcell et al., 2007] and median ages at LoA were calculated for all observed haplotype 

configurations, in all those patients for whom haplotypes could be phased with at least 

90% probability. 

MDS analysis. Genotype data from the Illumina HumanExome Chip was available for 

175 participants. These were not selected by ethnicity, nor any phenotype-related 

characteristic, but solely on the base of available DNA quantity and quality. While mainly 

focusing on coding regions, the chip contains ancestry markers and other common 

variant markers (~30,000) that ensure sufficient genome-wide coverage for 

multidimensional scaling (MDS) analysis. Chip design information is publicly available at 

http://genome.sph.umich.edu/wiki/Exome_Chip_Design#Illumina_Exome_Arrays. 

Genotypes were called from raw intensity data with the Genome Studio software, and 

data was exported into PLINK format with the dedicated plug-in software by Illumina. 
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PLINK was used for data cleaning and MDS analysis [Neale and Purcell, 2008]. Subjects 

with > 10% missed calls and SNPs with > 5% missed calls were removed to ensure data 

quality. MDS analysis was based on the calculation of genome-wide identity-by-state 

pairwise distances, on a set of “pruned” genome-wide markers in no significant LD with 

each other, using the PLINK whole genome association analysis toolset. LD-based 

pruning parameters were the following: 50 SNP window size, 5 SNP window slide at 

each step, variance inflation factor threshold = 2. The two highest-ranking principal 

components were plotted. 

Grouping criteria for analyses of race/ethnicity differences in GC treatment and LoA. 

Median LoA and GC treatment rates were calculated in participants with different self-

identified race/ethnicities in the whole DNHS cohort of 340 patients, grouped as defined 

above. 

Grouping criteria for analyses of SNP effect on LoA. SNP effects on LoA were analyzed 

in the whole cohort with available genomic DNA for genotyping, and in a subcohort of 

participants of Caucasian ancestry, identified by MDS analysis. In both cohorts, analyses 

were carried out in three groupings based on GC treatment: all participants regardless 

of treatment; GC-treated participants (at least 1 year while ambulatory as defined 

above); GC-untreated participants (including treated less than 1 year while ambulatory, 

as defined above). Data were also re-analyzed with a 6-month GC treatment threshold 

as explained above. A flow diagram of participant grouping, with corresponding planned 

analyses, participant numbers, and GC treatment rates, is shown in Figure 1. 

Statistical methods. Rates of GC treatment between self-identified racial and ethnic 

subgroups were compared by χ
2
 test. LoA was studied in a time-to-event model with age 

as the time variable, and LoA as the failure event. Ambulatory participants were 

censored at the age of last follow-up. Median ages at LoA in race/ethnicity and 

genotype subgroups were based on the empiric survival curve from a Kaplan-Meier (KM) 

curve calculation, and compared by log-rank test. For SPP1 and LTBP4 genotypes, 

patients were grouped based on inheritance models specified above. Additionally, 
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concurrent effects of GC treatment and SNP genotype were analyzed in a Cox regression 

model, with a time-varying GC treatment covariate (on/off treatment defined for all 

participants at the time of each event). Statistical significance was set at p < 0.05. Partek 

Genomics Suite 6.6 (St. Louis, MO) and STATAV13 (College Station, TX) were used for 

statistical analyses. 

 

Figure 1. Flow diagram of analysis plan and population grouping. Subgroups included in 

different analyses are shown, starting from the top with the whole DNHS cohort, and in 

subsequent steps excluding patients with no available DNA for genotyping; subjects with 

no available genome-wide markers for multidimensional scaling analysis for population 

stratification; subjects leading to population stratification. Thick-border boxes indicate 

groups selected for specific analyses. 

  

N = 175: available genome-wide 

markers for MDS analysis of 

population stratification 
(75% GC-treated) 

N = 283: available DNA 

for SNP genotyping, 

all race/ethnicities 
(75% GC-treated) 

N = 57: no 

available DNA for 

SNP genotyping 

N = 108: no 

available genome-

wide markers for 

MDS analysis 

N = 340:  

CINRG-DNHS cohort 
(74% GC-treated) 

N = 118: Caucasian cohort 

controlled for population 

stratification 
(80% GC treated) 

excluded 

Descriptive analyses: 

race/ethnicity differences in 

GC treatment rate and 

median LoA 

Grouping by:  

all patients, 

 GC-treated,  

GC-untreated 

Analysis of population stratification 

excluded N = 57: leading to  

population 

stratification 

excluded 

Association analyses  

of SPP1 and LTBP4 with LoA 

(independent of and concurrent 

with GC treatment) 
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Results 

Distribution by race/ethnicity and GC treatment. Self-identified race/ethnicity in the 

340 participants enrolled in the CINRG-DNHS was distributed as follows: 225 (66%) 

Caucasian, 23 (7%) Hispanic-Caucasian, 41 (12%) South Asian, 18 (5%) Hispanic, 14 (4%) 

Asian, 6 (2%) African American, and 13 (4%) Other. Of note, the South Asian group was 

the only one entirely referring to a single Study Center (Chennai, India). GC treatment 

was administered for at least 1 year before LoA to 252/340 participants (74%). There 

were differences in the proportion of participants treated for at least 1 year with GCs, 

between self-identified racial-ethnic subgroups. Overall, participants self-identifying as 

Caucasian (both Hispanic and non-Hispanic ethnicity) were more often treated for at 

least 1 year than other participants: 191/248 (77%) vs. 61/92 (65%), χ
2
 p = 0.045 (Table 

1). This comparison might be biased by different proportions of younger, ambulatory 

GC-naïve participants, as opposed to non-ambulatory participants who did not receive 

treatment before LoA. When analyzing non-ambulatory participants only, we found a 

trend in the same direction: non-ambulatory Caucasians treated at least 1 year while 

ambulatory were 113/162 (70%) vs. other ethnicities 39/67 (58%, χ2 p = 0.09, Table 1). 

Table 1. Number and percentage of participants treated with GCs at least 1 year while 

ambulatory, grouped by self-identified race and ethnicity. 

Self-identified  

race and ethnicity 
All participants Non-ambulatory Ambulatory 

African American 2/6 (33%) 0/4 (0%) 2/2 (100%) 

Asian 9/14 (64%) 8/13 (62%) 1/1 (100%) 

Caucasian 
non-Hispanic 173/225 (77%) 102/146 (70%) 71/79 (90%) 

Hispanic 18/23 (78%) 11/16 (69%) 7/7 (100%) 

Hispanic 8/18 (44%) 6/16 (37%) 2/2 (100%) 

Other 12/13 (92%) 5/6 (83%) 7/7 (100%) 

South Asian 30/41 (73%) 20/28 (71%) 10/13 (77%) 

GC: glucocorticoid corticosteroids. 
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Age at LoA and GC treatment show differences between self-reported ethnic subgroups. 

Median age at LoA was 12.4 years in the non-Hispanic Caucasian population (n = 225). 

Compared to this numerically predominant group, median age at LoA was significantly 

earlier in the Hispanic (n = 18, 9.7 years, log-rank p = 0.003) and South Asian (n = 41, 

10.4 years, p < 0.001) subpopulations. Median LoA was earlier in the Asian 

subpopulation (n = 14, 11.3 years), and later in Hispanic-Caucasian (n = 23, 13.0 years) 

and African American subpopulations (n = 6, 14.2), but differences with non-Hispanic 

Caucasians were not statistically significant. 

Table 2. Minor allele frequencies (MAFs) for SPP1 rs28357094 and LTBP4 rs10880 

compared to 1000 Genomes Project MAFs. 

Population 
SPP1 rs28357094 LTBP4 rs10880 

DNHS 1000G DNHS 1000G 

African American (n = 6) 0.10 0.04 (AFR) 0.30 0.51 (AFR) 

Asian (n = 14) 0.08 0.00 (ASN) 0.31 0.29 (ASN) 

non-Hispanic Caucasian (n = 225) 0.18 0.24 (EUR) 0.36 0.41 (EUR) 

Hispanic Caucasian (n = 23) 0.11 0.24 (EUR) 0.34 0.41 (EUR) 

Hispanic (n = 18) 0.18 0.14 (AMR) 0.31 0.27 (AMR) 

Other (n = 13) 0.13 0.12 0.31 0.38 

Overall 0.17 0.12 0.35 0.38 

DNHS: Duchenne Natural History Study. 1000G: 1000 Genomes Project. Minor allele 

frequencies for 1000G refer to a continental reference population (in brackets), or to the 

whole project if not specified otherwise. 

Genotyping results. Genomic DNA samples for targeted genotyping were available for 

283/340 participants. The 57 patients excluded because of unavailability of DNA 

samples comprised all 41 patients followed at the study Center in Chennai, India, as 

regulatory authorities did not allow participation to this part of the study. Minor allele 

frequencies (MAFs) for SPP1 rs28357094 and LTBP4 rs10880 in the CINRG-DNHS 

population, broken down by ethnic subgroups, are shown in Table 2, compared to MAFs 

in continental reference populations from the 1,000 Genome Project 

(http://www.1000genomes.org/). For both SNPs, the MAF in the numerically 

preponderant Caucasian population was slightly lower than in the 1,000 Genomes 
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reference EUR population (0.18 vs. 0.24 for SPP1 rs2835704, and 0.36 vs. 0.41 for LTBP4 

rs10880). For SPP1 rs28357094, MAFs in Asian and Hispanic populations were higher 

than reference. These findings might be suggestive of population admixture. Both SNPs 

were in Hardy-Weinberg equilibrium (HWE). LTBP4 haplotypes could be phased with 

90% probability in 242 participants, including 28/32 “TT” homozygotes for LTBP4 

rs10880. Of these, 24/28 were homozygotes for the full IAAM haplotype based on 

rs2303729, rs1131620, and 1051303 genotypes, while 4/28 participants were 

heterozygotes for other rare haplotypes (VAAM or VTTM). All SNPs in the LTBP4 

haplotype were in HWE. 

Association analyses in the whole genotyped cohort: the effect of SPP1 on LoA is GC 

treatment-dependent in the DNHS population. Analyses relative to SPP1 and LTBP4 

genotypes were limited to 283 patients with available genomic DNA samples (Figure 1). 

Of these, 279 (because of limited availability of genomic DNA for a few participants) 

were successfully genotyped for SPP1 rs28357094. Median ages at LoA for genotype 

groups and results of log-rank and Cox regression analyses are summarized in Table 3. 

Median ages at LoA were 11.8 years in 84 participants carrying the minor allele (TG/GG), 

and 13.0 years in 195 participants carrying the TT genotype (log-rank p = 0.048, Figure 

2a). This closely reproduces the methodology of the previously reported association of 

rs28357094 genotype with LoA in 106 Italian patients [Pegoraro et al., 2011], 

representing an independent validation of association with this phenotype. In the Cox 

regression model with GC treatment as time-varying covariate, the hazard ratio (HR) ± 

standard error (SE) for TG/GG genotype was 1.22 ± 0.20 (p = n.s.). The HR for GC 

treatment was 0.41 ± 0.07 (p < 0.001). In 274 participants genotyped for LTBP4 rs10880, 

median ages at LoA were 12.0 years in 242 participants with the CC/CT genotype, and 

13.9 years in 32 homozygotes for the minor allele T (log-rank p = 0.20, Figure 3a). In the 

Cox regression model with GC treatment as time-varying covariate, HR for the TT 

genotype was 0.78 ± 0.18 (p = n.s.). The HR for GC treatment was 0.39 ± 0.06 (p < 

0.001). In this and the following analyses, participant numbers for the two genotyped 

SNPs differ slightly, because of limited availability of genomic DNA for a few 
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participants. These data show directions of association as previously reported (SPP1 

TG/GG genotype: earlier age at LoA; LTBP4 TT genotype: later age at LoA). SPP1 was 

statistically significant in the log-rank comparison of median LoA, but not in the GC-

treatment adjusted Cox model, while LTBP4 did not reach statistical significance. 

Findings for LTBP4 were similar for 24/32 rs10880 TT homozygotes carrying the whole 

IAAM/IAAM haplotype (data not shown). When grouping only GC-treated participants 

(at least 1 year of treatment while ambulatory), we observed a 1.9-year difference in 

median LoA between SPP1 rs28357094 genotypes: median ages at LoA were 12.0 and 

13.9 years for n = 63 GG/GT and n = 150 TT respectively (log-rank p = 0.032, Figure 2b). 

In the Cox regression model with GC treatment as time-varying covariate, the HR for 

TG/GG genotype was 1.61 ± 0.32 (p = 0.016). The HR for GC treatment was 1.30 ± 0.49 

(p = n.s.). Median ages at LoA were identical (10.0 years) for untreated participants with 

different SPP1 genotypes (n = 21 and 45 respectively, Figure 2b). This suggests that the 

SPP1 locus may be a pharmacodynamic marker for GC response, rather than directly 

modifying DMD severity. As for the LTBP4 rs10880 genotype, median ages at LoA in GC-

treated participants were 13.3 and 13.9 years for the CC/CT and TT genotype, n = 178 

and 27 respectively (log-rank p = n.s., Figure 3b). In the Cox regression model with GC 

treatment as time-varying covariate, the HR for the TT genotype was 0.74 ± 0.20 (p = 

n.s.). The HR for GC treatment was 1.08 ± 0.40 (p = n.s.). The number of untreated 

participants with the rare recessive genotype was too small for a meaningful 

comparison (n = 64 and 5, Figure 3b).  

  



PhD Thesis  PhD Candidate: Dr. Luca Bello 

  25 

Table 3. Kaplan-Meier and Cox regression models for LoA: median age at LoA, log-rank 

p-values, Cox Hazard Ratios and p-values by SPP1-LTBP4 genotypes and GC treatment. 

  
Whole genotyped DNHS cohort (n = 283*) 

  
All participants GC-treated GC-untreated  

  
n 

median  

age at 

LoA 

(yrs) 

p-value 

(KM  

log-

rank) 

 HR (95% CI) 

and  

p-value (Cox) 

n 

median  

age at 

LoA 

(yrs) 

p-value 

(KM  

log-

rank) 

 HR (95% CI) 

and  

p-value 

(Cox) 

n 

median  

age at 

LoA 

(yrs) 

p-value 

(KM  

log-

rank) 

SPP1 

rs28357094 

TT 195 13.0 p = 

0.048 

1.22 (0.89-

1.68) 
150 13.9 p = 

0.032 

1.61 (1.09-

2.37) 
45 10.0 

0.6 

TG/GG 84 11.8 p = 0.22 63 12.0 p = 0.016 21 10.0 

LTBP4 

rs10880 

CC/CT 242 12.0 p = 

0.20 

0.78 (0.49-

1.24) 
178 13.3 p = 

0.27 

0.74 (0.44-

1.26) 
64 10 

- 

TT 32 13.9 p - 0.29 27 13.9 p = 0.27 5 9.1 

  

Caucasian cohort, controlled for population  

stratification by MDS (n = 118*) 

  

All participants GC-treated GC-untreated  

  

n 

median  

age at 

LoA 

(yrs) 

p-value 

(KM  

log-

rank) 

 HR (95% CI) 

and  

p-value (Cox) 

n 

median  

age at 

LoA 

(yrs) 

p-value 

(KM  

log-

rank) 

 HR (95% CI) 

and  

p-value 

(Cox) 

n 

median  

age at 

LoA 

(yrs) 

p-value 

(KM  

log-

rank) 

SPP1 

rs28357094 

TT 81 13.9 p = 

0.047 

1.54 (0.93-

2.54) 
67 13.9 p = 

0.07 

1.85 (1.01-

3.38) 
14 10.0 

0.7 

TG/GG 35 12.0 p = 0.09 26 12.0 0.047 9 9.0 

LTBP4 

rs10880 

CC/CT 103 12.6 p = 

0.024 

0.49 (0.23-

1.07) 
80 13.8 p = 

0.046 

0.47 (0.20-

1.09) 
23 10 

- 

TT 12 15.0 p = 0.07 11 16.0 p = 0.08 1 N/A 

 

DNHS: Duchenne Natural History Study. * Total n may not correspond exactly to 

genotype group n because of few ungenotyped patients (limited DNA availability). MDS: 

multidimensional scaling analysis. GC-treated: glucocorticoid corticosteroid treatment 

at least 1 year while ambulatory. GC-untreated: no or < 1-year treatment while 

ambulatory. LoA: loss of ambulation. KM: Kaplan-Meier survival analysis with log-rank 

comparison of median age at LoA. HR: Hazard Ratio for genotype in Cox regression 

model with GC-treatment as a time-varying covariate. Bold figures indicate statistically 

significant effect of genotype on LoA. 
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Figure 2. Kaplan-Meier plots of age at loss of ambulation grouped by SPP1 rs28357094 

genotype. A) All patients genotyped for SPP1 rs28357094, including all races and 

ethnicities (n = 279), grouped 2 ways by rs28357094 genotype (TT black, TG/GG grey). B) 

All patients genotyped for SPP1 rs28357094, including all races and ethnicities (n = 279), 

grouped 4 ways by rs28357094 genotype (TT: black, TG/GG: grey) and GC treatment (at 

least 1 year while ambulatory: continuous; less than 1 year or untreated: dashed). C) 

Caucasian cohort controlled for population stratification and genotyped for SPP1 

rs28357094 (n = 116), grouped 2 ways by rs28357094 genotype (TT: black, TG/GG: grey). 

D) Caucasian cohort controlled for population stratification and genotyped for SPP1 

rs28357094 (n = 116), grouped 4 ways by rs28357094 genotype (TT: black, TG/GG: grey) 

and GC treatment (at least 1 year while ambulatory: continuous; less than 1 year or 

untreated: dashed).   
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Figure 3. Kaplan-Meier plots of age at loss of ambulation grouped by LTBP4 rs10880 

genotype. A) All patients genotyped for LTBP4 rs10880, including all races and 

ethnicities (n = 274), grouped 2 ways by rs10880 genotype (TT black, CC/CT grey). B) All 

patients genotyped for LTBP4 rs10880, including all races and ethnicities (n = 274), 

grouped 4 ways by rs10880 genotype (TT: black, CC/CT: grey) and GC treatment (at least 

1 year while ambulatory: continuous; less than 1 year or untreated: dashed). C) 

Caucasian cohort controlled for population stratification and genotyped for LTBP4 

rs10880 (n = 115), grouped 2 ways by rs10880 genotype (TT: black, CC/CT: grey). D) 

Caucasian cohort controlled for population stratification and genotyped for LTBP4 

rs10880 (n = 115), grouped 4 ways by rs10880 genotype (TT: black, CC/CT: grey) and GC 

treatment (at least 1 year while ambulatory: continuous; less than 1 year or untreated: 

dashed).  



PhD Thesis  PhD Candidate: Dr. Luca Bello 

  28 

MDS analysis shows admixture and population stratification. MDS analysis was based 

on the calculation of identity-by-state pairwise distances, performed on 175 participants 

with available genome-wide markers. Compared to 108 patients excluded from this 

analysis because of unavailability of genome-wide markers (DNA quantity and quality 

not sufficient for SNP chip analysis), there were no significant differences in GC 

treatment rate (75.0% vs 76.5%) or median age at LoA (13.0 vs. 12.0 years, log-rank p = 

0.12). MDS analysis identified a first principal component with lower values for 

participants of European ancestry. This component is plotted on the x axis in Figure 4. 

The y axis represents the second principal component. On the left side of the plot (low 

values of first principal component) 118 participants self-identifying mostly as non-

Hispanic Caucasian (n = 115), and rarely as Hispanic-Caucasians (n = 2), or Other (n = 1), 

are clustered closely together, indicating a subcohort of relatively homogeneous 

European ancestry. Of the remaining 57 patients with higher values of the first 

component, 12 self-identified as non-Hispanic Caucasian, appearing as “outliers” on the 

right side of the plot, and indicating admixture and population stratification within self-

identified Caucasian participants. 

Association analyses in the Caucasian cohort controlled for population stratification 

lead to validation of both SPP1 and LTBP4 association with age of LoA. As MDS analysis 

showed population stratification within self-identified racial-ethnic groups, in order to 

adjust for population-related confounding factors in genetic association, we restricted 

subsequent analyses to 118 patients showing no evidence of population stratification 

(Figure 1). Of these, 116 were successfully genotyped for SPP1 rs28357094. Median ages 

at LoA were 12.0 and 13.9 years, n = 35 and 81 for TG/GG and TT respectively (log rank p 

= 0.047, Figure 2c). In the Cox regression model with GC treatment as time-varying 

covariate, the HR for TG/GG genotype was 1.54 ± 0.17 (p = 0.09), and the HR for GC 

treatment was 0.26 ± 0.07 (p < 0.001). 
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Figure 4. Cartesian plot of Multidimensional Scaling analysis of genome-wide markers 

population stratification. Values of the 2 highest ranking components are shown (1st on 

the x axis and 2nd on the y axis). Shape and color of the markers indicates self-identified 

ethnicity. Participants self-identifying as non-Hispanic Caucasian, indicated by “x” 

shaped markers, form a cluster with low values of the first component (< -0.0025, 

vertical cut-off line). Forty-five participants with other self-identified races and 

ethnicities are mostly positioned right of the cut-off line: African American (full circles), 

Asian (full squares), Hispanic Caucasian (empty triangles), Hispanic (full triangles), and 

Other (empty circles). Twelve participants self-identifying as non-Hispanic Caucasians 

appear as outliers, while 3 participants self-identifying as Hispanic Caucasian or Other 

cluster together with non-Hispanic Caucasians and are included in subsequent analyses. 
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Of the participants described above, 93 were GC-treated for at least 1 year while 

ambulatory. For these patients, KM median ages at LoA were 12.0 and 13.9 years for 

TG/GG and TT genotypes, n = 26 and 67 (log-rank p = 0.07, Figure 2d). When applying 

the Cox regression model with GC treatment as time-varying covariate, HR for TG/GG 

genotype was 1.85 ± 0.57 (p = 0.047). The HR for GC treatment was 0.72 ± 0.39 (p = 

n.s.). In 23 GC-untreated patients, KM median ages at LoA were 9.0 and 10.0 years for 

TG/GG and TT (n = 9 and 14 respectively, p = n.s., Figure 2d).  

Of 118 participants in the Caucasian cohort controlled for population stratification, 115 

were genotyped for LTBP4 rs10880. KM curves plotted for this group showed delayed 

median LoA (15.0 years) in 12 participants carrying the TT genotype, in contrast to 103 

carrying the CC/CT genotype (12.6 years, log-rank p = 0.024, Figure 3c). Of these 12 

participants, 9 were homozygotes for the full IAAM haplotype, while 3 were 

heterozygotes for IAAM and other rare LTBP4 haplotypes (VAAM and VTTM). In the Cox 

regression model with GC treatment as time-varying covariate, the HR for TT genotype 

was 0.49 ± 0.19 (p = 0.07). The HR for GC treatment was 0.26 ± 0.07 (p < 0.001). 

Of the participants described in the previous paragraph, 91 were GC-treated for at least 

1 year before LoA. Within this group, KM median age at LoA was 16.0 years for TT 

genotype and 13.8 for CC/CT, n = 11 and 80 (log-rank p-value = 0.046, Figure 3d). The 

Cox regression model with GC treatment as time-varying covariate showed a HR for TT 

genotype of 0.47 ± 0.20 (p = 0.08). The HR for GC treatment was 0.75 ± 0.40 (p = n.s.). 

The presence of just one GC-untreated participant with rs10880 TT genotype precludes 

statistical analysis of GC-untreated participants for LTBP4 in this subgroup. 

Taken together, these findings support the protective effect of the rs10880 TT genotype 

described by Flanigan et al. 
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Discussion 

We aimed to study the effect of two genetic modifiers on DMD phenotype, using age at 

LoA as a disease severity indicator, in the CINRG-DNHS cohort. This cohort includes 340 

participants followed longitudinally for an average of four years, and the study design 

and baseline data have been recently reported [McDonald et al., 2013; Henricson et al., 

2013]. We grouped participants by genotype at two loci associated with age at LoA in 

DMD (SPP1 rs283570944 and LTBP4 haplotype). We had previously reported a cross-

sectional analysis of grip strength as a function of SPP1 genotype in a subset of this 

cohort (n = 156), not stratified for ethnicity. Here, we report time-to-event analyses for 

age at LoA in the complete CINRG-DNHS cohort (except 57 participants with unavailable 

DNA samples) for both the SPP1 and LTBP4 loci, controlling for population stratification 

and GC treatment as possible confounders. 

It is well established that different ethnic groups show different MAFs for any specific 

genetic polymorphism, as well as different LD between genetic markers and functional 

variants. This can lead to hidden population stratification even within self-identified 

racial/ethnic groups, and thus to false positive or false negative findings in genetic 

association. The CINRG-DNHS cohort recruited participants from 20 clinical centers in 

four different continents, and is ethnically heterogeneous, although with a majority of 

Caucasian participants. Both previous reports [Fox et al., 1987; Kenneson et al., 2006; 

Holtzer et al., 2011], and observed tendencies of the phenotype to differ between 

ethnic groups in our data, further stress the importance of accounting for population 

stratification issues. On the other hand, because of inherent study design characteristics 

of the CINRG-DNHS, which did not purposely recruit representative racial/ethnic 

subgroups, conclusive statements cannot be made about racial/ethnic disparities in 

DMD, based on our data. 

The second potential “confounding factor”, GC treatment, is probably the single 

environmental factor most heavily affecting age at LoA in DMD [DeSilva et al., 1987; 

Angelini et al., 1994b; McAdam et al., 2012; Ricotti et al., 2013a; Bello et al., 2015b]. We 
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accounted for it by implementation in time-to-event models, as a grouping criterion for 

KM analyses and a time-varying covariate for Cox regression. Because of CINRG-DNHS 

population characteristics, i.e. a numerical predominance of GC-treated participants, 

our findings can be generalized more confidently to GC-treated DMD populations. 

Nevertheless, this is more relevant for patient care and clinical trials, as GC treatment is 

considered a standard of care [Bushby et al., 2010a], and often an inclusion criterion in 

innovative clinical trials. 

We first studied SNP effects in the entire cohort with available DNA samples, without 

grouping for GC treatment or ethnicity. The SPP1 rs28357094 G allele, in a dominant 

model, was associated to 1.2-year earlier median LoA. This reproduces the methodology 

of the original report [Pegoraro et al., 2011] and represents an independent validation 

of association with LoA. The recessive LTBP4 rs10880 T allele, in close LD with the IAAM 

haplotype, showed a direction of association as previously reported [Flanigan et al., 

2013], but not a statistically significant difference.  

We then grouped participants genotyped for SPP1 and LTBP4 by GC treatment. In our 

baseline analysis of 156 DNHS participants, the association of SPP1 genotype with grip 

strength showed the largest effect in GC-treated participants [Pegoraro et al., 2011]; 

and an 80-patient Italian cohort, in which the association was established with 

longitudinal changes of ambulation-related functional measures [Bello et al., 2012], was 

almost entirely GC-treated. In line with these previous findings, which suggest a 

stronger modifier role of SPP1 in GC-treated patients, an effect of SPP1 genotype on LoA 

in the CINRG-DNHS cohort was observed in the GC-treated subgroup (Figure 2b). This 

finding supports a role of SPP1 rs28357094 as a modulator of GC response in DMD, 

rather than of disease progression itself. This is in concordance with several preclinical 

studies of SPP1 promoter function: the minor G allele at rs28357094 decreases 

transcriptional activity of the gene at baseline [Giacopelli et al., 2004], but shows a 

three-fold increase in gene expression in response to steroids, whereas the common 

allele leaves expression unchanged by steroids [Barfield et al., 2014]. Consistent with a 
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steroid-induced alteration of SPP1 expression, differences in SPP1 mRNA levels between 

genotypes were not found in vivo in DMD diagnostic muscle biopsies, obtained prior to 

GC treatment [Piva et al., 2012]. Evidence of a sexually dimorphic effect of rs28357094 

genotype on muscle size and remodeling in Caucasian women [Hoffman et al., 2013], 

and of an increased transcriptional response of the SPP1 promoter to estrogen stimuli 

[Barfield et al., 2014], is consistent with a pharmacodynamic role of this genetic 

biomarker. GCs are well-known transcriptional regulators of inflammation-related genes 

[Rhen and Cidlovski, 2015], both directly, through positive or negative GC-responsive 

elements (GREs), and indirectly, through suppression of other transcription factors (e.g. 

NF-κB); and these mechanisms are relevant to GC efficacy, and possibly side effects in 

DMD [Fisher et al., 2015; Heier et al., 2013]. The SPP1 promoter is predicted to contain 

both GREs and NF-κB responsive sites, and further studies are needed to dissect these 

mechanisms both in vitro and in vivo.  To our knowledge, this is the first demonstration 

of a pharmacodynamic biomarker for response to GCs, and this may be relevant to 

other conditions where GCs are standard of care. Our data, combined with the recent 

publication by Barfield et al., suggest that the 20-30% of DMD patients with the rare 

SPP1 allele are “poor responders” to GCs, possibly with an altered balance between 

beneficial and side effects. Future studies are needed to confirm this association, before 

routine genotyping of SPP1 is considered as part of standard of care in DMD. 

Flanigan et al. described a larger effect of the protective LTBP4 variant in GC-treated 

patients, than in untreated. In the CINRG-DNHS cohort, when stratifying by GC 

treatment and LTBP4 genotype, we did not observe differences in genotype effect 

between the treated and untreated populations. Re-analyzing data with the same GC-

treatment threshold (at least 6 months before LoA) as in the original report did not 

modify these findings (data not shown). 

In order to adjust for potential population stratification bias, we performed MDS 

analysis on a subgroup of 175 participants. This showed that the correspondence 

between self-identified ethnicity and unbiased grouping determined by MDS was 
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partial, with several outlier self-identifying Caucasian participants (admixture). 

Subsequently, we selected MDS rather than self-identification as a method to adjust for 

population stratification. A limitation of this study is the unavailability of genome-wide 

markers in the whole cohort, which would have allowed the selection of a larger 

homogeneous subcohort. However, the reason for exclusion of 108 patients was 

technical (DNA sample quality and quantity) and not linked to any clinically relevant 

variables. Furthermore, we verified that excluded patients did not significantly differ in 

terms of GC treatment and age at LoA (data not shown). Thus, we expect the cohort 

analyzed by MDS to be representative of the whole CINRG-DNHS. 

In the smaller, but more homogeneous MDS-selected Caucasian subcohort, LTBP4 

rs10880 was confirmed as a strong modifier of ambulatory function in DMD, with a 

median age at LoA in carriers of the protective genotype of 15.0 years overall, and 16.0 

with GC treatment (Figure 3c-d), which positions > 50% of these patients within the 

“intermediate dystrophinopathy” clinical spectrum. The stronger association of rs10880 

in Caucasians did not seem to be in direct relation with a stronger LD with the full IAAM 

haplotype, although numbers are too small to reach a conclusion (i.e. very few patients 

with rare haplotypes). It could also be hypothesized that in Caucasians the T allele for 

rs10880 might be in stronger LD with another unrecognized, functional variant, than in 

patients with different ancestries. On the other hand, Flanigan et al. did not find 

additional nonsynonymous coding variation by re-sequencing 40 chromosomes and 

querying the 1000 Genome database; and conducted in vitro experiments showing an 

effect of the coding haplotype on TGFβ signaling, in conditions of equal LTBP4 protein 

expression. As for SPP1 rs28357094, the effect on age at LoA in the Caucasian subcohort 

appears relatively smaller in magnitude than that of the LTBP4 haplotype. This is similar 

to what was described in the single Center cohort from Padova [Peograro et al., 2011], 

which was recruited from a homogeneous Caucasian population (great majority from 

north-eastern Italy) with a predominance of GC-treated participants. 
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Recently, another genetic modifier study in DMD was published by a collaborative 

European group [van den Bergen et al., 2015], further confirming the effect of the LTBP4 

IAAM haplotype in delaying LoA. On the other hand, the SPP1 association was not 

replicated in 336 patients, of whom 102 had been treated with GCs for at least 1 year 

while ambulatory. If SPP1 were indeed a modifier of GC response, as our association 

data and in vitro findings suggest, this low GC treatment rate might have limited the 

power of this part of the study. 

Lastly, while the genetic modifiers described here seem to explain some of the variance 

of the LoA phenotype in DMD, both from our data and from case reports of outlier DMD 

phenotypes [Zatz et al., 2014] it appears that several other, yet uncharacterized genetic 

factors must be at play. 

In conclusion, our findings show that SPP1 rs28357094 acts as a modifier of the long-

term effect of GC treatment in the CINRG-DNHS. Furthermore, we confirm that LTBP4 

rs10880 modifies age at LoA in DMD. Our data also stress the importance of adjusting 

for GC treatment and population substructure in genetic association studies in DMD. 

These findings are relevant for future analyses of observational and interventional 

studies involving international, multicentric, ethnically diverse cohorts. 
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Aim 2: DMD genotype-phenotype correlations in the CINRG-

DNHS 

Background 

Duchenne muscular dystrophy (DMD) is caused by truncating mutations in the DMD 

gene, leading to the absence of dystrophin protein [Hoffman et al., 1987]. DMD presents 

with muscle weakness and wasting in early childhood, and progresses to loss of 

independent ambulation (LoA), which, according to a classic clinical description [Darras 

et al., 2000] ensues by the age of 13. The milder allelic form Becker muscular dystrophy 

(BMD), caused by non-truncating mutations [Hoffman et al., 1989], is characterized by 

LoA after the age of 16, while intermediate (IMD) forms show LoA between 13 and 16 

years. 

Improvements in standards of care [Bushby et al., 2010a-b] have delayed disease 

milestones in DMD [Henricson et al., 2013; Bello et al., 2015b], so that distinctions 

between “responder” DMD, IMD, and severe BMD have become blurred: currently, age 

at LoA in DMD may span from before 10 years up to 18 years in responders to 

glucocorticoids. As, by definition, DMD-causing mutations alter the open reading frame 

and abolish dystrophin expression, this wide variability has been partly explained with 

differences in care and treatment [Henricson et al., 2013; Ricotti et al., 2013a; Bello et 

al., 2015b], and trans-acting genetic modifiers [Pegoraro et al., 2011; Bello et al., 2012; 

Flanigan et al., 2013; van den Bergen et al., 2015; Bello et al., 2015a]. 

Nevertheless, mutations predicted to be out-of-frame at the genomic level may 

sometimes give rise to small amounts of dystrophin. For instance, mutations in the 5’ 

region often escape the reading frame rule [Aartsma-Rus et al., 2006; Kesari et al., 

2008], probably by means of translation reinitiation from downstream alternative 

promoters, as suggested for the relatively frequent out-of-frame deletion of exons 3-7 

[Muntoni et al., 1994; Winnard et al., 1995; Gualandi et al., 2006]. Moreover, some 
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DMD exons are probably skipped physiologically at a low rate, explaining patients with 

relatively mild phenotypes who carry nonsense mutations situated within in-frame 

exons [Flanigan et al., 2011], and single- or multi-exon deletions bordering exon 44 [van 

den Bergen et al., 2014a; Pane et al., 2014b]. Despite “rescued” dystrophin expression 

being very low, often below the sensitivity threshold of standard diagnostic assays such 

as immunohistochemistry (IHC) or Western Blot (WB), it seems to be sufficient to 

substantially modulate disease progression, stabilizing function and delaying LoA.  

Natural history studies can aid in deciphering these genotype-phenotype correlations, 

which are relevant for the design and interpretation of interventional studies. In 

particular, several novel DMD treatments are mutation-specific, which makes it 

necessary to distinguish specific mutation subgroups in order to correctly interpret 

natural history data. 

A promising mutation-specific therapeutic approach is antisense oligonucleotide (AON) 

mediated “exon skipping”. AONs aim at restoring the reading frame in patients with out-

of-frame single- or multi-exon deletions. Proof-of-concept evidence of dystrophin 

restoration, and promising safety and efficacy data have been provided by phase I-II 

trials of AONs based on the 2’-O-Methyl-phosphorothioate [van Deutekom et al., 2007; 

Goemans et al., 2011; Flanigan et al., 2014; Voit et al., 2014] and morpholino [Kinali et 

al., 2009; Cirak et al., 2011; Mendell et al., 2013] chemistries. Currently, AONs targeting 

exons 43, 44, 51, and 53 are being evaluated in clinical trials (NCT02310906, 

NCT00159250, NCT02255552, NCT02500381 NCT01957059, NCT02329769). Despite 

initial and continuing successes, a phase III trial of a 2’-O-Methyl-phosphorothioate exon 

51 skipping compound (Drisapersen, NCT01254019) failed to achieve a significant 

functional benefit. This raised questions regarding dystrophin restoration levels [Lu et 

al., 2014; Hoffman and McNally, 2014], as well as trial design and selection of clinical 

endpoints. The clinical trials for the exon 51 skipping compound based on the 

morpholino chemistry (Eteplirsen) are still under clinical evaluation and continue to be 

promising. Very recently, data supporting its efficacy was provided based on comparison 
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with an Italian multicenter natural history cohort, stratified by DMD mutation [Mendell 

et al., 2015]. 

A different mutation-specific therapeutic approach is represented by small molecules 

promoting ribosomal readthrough of premature termination codons caused by 

nonsense mutations. In this field, Translarna® has shown promising results on clinical 

endpoints in a multicenter phase IIb trial [Buschby et al., 2014], and was provisionally 

approved in 2014 by the European Medicine Agency (EMA) for the treatment of 

nonsense-mediated DMD [Haas et al., 2015]. Results of a confirmatory phase III trial 

(NCT01826487) have very recently been made public, further suggesting some clinical 

efficacy (http://ir.ptcbio.com/releasedetail.cfm?ReleaseID=936905). 

In this context, the aim of the present study was to analyze correlations between 

different truncating DMD gene mutations and loss of ambulation (LoA) in the 

Cooperative International Neuromuscular Research Group Duchenne Natural History 

Study (CINRG-DNHS), a large prospective DMD natural history study [McDonald et al., 

2013], with particular attention to mutation groups amenable to novel molecular 

treatments. 
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Methods 

CINRG-DNHS inclusion criteria. Participants in the “parent” CINRG-DNHS (distinguished 

from a recruiting extension, NCT00468832) were recruited between 2006 and 2009, and 

inclusion criteria have been described
 
[McDonald et al., 2013]. Importantly, patients 

were excluded if they had a proximal (5’ of exon 25) out-of-frame mutation and a BMD 

phenotype (because of frequent violations to the reading frame rule in this region); and 

could be included on the grounds of a typical DMD phenotype, even if they had an in-

frame DMD mutation, or no demonstrated DMD mutation but abnormal dystrophin IHC 

or WB. Average follow-up was 4 years. 

Additional inclusion criteria. In order to group participants by DMD mutation type and 

amenability to molecular therapies, we further selected participants with available 

evidence of a DMD genetic mutation and the following characteristics: single- or multi-

exon out-of-frame deletion with univocally defined exon boundaries (MLPA or multiplex 

PCR with amplification of immediately flanking exons); single- or multi-exon out-of-

frame duplication confirmed by MLPA; small out-of-frame DMD mutation (insertion, 

deletion); nonsense mutation; splicing mutation. 

DMD mutation studies. Diagnostic genetic testing for causative DMD mutations was 

performed at local institutions as part of the standard diagnostic work-up, and reviewed 

by a central CINRG genetic counselor, who reviewed rearrangement exon boundaries 

and unified mutation nomenclature (following HGVS recommendations) and reference 

sequences (genomic NG_012232.1, transcript NM_004006.2). 

Grouping of DMD mutations. The grouping rationale was to describe the natural history 

of LoA in groups of participants with typical vs. atypical phenotypes, and/or amenability 

to mutation-specific molecular therapies. We defined the following categories: out-of-

frame deletions amenable to skipping of (1) exon 44, (2) exon 45, (3) exon 51 (4) exon 

53, (5) deletion of exons 3-7; (6) out-of-frame deletions not amenable to skipping of 
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exons 44, 45, 51, or 53; (7) out-of-frame duplications; (8) nonsense mutations; and (9) 

out-of-frame small insertions or deletions. 

Genetic modifier genotyping. The parent CINRG-DNHS cohort showed significant effects 

of two known genetic modifiers of ambulation in DMD
 
[Bello et al., 2015a]: the SNPs 

rs28357094 in the SPP1 promoter
 
[Pegoraro et al., 2011]

 
and rs10880 in the coding 

portion of the LTBP4 gene [Flanigan et al., 2013]. Genotyping and grouping by 

inheritance models was as described previously [Bello et al., 2015a]. 

Loss of ambulation. We defined LoA as patient- and/or caregiver-reported age at 

continuous wheelchair use, approximated to the nearest month, and verified by inability 

to walk 10 meters via the site CINRG Clinical Evaluator testing when possible. 

Statistical analysis. We performed a time-to-event analysis of LoA with age (years) as 

time variable and LoA as event. Median age at LoA and corresponding 95% confidence 

intervals (CIs) were estimated by plotting empirical Kaplan-Meier curves for participant 

groups defined by mutation (as described above), and by GC treatment administered 

while ambulatory, with the following grouping: untreated (or short treatment of < 1 

year); prednisone or prednisolone; deflazacort. Participants switching between 

prednisone/prednisolone and deflazacort were grouped accordingly to the drug 

administered for the longest time. We used Cox proportional hazard models to estimate 

and compare age-related risks of LoA. Covariates included DMD mutations as described 

above, and time-varying GC drug (prednisone/prednisolone or deflazacort) and weight-

adjusted dose as described elsewhere
 
[Bello et al., 2015b]. Note that GC treatment as a 

time-varying covariate in the Cox proportional hazard analysis is independent of the 

grouping of individual patients, used for the empirical Kaplan-Meier estimation of 

median age at LoA. The same analyses were repeated adding covariates for SPP1 and 

LTBP4 genotype; this was performed separately, because DNA for genotyping of both 

SNPs was not available in 41 participants largely due to regulatory issues in some 

countries which did not allow DNA shipping. Statistical significance was set at p < 0.05. 

All analyses were performed with the “survival” package in R, version 3.2.1. 
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Figure 1: flow chart for participant selection from the “parent” (i.e. not including a 

currently recruiting extension) CINRG Duchenne Natural History Study (DNHS) for the 

analyses presented in this paper. 

  

n = 340 “parent” 

CINRG-DNHS 

par cipants 

excluded n = 94: 

unavailable/inconclusive 

DMD gene analysis 

n = 246: any iden fied 

DMD muta on 

n = 5: dele on of 

exons 3-7 

n = 20: dele ons 

amenable to  

exon 44 skipping 

n = 31: dele ons 

amenable to  

exon 45 skipping 

n = 51: dele ons not 

amenable to exon 44, 

45, 51, or 53 skipping 

n = 16: nonsense 

muta ons 

n = 14; out of frame 

duplica ons  

n = 16: dele ons 

amenable to  

exon 53 skipping 

n = 49: dele ons 

amenable to  

exon 51 skipping 

n = 10: out-of-frame 

small muta ons 

n = 206: single or 

mul -exon dele ons 

excluded n = 34: undefined 

or in-frame dele on 

boundaries 

n = 212: selected 

for this study 



PhD Thesis  PhD Candidate: Dr. Luca Bello 

  42 

Results 

Selected cohort. Inclusion criteria described in Methods led to the selection of 212/340 

(62.3%) participants to the “parent” CINRG-DNHS (Figure 1). Their distribution by 

mutation and exon skipping amenability is described in Table I. Of note, there were 

49/212 participants (23.1%) with deletions amenable to skipping of exon 51, 31/212 

(14.6%) of exon 45, 20/212 (9.4%) of exon 44, 16/212 (7.5%) of exon 53, and 16/212 

(7.5%) with nonsense mutations. 

Age at LoA by mutation group. Median age at LoA with 95 % CIs by mutation group is 

shown in Table I, and Kaplan-Meier plots of LoA by age and mutation group are shown 

in Figure 2. The largest group (n = 51), comprising participants with out-of-frame 

deletions not amenable to skipping of exons 44, 45, 51, and 53, showed a median age at 

LoA of 12.7 years (95% Confidence Interval [CI] 11 - 14 years). The groups with later LoA 

included deletion of exons 3-7 (n = 5, median age at LoA 15.2 years, 95% CI 9 - 

undetermined), and deletions amenable to exon 44 skipping (n = 20, median 14.8 years, 

95% CI 12 - undetermined). 

Cox regression analysis of LoA. Cox regression analysis including GC treatment 

covariates showed that the delay of LoA was statistically significant in both the group 

with deletion of exons 3-7 (Hazard Ratio [HR] 0.24, 95% CI 0.07 - 0.82, p = 0.02) and the 

group with deletions amenable to skipping of exon 44 (HR 0.34, 95% CI 0.15 - 0.74, p = 

0.007). Cox regression parameters for all other DMD mutations did not differ 

significantly from the reference group (Table I). As previously described in the whole 

CINRG-DNHS population
7
, treatment with both prednisone/prednisolone or deflazacort 

were strongly associated with later LoA, with a lower HR (i.e. later LoA) for deflazacort 

(HR 0.34 and 0.22 respectively, p < 0.0001 for both), while there was no significant 

independent effect of GC dose in this population. In 171/212 participants with available 

modifier genotypes, amenability to skipping of exon 44 remained significantly 

associated with later LoA (HR 0.24, 95% CI 0.10 - 0.61, p = 0.006), and so was deletion of 

exons 3-7 (HR 0.21, 95% CI 0.05 - 0.92, p = 0.01), after adjusting for SPP1 and LTBP4 
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genotypes as additional covariates. Modifier genotype effects were in the same 

direction as previously described, but not statistically significant in this multivariate 

model in this population (data not shown). 
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Table I: Participant distributions, median age at LoA, and Cox regression parameters 

for the time-to-event analysis of LoA 

Cox 

regression 

factor 

Level of factor n % 

Median age 

(years) at LoA 

(95% CI) 

HR (95% CI) p-value 

DMD 

mutation 

Exon 44 skipping amenable del 20 9% 14.8 (12 - ∞) 0.34 (0.15 - 0.74) 0.007 

Exon 45 skipping amenable del 31 15% 12.0 (11.0 - 13.5) 1.16 (0.66 - 2.06) n.s. 

Exon 51 skipping amenable del 49 23% 11.6 (10.4 - 12) 0.84 (0.51 - 1.40) n.s. 

Exon 53 skipping amenable del 16 8% 14.0 (9.0 - 15.0) 0.79 (0.39 - 1.57) n.s. 

Deletion of exons 3-7 5 2% 15.2 (9.0 - ∞) 0.24 (0.07 - 0.82) 0.02 

Other out-of-frame deletion 51 24% 12.7 (11.0 - 14.0) 1 * - 

Out-of-frame duplication 14 7% 12.7 (8.0 - ∞) 1.10 (0.50 - 2.41) 0.65 

Nonsense mutation 16 8% 11.1 (10.0 - 18.1) 0.64 (0.32 - 1.27) n.s. 

Other frameshifting small mut 10 5% 14.0 (9.7 - ∞) 0.76 (0.29 - 1.97) n.s. 

GC drug‡ 

Untreated (or treated < 1 year) 55 26% 9.7 (9.0 - 11.0) 1 * - 

Prednisone or prednisolone
§
 63 30% 12.0 (11.3 - 14.0) 0.34 (0.20 - 0.57) <0.0001 

Deflazacort
¶
 94 44% 14.0 (13.7 - 15.0) 0.22 (0.12 - 0.40) <0.0001 

GC dose - - 1.12 (0.77 - 1.63) n.s. 

Total 212 100% 12.0 (11.5 - 13.0) - - 

LoA: loss of independent ambulation. CI: confidence interval. HR: hazard ratio. del: 

deletion. mut: mutation. DMD: dystrophin gene. ∞: upper CI undetermined because of 

low numerosity. *A HR of 1 is given for factor levels which are taken as reference in the 

Cox regression model. GC: glucocorticoid corticosteroid. ‡ For the calculation of median 

LoA, participants are grouped in treated less than 1 year, treated at least 1 year and > 

50% of the time with prednisone or prednisolone, and treated at least 1 year and > 50% 

of the time with deflazacort; while HRs are calculated for time-varying covariates, 

independent of the grouping of individual participants. § Including
 
participant switching 

between drugs who were > 50% of the time on prednisone or prednisolone while 
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ambulatory. ¶ Including
 
participant switching between drugs who were > 50% of the 

time on deflazacort while ambulatory. 

  



P
h

D
 T

h
e

sis 
 

P
h

D
 C

a
n

d
id

a
te

: D
r. Lu

ca
 B

e
llo

 

 
 

4
6

 

 
 

5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Age (years)

P
ro

p
o
rt

io
n
 o

f 
a
m

b
u
la

to
ry

 p
a
rt

ic
ip

a
n

ts

amenable to skipping of exon 51

other deletions

5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Age (years)

P
ro

p
o
rt

io
n
 o

f 
a

m
b

u
la

to
ry

 p
a

rt
ic

ip
a
n
ts

nonsense mutations

other deletions

C 

G 

5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Age (years)

P
ro

p
o
rt

io
n
 o

f 
a
m

b
u
la

to
ry

 p
a
rt

ic
ip

a
n

ts

amenable to skipping of exon 45

other deletions

5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Age (years)

P
ro

p
o
rt

io
n
 o

f 
a

m
b

u
la

to
ry

 p
a

rt
ic

ip
a
n
ts

duplications

other deletions

B 

F 

5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Age (years)

P
ro

p
o
rt

io
n
 o

f 
a
m

b
u
la

to
ry

 p
a
rt

ic
ip

a
n

ts

amenable to skipping of exon 44
other deletions

5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Age (years)

P
ro

p
o
rt

io
n
 o

f 
a

m
b

u
la

to
ry

 p
a

rt
ic

ip
a
n
ts

deletion of exons 3-7

other deletions

A 

E 

5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Age (years)

P
ro

p
o
rt

io
n
 o

f 
a

m
b

u
la

to
ry

 p
a

rt
ic

ip
a
n
ts

small frameshift mutations

other deletions

5 10 15 20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Age (years)

P
ro

p
o
rt

io
n
 o

f 
a
m

b
u
la

to
ry

 p
a
rt

ic
ip

a
n

ts

amenable to skipping of exon 53

other deletions

D 

H 



PhD Thesis  PhD Candidate: Dr. Luca Bello 

  47 

Figure 2: Kaplan-Meier plots of loss of ambulation by mutation group. Plots for patients 

with (A) deletions amenable to skipping of exon 44, (B) deletions amenable to skipping 

of exon 45, (C) deletions amenable to skipping of exon 51, (D) deletions amenable to 

skipping of exon 53, (E) deletion of exons 3-7, (F) single- or multi-exon duplications, (G) 

nonsense mutation, and (H) small frameshift mutations are compared in each graph 

with the reference group of patients with single-or multi-exon deletions not amenable 

to skipping of exons 44, 45, 51, or 53 (“other deletions”). 
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Discussion 

In the present study, we describe significant differences in age at LoA between DMD 

patients with different DMD mutations. LoA is a major natural history milestone in DMD, 

and a reliable overall indicator of the severity of disease progression, with a strong 

correlation with the longitudinal changes of functional measures commonly adopted in 

clinical trials [Mazzone et al., 2013; Pane et al., 2014a]. 

We observed an approximately 2-year delay of median LoA in 20 participants who had 

mutations amenable to exon 44 skipping. Similar results were observed in a 

retrospective genotype-phenotype association study in Dutch subjects [van den Bergen 

et al., 2015]. Most DMD patients with exon 44 skipping eligibility carried the relatively 

frequent single-exon deletion of exon 45: 60% in our cohort and 66% in the cohort 

reported by van den Bergen et al. This mutation has been long known to induce 

endogenous skipping of the adjacent exon 44, resulting in traces of dystrophin 

expression [Prior et al., 1997]. Traces of dystrophin were reported in 3/6 DNHS 

participants with exon 44 skipping eligibility by IHC, and 0/4 by WB. Although these are 

diagnostic protein studies collected from retrospective laboratory reports, and 

therefore not directly comparable to dystrophin quantitation techniques recommended 

in clinical trials [Anthony et al., 2014b], it can be inferred from this observation that 

limited amounts of dystrophin, only detectable by a more sensitive technique such as 

IHC, are still able to induce a relevant delay of disease milestones. This is in keeping with 

observations in the dystrophin/utrophin double knockout mouse, an animal model of 

severe dystrophinopathy, in which re-expression of small amounts of dystrophin 

improves muscle pathology and function [van Putten et al., 2013]. 

Recently, a Japanese research group identified a splicing silencer effect of the intronic 

junction sequence from a DMD patient with exon 45 deletion, which could promote 

skipping of exon 44 [Dwianingsih et al., 2014]. Interestingly, we observed an 

intermediate DMD/BMD phenotype also in two patients with out-of-frame multi-exon 

deletions proximal to exon 44 (del 10-43 and 38-43), and a different deletion breakpoint 

in intron 43 instead of 44. These two patients were still ambulatory at the ages of 21 
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and 16 years with prednisone treatment, suggesting a similar splicing silencer 

mechanism for the intron 43 breakpoint, or different molecular mechanisms. One of 

them had traces of dystrophin identified by IHC, but not WB. 

A distinct, albeit small group of participants with a milder phenotype in the CINRG-DNHS 

is represented by 5 DMD patients carrying the deletion of exons 3-7, previously 

described as an exception to the reading frame rule [Muntoni et al., 1994; Winnard et 

al., 1995; Gualandi et al., 2006]. IHC showed traces if dystrophin in 1/3 participants with 

this mutation, and WB in 0/3 (the three participants who underwent IHC and the three 

who underwent WB are not the same). However, the one patient with reported 

dystrophin traces lost ambulation at the age of 9 years, despite high-dose weekend 

prednisone since the age of 4. A 5’ internally deleted dystrophin protein might be less 

efficient in rescuing the phenotype, because of the disruption of the functionally 

relevant N-terminal actin-binding domain, as well as other genetic and environmental 

confounders, may influence the clinical outcome. Larger case series are needed to fully 

understand the phenotypes associated with the deletion of exons 3-7. Notably, some 

IMD cases with this deletion might have been excluded due to the CINRG-DNHS criteria 

(see Methods). 

These findings have several potential repercussions for clinical trials. First, some 

patients eligible for exon 44 skipping might show stabilized function even in the placebo 

group, especially in short studies, making small drug effects challenging to identify. 

Second, among DMD patients with the same exon skipping eligibility there might be 

some who activate endogenoues exon skipping mechanisms, and some who do not. 

Therefore, accurate quantitation of baseline dystrophin for each patient participating in 

dystrophin-restoring trials is of paramount importance. 

Our data did not confirm reports that DMD patients with deletions amenable to exon 53 

skipping might present earlier LoA [Servais et al., 2015], as these patients appeared to 

be positioned in the “typical” range for age at LoA in DMD. In order to reproduce the 

methodology of the cited study by Servais and colleagues, we calculated mean age at 

LoA in non-ambulatory patients only, which was 11.4 years in 10 non-ambulatory 
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CINRG-DNHS participants amenable to exon 53 skipping, vs. 8.9 years in 13 patients in 

the cited study. A higher rate of GC treatment in our subjects likely plays a relevant role 

in this difference. Further studies on functional measures may confirm the tendency to 

reduced upper limb function described by the same authors in this mutation group.  

Ten participants carried a single-exon deletion of exon 52, which could be theoretically 

amenable to both exon 51 and 53 skipping. Here, we grouped these participants 

together with deletions amenable to exon 51 skipping, a therapeutic approach which 

has reached more advanced stages of clinical trials. Interestingly, these exon 52 deleted 

participants had early LoA, median age being 10.0 versus 11.9 years in all other exon 51 

skipping eligible participants (log-rank p = 0.016). This genotype-phenotype association 

needs independent validation, but if confirmed, it could be relevant for the 

interpretation of the results of AON clinical trials targeting exon 51 and 53. 

A different group of participants amenable to molecular treatment were 16 participants 

carrying nonsense mutations. This group is important as ambulatory DMD patients 

above the age of 5 are currently being prescribed Translarna® in several European 

countries, under the provisional approval of the EMA. While the median age at LoA in 

this group was similar to the “reference” population carrying non-exon-skipping-eligible 

mutations, there were 5 “outlier” cases showing prolonged ambulation (close to or 

beyond the age of 16), consistent with IMD, as shown by a rightward shift of the third 

and fourth quartiles of the Kaplan Meier plot (Figure 2, panel G). DMD nonsense 

mutations have already been described in association with IMD/BMD phenotypes. 

Furthermore, it has been shown that exons where IMD/BMD nonsense mutations occur 

are usually in-frame, situated in the functionally dispensable rod domain, and defined by 

weaker splice signals, explaining easier induction of endogenous exon skipping
 
[Flanigan 

et al., 2011]. In fact, of five “IMD” participants with nonsense mutations in the CINRG-

DNHS, three carried stop codons within in-frame exons (14, 29, and 30), but two carried 

stop codons in out-of-frame exons: exon 45, again suggesting alternative splicing in this 

region, and exon 69, suggesting escape from mRNA nonsense-mediated decay in a 

distally located mutation, giving rise to a C-terminally truncated protein. Interestingly, 
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another participant who lost ambulation early (10 years of age) carried a proximal 

nonsense mutation (c.9 G>T, p.Trp3*) with a described founder effect in North America. 

This is in contrast to the previously described association of this mutation to a mild BMD 

phenotype [Flanigan et al., 2009], probably caused by dystrophin rescue by downstream 

translation reinitiation [Wein et al., 2014]. Patients with a definitely mild BMD 

phenotype would not have been included in the DNHS because of clinical exclusion 

criteria; nevertheless, it could be relevant to stratify nonsense mutation DMD patients 

by stop codon position (in-frame or out-of-frame exon) in clinical trials. Currently, 

Translarna® is only approved by the EMA for nonsense-mediated DMD in Europe, but 

cases such as those described here show that the distinction with nonsense-mediated 

IMD/BMD might be blurry and hard to define. 

A limitation of this natural history study is the use of DNA mutation data derived from 

clinical records. Although all CINRG clinical sites actively pursue adherence to the 

modern standards of care in DMD diagnosis, the identification of the causative mutation 

(especially sub-exonic small mutations), was not possible in some cases. As single- or 

multi-exon deletions are easier to identify, the proportions of DMD patients amenable 

to skipping of individual exons might be slightly inflated in this report. Future studies 

including full DMD sequencing at the genomic and/or RNA level, as well as next 

generation sequencing (NGS) studies of intronic deletion/duplication breakpoints in 

selected cases, might further refine genotype/phenotype correlations.  

In conclusion, we provide mutation-specific natural history data regarding LoA in DMD, 

carefully adjusting for the effect of other disease-modifying variables, which is relevant 

for the design and interpretation of clinical trials for innovative therapeutics in DMD. 

Importantly, DMD patients with deletions amenable to exon 44 skipping, exon 3-7 

deletion, and point mutations within in-frame exons should be excluded from natural 

history-derived placebo groups for the evaluation of AONs targeting rare deletions, and 

their distribution in treated/placebo groups should be carefully balanced in clinical trials 

of non-dystrophin-restoring treatments. 
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Aim 3: Long-term outcomes of glucocorticoid regimens in the 

CINRG-DNHS 

Background 

Duchenne muscular dystrophy (DMD) is caused by DMD gene mutations leading to the 

absence of dystrophin in skeletal muscle [Hoffman et al., 1987]. While dystrophin-

restoring treatments are being developed, the only recommended [Moxley et al., 2005; 

Bushby et al., 2010a] pharmacological intervention is glucocorticoid corticosteroid (GC) 

treatment [Drachman et al., 1974; Brooke et al., 1987; Mendell et al., 1989; Fenichel et 

al., 1991; Griggs et al., 1991; Angelini et al., 1994b; Biggar et al., 2001; Manzur et al., 

2008] with prednisone or its active metabolite prednisolone (PRED), or deflazacort 

(DFZ). Mechanisms of action include anti-inflammation/immunosuppression [Kissel et 

al., 1991], membrane stabilization [Jacobs et al., 1996], enhanced regeneration [Sklar 

and Brown, 1991; Anderson et al., 2000; Dadgar et al., 2014], and gene expression 

modulation [Fisher et al., 2005]. Side effects are common but usually manageable 

[Bushby et al., 2010a-b]. 

Long-term efficacy of GCs in delaying loss of independent ambulation (LoA) and other 

“disease milestones”, although well described [Angelini et al., 1994b; De Silva et al., 

1987; McAdam et al., 2012; Kim et al., 2015], is supported by lower-class evidence than 

short-term effects on muscle strength [Manzur et al., 2008]. Baseline data from the 

Cooperative International Neuromuscular Research Group Duchenne Natural History 

Study (CINRG-DNHS) [Henricson et al., 2013] showed that participants were more often 

ambulatory at age ≥ 10 years, if currently treated with GCs. Here, we expand to a 

longitudinal time-to-event analysis of GC regimen effects on LoA. 

Prescribed GC regimens are manifold in DMD [Griggs et al., 2013], few studies directly 

comparing PRED vs. DFZ [Reitter, 1995; Bonifati et al., 2000]. There is evidence of better 

efficacy of daily GCs [Manzur et al., 2008], but several alternative regimens are applied 
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(e.g. weekend [Escolar et al., 2011], 10-days-on/10-days-off [Ricotti et al., 2013a]). A 

global, randomized, blinded trial of daily prednisone, daily DFZ, and 10-days-on/10-days-

off prednisone is underway (www.for-dmd.org). In parallel, novel "dissociative steroids" 

aim to a broader therapeutic window, by separating pharmacodynamic mechanisms 

responsible for efficacy and side effects [Hoffman et al., 2012; Heier et al., 2013]. Before 

randomized trial results and innovative treatments become available, natural history 

studies can provide useful information regarding different GC regimens in DMD. 
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Methods 

Informed consent. The institutional review board or ethics review board at each 

participating institution approved the study protocol, consent and assent documents. 

Informed consent/assent was obtained for each participant prior to conducting study 

procedures. 

Study population. We present data from 340 DMD patients, aged 2-28 years, enrolled in 

the parent CINRG-DNHS (distinguished from a currently recruiting extension, 

http://clinicaltrials.gov/show/NCT00468832). Inclusion criteria have been described 

[McDonald et al., 2013].  

GC treatment. At baseline and follow-up visits, we recorded time of 

beginning/discontinuation, drug, dose, and pattern of administration of previous and 

current GC regimens. 

GC dose. Dose data was converted to % ratios of recommended doses for PRED (0.75 

mg/kg/day) and DFZ (0.9 mg/kg/day). 

Definition of LoA. Age at LoA was defined by patient-reported continuous wheelchair 

use, confirmed by inability to walk 10 meters unaided. 

Grouping by GC treatment relative to LoA. GC regimens < 1 month were ignored. For 

comparisons of median LoA between GC-treated and untreated participants, we 

considered “GC-treated” only those patients who had been administered GCs for ≥ 1 

year, starting ≥ 1 year before LoA; the rationale being that a long-term effect cannot be 

attained with a short-term treatment.  

Grouping by GC regimen for Kaplan-Meier analyses. Because of a low number of 

participants subject to intermittent regimens (10-days-on/10-days-off, 10 days/month, 

every other day [QOD], 5 days/week) we grouped these regimens together. We 
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analyzed the high-dose (10 mg/kg/week) 2 days/week (“weekend”) regimen separately, 

because of pharmacologically different properties of this treatment. 

Cox regression analyses of PRED and DFZ use, regimen and dose. As many participants 

changed drugs, regimen, and doses during treatment, all these variables were evaluated 

for concurrent effects as time-varying covariates in a Cox regression model, 

independent of grouping of individual participants (see also statistical analysis 

paragraph below). 

Overlap with CINRG clinical trials. Twenty-nine participants were rolled over into the 

DNHS from a CINRG clinical trial of daily vs. weekend prednisone [Escolar et al., 2011]. 

Genetic modifiers. SPP1 rs28357094 and LTBP4 rs10880 were genotyped as described 

[Bello et al, 2015a] 

Side effects. We report frequency of physician-reported side effects in participants 

treated with GCs while ambulatory. 

Statistical analysis. Average GC dose was compared between drug-regimen subgroups 

by Mann-Whitney U test, while cumulative dose and age at start of treatment were 

compared by Student’s t-test. LoA was studied as event in a time-to-event model, with 

age as time variable, and censoring of ambulatory participants at the age of last follow-

up. Median ages at LoA, calculated from empiric Kaplan-Meier curves, were compared 

by log-rank test. A Cox regression model was devised with the following time-varying 

covariates: GC drug (untreated, PRED, or DFZ), GC regimen (untreated, daily, low-dose 

intermittent, or weekend), and mg/kg/day dose, adjusting for random effects depending 

on CINRG study Site. Hazard Ratios (HR) were calculated for each covariate, with 

untreated as reference (HR = 1) for categorical covariates. A linear test compared 

covariate levels within the Cox regression model. Statistical significance was set at p < 

0.05. Frequency of adverse effects between regimens was compared by χ

 test. STATA 

V13 and Partek GS 6.6 were used for analyses.  
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Results 

Age, follow-up and ambulatory status. At last follow-up (data updated through 

December 2013), average age was 15.7 ± 5.6 years (range 4.5 – 33.1), and average 

follow-up 3.8 ± 1.8 years; 111 participants were ambulatory (32.6%), while 229 (67.4%) 

had lost ambulation. Average age at last follow-up was 11.2 ± 3.1 years in ambulatory 

participants, and 18.0 ± 5.3 years in non-ambulatory.  

Distribution by GC treatment while ambulatory. Sixty-three participants (18.5%) were 

untreated while ambulatory (including one patient treated with a non-GC anabolic 

steroid). At last follow-up, 54 of these were non-ambulatory, and 9 ambulatory and GC-

naïve. Conversely, 277 participants (81.4%) were treated with GCs while ambulatory. Of 

these, 175 were non-ambulatory, and 98 still ambulatory at last follow-up. A ≥1 year GC 

treatment was administered while ambulatory to 252 participants (74.1% total, 91.0% 

treated). Average ± standard deviation (SD) duration of treatment while ambulatory was 

4.0 ± 3.3 years, ranging 0.1 – 18.3 years. 

GC treatment and age at baseline. Average age at baseline was higher in patients 

treated <1 year or untreated while ambulatory, vs. treated ≥1 year while ambulatory 

(15.1 ± 6.4 vs. 10.9 ± 5.2 years, p < 0.001), reflecting increased implementation of GC 

treatment as a standard of care in younger participants. 

GC treatment and LoA. Kaplan-Meier analysis showed that median LoA was 3 years 

later in participants treated ≥1 year while ambulatory vs. untreated or treated < 1 year 

(13.0 vs. 10.0 years, n = 252 vs. 88, log-rank p < 0.0001, Figure 1A). 
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Figure 1. Kaplan-Meier plots of the proportion of ambulatory participants relative to age (years), 

grouped by GC treatment. A) Participants treated at least 1 year while ambulatory (n = 252, 

black line) vs. treated less or untreated (n = 88, grey line). B) Participants treated with the most 

common drug-regimen combinations: daily PRED (n = 94, black line), high-dose 2 days/week 

PRED (n = 19, dark grey line), low-dose intermittent PRED (n = 14, light grey line), and daily DFZ 

(n = 80, green line).  

A B 
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Table I. Distribution by GC regimen administered while ambulatory, with average daily dose, 

average age at start of treatment, and median age at LoA for each regimen. 

 

Drug Regimen n % Dose† ± SD 

Cumulativ

e GC dose  
1 = 1 year @ 

PRED 0.75  

or DFZ 0.9  

mg/kg/day 

Start 

age 

(years) 

± SD 

SPP1 

rs28357094 

TT 

genotype
§
 

(%) 

LTBP4 

rs10880 

TT 

genotype
§
 

(%) 

Median 

age at 

LoA 

(years) 

PRED Daily 94 33.9% 75% ± 17% 2.96 6.6 ± 1.9 70.5% 14.7% 11.2 

DFZ Daily 80 28.9% 83% ± 15%** 4.73*** 7.2 ± 2.0* 74.4% 9.3% 13.9*** 

PRED Switched 23 8.3% 94% ± 37%* 4.30** 7.0 ± 2.0 58.8% 17.6% 11.6 

Switched Daily 21 7.6% 71% ± 16% 3.87 6.2 ± 2.3 68.7% 18.7% 13.4* 

PRED 
High-dose 2 

days/week 
19 6.9% 131% ± 36%*** 5.64*** 7.0 ± 2.1 76.5% 0.0% 10.0 

Switched Switched 15 5.4% 85% ± 26% 5.75*** 5.2 ± 1.5 75% 20.0% 14.0** 

DFZ Switched 8 2.9% 82% ± 14% 3.64 6.2 ± 1.7 71.4% 0.0% 16.0 

PRED 5 days/week 5 1.8% 71% ± 14% 1.88 8.0 ± 1.1 

80.0% 20.0% 10.7‡ 

PRED 
Every other 

day 
4 1.4% 38% ± 9% 1.86 9.1 ± 1.9 

PRED 
10 days 

on/off 
2 0.7% 47% ± 4% 1.03 9.4 ± 0.4 

PRED 
10 

days/month 
2 0.7% 50% ± 24% 0.27 6.1 ± 0.4 

DFZ 
High-dose 2 

days/week 
2 0.7% 136% ± 10% 4.11 11.5 ± 2.9 

- - 
- 

DFZ 
Every other 

day 
1 0.4% 65% ± 0% 6.22 3.6 ± 0.0 

- - 
- 

PRED Twice daily 1 0.4% 48% ± 0% 1.59 6.9 ± 0.0 - - - 

 

n: participant number. † Dose is indicated as % of standard mg/kg/daily (0.75 mg/kg for PRED or 0.9 mg/kg 

for DFZ as applicable). SD: standard deviation. LoA: loss of ambulation. PRED: prednisone or prednisolone. 

DFZ: deflazacort. * Log-rank test vs. daily PRED p < 0.05. ** p-value vs. daily PRED p < 0.01. *** Log-rank 

test vs. daily PRED p < 0.001. ‡ Data for grouped low-dose intermittent PRED regimens, log-rank p vs. daily 

PRED n.s. § Genotypes were not available for all participants. 
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Distribution by GC regimen while ambulatory (Table I). As previously reported [Griggs 

et al., 2013], there was major variation in GC regimen prescription. Fourteen distinct 

regimens of PRED or DFZ were observed. PRED was administered while ambulatory to 

150 participants (54.1% of treated), and DFZ to 91 (32.9%). Of 36 (13.0%) participants 

switching between drugs while ambulatory, 35 switched from PRED to DFZ (one later 

switching back to PRED), and one from DFZ to PRED. GCs were administered daily to 195 

participants (70.4%), 2 days/week to 21 (7.6%), intermittently (including 10-days-on/10-

days-off, 10 days/month, 5 days/week, QOD) to 14 (5.1%), and twice daily to one. Forty-

six participants switched between regimens while ambulatory: 22 from non-daily to 

daily, 19 from daily to non-daily, and 5 between non-daily regimens. 

Median LoA by regimen (Table I). The most frequently used treatment protocol (daily 

PRED, n = 94) was associated with a median age at LoA of 11.2 years. Median LoA was 

later in participants taking daily DFZ (13.9 years, n = 80, log-rank p = 0.0001), in 

“switchers” from daily PRED to daily DFZ (14.0 years, n = 21, log-rank p = 0.03), and 

“switchers” between different drugs and regimens (14.0 years, n = 15, log-rank p = 

0.009). LoA in participants taking other regimens did not differ significantly from daily 

PRED. Kaplan-Meier plots of LoA for the most common regimens (daily PRED, daily DFZ, 

weekend PRED, and intermittent PRED) are shown in Figure 1B. 

Dose (Table I). Average dose of daily PRED administered while ambulatory (n = 94) was 

75% ± 17% of recommended, lower than daily DFZ (83 ± 15%, n = 80, p = 0.002). Doses 

for weekend regimens (and “switchers” to-from weekend) were higher (see Table I) 

because of the different protocol (10 mg/kg/week = 1.42 mg/kg/day).  

Age at start of treatment (Table I). Average age at start of GC treatment (excluding 

treatments started after LoA) was 6.8 ± 2.1 years (range 2.0 - 14.2). Daily PRED was 

started earlier than daily DFZ (6.6 ± 1.9 vs. 7.2 ± 2.0 years, p = 0.03). 

SPP1 and LTBP4 genotypes. There were no significant differences in the frequencies of 

modifier genotypes between drug-regimen groups (Table I).  
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Time-varying Cox regression analysis of PRED vs. DFZ, regimen and dose (Table II). A 

Cox regression model was used to test concurrent, independent effects on LoA of 

several time-varying factors: use of PRED or DFZ; use of daily, low-dose intermittent, or 

high-dose weekend regimens; and average daily dose. The HR ± standard error (SE) 

associated to PRED was 0.498 ± 0.080, p < 0.001. DFZ treatment was associated to a 

lower HR (later LoA): HR 0.294 ± 0.053, p < 0.001. The linear test between covariate 

levels indicated that this difference was statistically significant (p = 0.003). HRs for 

different administration regimens were 0.382 ± 0.058 for daily, 0.362 ± 0.119 for 

intermittent, and 0.508 ± 0.135 for high-dose 2 days/week. None of the differences 

between regimens were statistically significant in this model (few participants treated 

non-daily). HR for dose was 0.392 ± 0.070, p < 0.001. Note that all Cox regression 

coefficients (Table II) are referred to covariate effects (drug, regimen, or dose) in the 

time-varying model, independent of grouping of individual participants by treatment (as 

in the Kaplan-Meier analyses); subsequently, data from “switcher” participants is 

included in Cox analyses. Also, the 1-year treatment threshold described above applies 

to log-rank tests of treated vs. untreated, and not to Cox regression results described in 

this paragraph. 
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Table II. Parameters for the time-varying Cox regression analysis of effects of GC 

drugs, regimens, and dose on LoA. 

Covariates Levels HR SE p-value 95% CI 
Linear tests between 

covariate levels 

Drug 

Untreated 1* - - - 

PRED vs. DFZ: p = 0.003 PRED 0.498 0.080 < 0.001 0.363 – 0.683 

DFZ 0.294 0.053 < 0.001 0.207 – 0.419 

Regimen 

Untreated 1* - - - Daily vs. 2 days/week:  

p = 0.27 

Daily vs. intermittent:  

p = 0.86 

2 days/week vs. 

intermittent: p=0.38 

Daily 0.382 0.058 < 0.001 0.285 – 0.515 

2 

days/week 
0.508 0.135 0.011 0.301 – 0.856 

Intermittent 0.362 0.119 0.002 0.190 – 0.689 

Dose 
% of 

standard 
0.392 0.070 <0.001 0.277 – 0.553 - 

 

HR: Hazard Ratio. SE: Standard Error. CI: Confidence Interval. PRED: prednisone or 

prednisolone. DFZ: deflazacort. * Untreated was used as reference in the model (HR set at 1). 

 

Frequency of side effects (Table III). Side effect frequency was calculated in 277 

participants (86.2%) with any treatment duration while ambulatory. Weight gain (65%), 

cushingoid appearance (55%), growth delay (37%), behavior changes (37%), low bone 

mass density (BMD) and/or fracture (22%), cataracts (15%), and skin abnormalities 

(13%) were most commonly reported. Some frequencies might be underestimated, 

because side effects were recorded only for the 3 most recent GC regimens before study 

baseline. We chose daily PRED, the most frequently prescribed regimen, as reference for 

comparisons. Weight gain frequency was similar for daily DFZ and daily PRED, but daily 

DFZ showed higher incidence of cushingoid appearance (72% vs. 50%, p = 0.002), 

growth delay (60% vs. 27%, p < 0.0001), and cataracts (29% vs. 5%, p < 0.0001). Behavior 

changes were more common in “switchers” between different drugs (p = 0.048), 

between different administration regimens (p = 0.04), or both (p = 0.001), suggesting 

that behavior disturbances might often induce clinicians and families to modify the 
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treatment. Reported growth delay was strikingly more frequent, other than in 

participants consistently on DFZ, also in “switchers” between drugs (p = 0.006 for daily 

treatment and p=0.03 for others), confirming a strong association between DFZ and 

stunted growth. On the contrary, growth delay was rare (5% vs. 27%, p = 0.04) with 

weekend GCs. Cataracts were more frequent, other than with daily DFZ, also in 

“switchers” (p < 0.0001). Skin abnormalities were more frequent with weekend GCs (p = 

0.004). Finally, low-dose intermittent regimens showed a lower incidence of most side 

effects. This was statistically significant only for weight gain (23% vs. 67%, p = 0.002) and 

cushingoid appearance (0.004), arguably due to low numerosity in this group (n = 13). 

 

Table III. Frequency of physician-reported side effects in participants treated with 

different GCs regimens while ambulatory. 
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PRED Daily 94 67% 50% 30% 27% 5% 22% 11% 10% 2% 3% 3% 1% 1% 1% 0% 

DFZ Daily 80 63% 72%** 33% 60%*** 29%*** 25% 8% 5% 3% 0% 0% 0% 3% 0% 1% 

PRED Switched 23 70% 48% 52%* 17% 4% 9% 13% 0% 4% 0% 0% 4% 0% 0% 0% 

Switched Daily 21 76% 62% 52%* 57%** 14% 24% 24% 0% 0% 0% 10% 0% 0% 0% 0% 

PRED High-dose 2 days/week 19 79% 37% 42% 5%* 11% 26% 37%** 0% 0% 0% 0% 0% 0% 5% 0% 

Switched Switched 15 80% 67% 73%* 53%* 40%*** 40% 27% 13% 0% 7% 0% 0% 0% 0% 0% 

PRED Low-dose intermiient‡ 13 23%** 8%** 15% 8% 0% 23% 8% 8% 8% 8% 0% 8% 0% 0% 0% 

DFZ Switched 8 38% 25% 50% 25% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

All All 277† 65% 55% 37% 37% 15% 22% 13% 6% 2% 2% 2% 1% 1% 1% 0% 

 

n: participant number. BMD: Bone Mass Density. PRED: prednisone or prednisolone. DFZ: deflazacort. †All 

patients treated while ambulatory, not exactly equal to sum of other values because of a few patients on 

different, rarely prescribed regimens. ‡ Low-dose intermittent includes 10 days on/off, 10 days/month, 5 

days/week, and every other day. * Chi-square p-value < 0.05, ** < 0.01, and *** < 0.001 compared to daily 

PRED. 
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Discussion 

The long-term effect of GC treatment in prolonging independent ambulation in DMD, 

demonstrated by several previous studies [Angelini et al., 1994b; De Silva et al., 1987; 

McAdam et al., 2012; Manzur et al., 2008], is confirmed by data from the CINRG-DNHS 

presented here, with an estimated 3-year median delay of LoA. While virtually no 

untreated participants were able to walk beyond the age of 14, this was possible for 

approximately a third of GC-treated participants in the DNHS. However, because of 

inherent limitations of an observational, non-randomized study, these estimates of GC 

effect magnitude might be inflated. Recent years have seen a parallel increase in the 

frequency of GC prescription for DMD, and in the implementation of other standards of 

care such as physical therapy, management of joint contractures, and bone fracture 

prevention. In fact, CINRG-DNHS participants who did not receive GCs while ambulatory 

were significantly older, on average, than participants who did, denoting this “historical” 

improvement in care. It is not possible, in an observational, non-randomized study, to 

clearly discern how much of the observed LoA delay is actually caused by GCs, and how 

much by other treatments. Nevertheless, GC treatment was probably the single most 

important factor in this modification of the natural history of DMD. 

PRED and DFZ regimens administered to CINRG-DNHS participants during the 

ambulatory phase of the disease were manifold, recapitulating a well-described 

variation in practice [Griggs et al., 2013]. The recent observational study from the North 

Star network [Ricotti et al., 2013a] reported on a cohort mostly treated with PRED, and 

compared daily and intermittent (mainly 10-days-on/10-days-off) regimens. The 

distribution of GC regimens was different in the CINRG-DNHS: a substantial part of the 

population was on DFZ, and daily regimens were preponderant. 

Few studies have directly compared PRED and DFZ [Manzur et al., 2008]. Based on 

these, the two drugs appeared comparable in efficacy, the main differences residing in 

tolerability [Bonifati et al., 2000]. Therefore, we were surprised to observe a more than 

2-year later median age at LoA between participants treated with daily DFZ compared to 

daily PRED (Kaplan-Meier analysis), and a significant reduction of estimated yearly LoA 
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risk with DFZ (Cox regression). This may be partly explained by higher average dosing in 

the DFZ group, in turn determined by more aggressive treatment, or, hypothetically, by 

a more favorable tolerability profile requiring less dose tapering. However, not only did 

we not observe a reduced incidence of weight gain with DFZ, but most common side 

effects were more frequent, suggesting that clinicians prescribing DFZ used higher doses 

in spite of side effects, and/or there was higher adherence to treatment. Earlier 

commencement of treatment, another hypothetical cause of increased efficacy, cannot 

be invoked to explain the better outcome in DFZ treated patients: on the contrary, daily 

PRED was started significantly earlier than daily DFZ in the CINRG-DNHS population. As it 

is common in clinical practice to start treatment when motor function reaches a 

plateau, DFZ treatment may have been started later because of a later plateau of motor 

function, which denotes in itself a milder disease progression. Furthermore, as many 

clinicians refrained from incrementing the dose with growth, as a means of managing 

side effects, participants started younger on PRED may have received lower cumulative 

doses, as the starting dose, calculated on a lower weight, was left unchanged in 

subsequent years. In summary, there was a strong association of DFZ with later LoA in 

the CINRG-DNHS, but this cannot be taken as conclusive evidence for a greater long-

term efficacy. 

DFZ is not commercially available in the United States, where many CINRG sites are 

located, and more expensive than prednisone, implying that its use may be associated 

to higher standards of care and possibly adherence. Nevertheless, it remains possible 

that DFZ does possess, because of uncharacterized pharmacodynamic mechanisms, a 

greater long-term efficacy than PRED, which could not be ascertained by previous short-

term studies. The results of the time-varying Cox regression analysis (adjusted for dose 

as an independent factor, and for random effects of study Site to account for standards 

of care), appear to support an independent beneficial effect of DFZ. We also excluded 

differences in genetic modifier polymorphism frequency in the SPP1 and LTBP4 genes, 

which, as we recently reported, have a significant effect in this population [Bello et al., 

2015a]. Randomized clinical trials, such as FOR-DMD, will shed more light on these 
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issues. Until then, some consideration should be given to stratifying clinical trial cohorts 

by DFZ/PRED treatment. 

Data regarding non-daily GC regimens in the CINRG-DNHS is complex to analyze, due to 

their fragmentation, and the common practice of switching regimens as a means of 

tapering or adapting doses. HRs for daily vs. weekend regimens were not significantly 

different, consistent with findings of equivalence in quantitative muscle strength in a 

previous CINRG clinical trial [Escolar et al., 2011]. On the other hand, low-dose 

intermittent regimens (e.g. 10-days-on/10-days-off) were seldom used within CINRG, so 

that a conclusive comparison between these regimens and daily, such as recently 

published by the North Star clinical network [Ricotti et al., 2013a], cannot be obtained 

from CINRG-DNHS data. 

Two common side effects of chronic GC treatment in the pediatric population, 

cushingoid appearance and growth stunting, were significantly more frequent with daily 

DFZ than daily PRED. Again, this might be explained at least in part by higher dosing, or 

possibly adherence. The previously reported higher incidence of cataracts with DFZ 

[McAdam et al., 2012] is confirmed by our data. On the other hand, we did not observe 

a lower frequency of weight increase with DFZ, as previously suggested [Bonifati et al., 

2000], although it may be argued that if DFZ was dosed higher, a similar incidence of 

weight gain might still be the expression of better weight control with DFZ. Low-dose 

intermittent regimens (despite small participant numbers) showed lower frequencies of 

most side effects, as previously reported [Ricotti et al., 2013a]. The tolerability profile of 

weekend PRED appeared comparable to the daily regimen, as previously shown by a 

CINRG clinical trial [Escolar et al., 2011], except for less frequent growth stunting.  

Consistent with comments following publication of GC treatment data from the North 

Star network [Ricotti et al., 2013a-b; Dubowitz, 2013a-b], growth stunting appeared to 

be associated with later LoA. Indeed, patients treated with daily DFZ showed both the 

latest LoA, and the most frequent growth stunting. It is difficult to discern from 

observational data whether a biomechanical advantage from short stature might play a 

causative role in delaying LoA, or if prolonged ambulation and short stature are simply 
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concurrent effects of treatment. An answer to this question might be provided by 

systematic and longitudinal correlations of stature and functional measures (e.g. 

strength, speed). From a clinical standpoint, the greatest consideration should be given 

to the impact that stunted growth, together with the frequently associated pubertal 

delay, has on the quality of life and self-image of DMD patients, in an effort to tailor GC 

treatment on the individual expectations and needs of each patient. 

In conclusion, we provide evidence that GCs are effective in delaying LoA in patients 

with DMD, and that DFZ might be associated with greater long-term efficacy (i.e. later 

LoA), despite more frequent side effects. The observed better long-term outcome of 

DFZ might be at least partly due to higher dosing, higher adherence, and better 

standards of care. Nonetheless, stratification by PRED or DFZ treatment might be 

considered in clinical trials, in order to account for variability of weakness progression. 

This study emphasizes the need for further randomized, blinded, longitudinal trials of 

different GC regimens in DMD. 



PhD Thesis  PhD Candidate: Dr. Luca Bello 

  67 

Aim 4: Genome-wide association study of loss of ambulation in 

DMD 

Background 

Duchenne muscular dystrophy is a monogenic X-linked disease affecting 1/3800-5000 

males in all world populations [Mostacciuolo et al., 1987; Stark, 2015]. The DMD gene is 

the largest known in any genome, with 79 exons distributed over 2.3 megabases of Xp21 

[Koenig et al., 1987]. DMD codes for the dystrophin protein, a membrane cytoskeletal 

component of myogenic cells [Hoffman et al., 1987]. Loss-of-function mutations of the 

DMD gene causing DMD lead to dystrophin deficiency in skeletal and cardiac cells. 

Dystrophin-deficiency, in turn, leads to myofiber membrane instability, bouts of 

myofiber necrosis, and eventual failed regeneration of skeletal muscle leading to muscle 

wasting and an early death. 

Extensive natural history studies have shown considerable inter-patient variation in 

DMD onset and progression [McDonald et al., 2013; Henricson et al., 2013; Pane et al., 

2014a]. Daily treatment with glucocorticoids (GCs) is considered standard of care 

[Bushby et al., 2010a], yet there is variable patient-patient response to treatment, both 

in terms of efficacy (improved gross motor skills) and side effect profiles [Henricson et 

al., 2013; Bello et al., 2015b]. Also, there is considerable variation in the practice of 

prescription and use of glucocorticoids [Griggs et al., 2013; Bello et al., 2015b]. 

Multiple factors contribute to the observed clinical variation in DMD, including 

standards of care, GC use, and genetic background (modifying polymorphisms, 

ethnicity). These variables are not independent. For example, a patient’s geographic 

location has effects on ethnicity, standard of care, glucocorticoid use, and genetic 

modifiers [Bello et al., 2015a]. The inter-dependent nature of these variables can make 

it challenging to isolate a single variable and define its contribution to disease 

expressivity. 
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Despite these challenges, the identification of genetic modifiers of Duchenne muscular 

dystrophy is broadly felt to be important, and initial progress has been made using a 

candidate gene approach [Vo and McNally, 2015]. The SPP1 gene locus, encoding 

osteopontin protein (OPN) was identified as a candidate by mRNA profiling studies of 

muscle biopsies from clinically mild and severe patients [Pegoraro et al., 2011]. A 

polymorphism in the promoter of the SPP1 gene (rs28357094) known to change SPP1 

mRNA expression by 5-fold [Giacopelli et al., 2004], was found to be associated with age 

at loss of ambulation (LoA) in an Italian cohort, and grip strength in the Cooperative 

International Neuromuscular Research Group Duchenne Natural History Study (CINRG 

DNHS) [Pegoraro et al., 2011]. The association of rs28357094 with ambulation 

phenotypes was validated in a second Italian multi-center cohort [Bello et al., 2012], as 

well as in the CINRG cohort [Bello et al. 2015a]. However, the same association of 

rs28357094 with LoA was not seen in a European multicenter cohort (Bio-NMD) [van 

den Bergen et al., 2015] and in a United States multicenter cohort (United 

Dystrophinopathy Project, UDP) [Flanigan et al., 2013]. More detailed studies of 

rs28357094 within an expanded CINRG cohort found that both ethnicity and steroid use 

altered findings of genotype/phenotype associations, and it was concluded that the 

rs28357094 SPP1 locus was likely a pharmacogenetic marker, influencing patient 

response to GC treatment [Bello et al. 2015b]. As the proportion of patients treated 

with GC vary from cohort to cohort, glucocorticoid treatment is an important covariate 

to include in statistical models studying genetic modifiers. The effects of the rs28357094 

SPP1 locus was also studied in adult volunteer populations, where it was found 

associated with upper arm muscle volume [Hoffman et al., 2013] and with response to 

eccentric activity-induced muscle damage [Barfield et al. 2014] in young adult females. 

A second modifier of muscular dystrophy was identified by genetic linkage with disease 

severity in an outbred murine γ-sarcoglycan deficient model [Heydemann et al., 2009], 

which pointed to the Ltbp4 murine gene. This finding translated to human DMD, as a 

coding haplotype in LTBP4 was associated with age at LoA [Flanigan et al., 2013]. This 

association was replicated in the Bio-NMD cohort [van den Bergen et al., 2015] and in 
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participants of European ancestry in the CINRG cohort [Bello et al., 2015a], although not 

in an Italian multi-center cohort [Barp et al., 2015]. 

The candidate gene approach has led to the identification of two robust genetic 

modifier loci, SPP1 and LTBP4. The products of both these genes are involved in 

secondary inflammation and tissue remodeling, which appear to be key modifier 

pathways of muscular dystrophy [Chen at al., 2005; Ceco and McNally, 2014]. SPP1 is 

heavily upregulated by activation of NF-κB signaling during bouts of degeneration and 

regeneration in skeletal muscle [Hoffman et al., 2013]. NF-κB signaling is triggered in 

DMD by necrotic cells liberating damage-associated molecular patterns, which stimulate 

Toll-like receptors (TLRs) [Rosenberg et al., 2015]. In turn, upregulated osteopontin 

modulates TGFβ-mediated signals [Vetrone et al., 2009], which dictate either successful 

(reparative) or unsuccessful (fibrotic) regeneration. The LTBP4 protein also regulates 

TGFβ signaling by binding TGFβ in a latent complex in the extracellular matrix [Flanigan 

et al., 2013], and the modifier haplotype appears to influence susceptibility to 

proteolitic cleavage and subsequent TGFβ signaling activation [Ceco et al., 2014]. 

 However, the candidate gene approach for identification of genetic associations is 

known to be subject to various biases [Wills et al., 2009]. Genome-wide association 

studies (GWAS) are broadly felt to show less bias in genetic association discovery. GWAS 

studies typically employ highly parallel statistical tests of genetic association, where 

thousands to millions of polymorphic loci are tested simultaneously. In order to 

withstand multiplicity adjustment of association p-values, large populations have to be 

studied for typical effect sizes. This requirement works against utilization of GWAS to 

identify rare monogenic disease modifiers. 

In order to work around this problem, we took a “hybrid” approach, in between a 

“hypothesis free” GWAS and a candidate gene study. We ran a GWAS of age at LoA in a 

small (for GWAS standards) “discovery” cohort, adjusting for glucocorticoid treatment. 

High-ranking loci were then prioritized based on the TGFβ and TLR-NF-κB pathways, 

adjusting multiplicity correction to 3 genes functionally annotated to be involved in 

these pathways. We then moved to additional testing in four independent validation 
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cohorts. This led to the identification of a novel robust genetic modifier of DMD, the 

CD40 locus. 
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Methods 

Informed consent and ethics approvals. All patients or their legal guardians consented 

to the use of genetic and clinical data for research purposes, and study procedures were 

reviewed by local IRB/Ethics Committees, as previously reported for CINRG [McDonald 

et al., 2013], Bio-NMD [van den Bergen et al., 2015], Padova [Pegoraro et al., 2011], and 

UDP [Flanigan et al., 2013]. 

Inclusion criteria. Inclusion criteria have been previously reported for CINRG [McDonald 

et al., 2013], Bio-NMD [van den Bergen et al., 2015], Padova [Pegoraro et al., 2011], and 

UDP [Flanigan et al., 2013]. Collectively, criteria were aimed at the inclusion of “typical” 

DMD patients with truncating DMD mutations, except for the UDP study, which 

explicitly included intermediate muscular dystrophy and Becker muscular dystrophy 

patients. These were excluded from validation analyses presented here. 

Exome chip genotyping and data cleaning. Exome chip genotyping and data cleaning 

methods in the CINRG-DNHS cohorts have been described [Bello et al., 2015a]. Briefly, 

genotyping with the Illumina (San Diego, CA) HumanExome chip was performed in 

175/340 CINRG-DNHS participants of different ethnicities, who were selected on the 

basis of available DNA quantity and quality, and did not differ for clinical or 

demographic features. Genotype calling was performed with the Genome Studio 

software, and genotype data were exported into PLINK format with the dedicated plug-

in software by Illumina. Data cleaning was performed by PLINK and included missing call 

thresholds of 0.01 for both individuals and SNPs; a heterozygosity threshold of ± 4 

standard deviations from the mean; check for cryptic duplicates and relatedness in an 

IBS matrix (PIHAT threshold of 0.1). A subcohort of 109 unrelated individuals of 

European/European American descent was selected by multidimensional scaling (MDS) 

analysis of Exome Chip genotypes as described [Bello et al., 2015a], and MDS was 

repeated in this population to check for residual population stratification or outliers. 

Association of LoA with Exome Chip genotypes. Genome-wide association with age at 

LoA was tested within a Cox proportional hazards model. The dependent variable 
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(phenotype) was age at LoA, with censoring of participants who were ambulatory at the 

last evaluation. The independent variables were genotypes (additive inheritance model) 

of 27,027 Exome Chip SNPs with MAF > 0.05, and GC treatment coded as a binary 

categorical covariate: treated at least 1 year while ambulatory vs. treated < 1 year or 

untreated while ambulatory. The Cox proportional hazards test was performed by 

plugging the R function “coxph” into PLINK via the Rserve package. A Bonferroni 

corrected p-value of 1.8*10-6 (0.05/27,027 SNPs, “exome-wide” significance) was set for 

this experiment. QQ and Manhattan plots were created with the “qqman” package 

[Turner, 2014] in R. 

Prioritization of GWAS results. In order to select nominally significant SNPs with a 

suggestive association p-value in the GWAS, we performed a hypothesis-driven 

prioritization. The hypothesis was that the NF-κB and TGFβ signaling pathways modulate 

pathology downstream of dystrophin deficiency in skeletal muscle. Genes included in 

these pathways were downloaded via the Prowler® online software from the Panther 

classification system (Gene Ontology). NF-κB pathway genes include: ADAM8, ADIPOQ, 

AGER, AGT, AIM2, AJUBA, ALK, AMH, ANKRD42, APOL3, AR, ARHGEF2, ATP2C1, BCL10, 

BCL3, BIRC2, BIRC3, BMP7, BRD4, BST2, BTK, BTRC, C18orf32, C1QTNF3, C9orf89, 

CAMK2A, CANT1, CAPN3, CARD10, CARD11, CARD14, CARD8, CARD9, CASP1, CASP10, 

CASP8, CAT, CC2D1A, CCL19, CCL21, CCR7, CD27, CD36, CD40, CFLAR, CHI3L1, CHUK, 

CIB1, CLEC6A, CLOCK, CLU, COPS8, CTH, CTNNB1, CXXC5, CYLD, DAB2IP, DNAJA3, ECM1, 

ECT2, EDA, EDA2R, EDAR, EEF1D, EIF2AK2, ERC1, ESR1, F2R, F2RL1, FADD, FAF1, FASLG, 

FBXW11, FER, FKBP1A, FLNA, FYN, G3BP2, GJA1, GOLT1B, GPR89A, GPRC5B, GSTP1, 

HMOX1, HSPB1, HTR2B, ICAM1, IKBIP, IKBKAP, IKBKB, IKBKE, IKBKG, IL10, IL12B, IL18, 

IL18R1, IL1B, IL1RL1, IL23A, IL6, IL6R, INS, IRAK1, IRAK2, IRAK3, IRAK4, IRF3, KRAS, 

LGALS1, LGALS9, LITAF, LPAR1, LTBR, LTF, LURAP1, MALT1, MAP3K13, MAP3K14, 

MAP3K3, MAP3K7, MAS1, MAVS, MIB2, MID2, MIER1, MTDH, MTPN, MUL1, MYD88, 

NDFIP1, NDFIP2, NEK6, NFKB1, NFKB2, NFKBIA, NFKBIB, NFKBID, NLRC3, NLRC4, NLRP12, 

NLRP3, NLRP6, NLRX1, NOD1, NOD2, NPM1, NTRK1, NUP62, OLFM4, OTUD7B, PAMP, 

PARK2, PDPK1, PELI1, PELI2, PER1, PIDD1, PIM2, PINK1, PLA2G1B, PLEKHG5, PLK2, 
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PPM1A, PPM1B, PPP4C, PPP5C, PRDX1, PRDX3, PRDX4, PRKCB, PRKCE, PRKCH, PRKCI, 

PRKCQ, PRKCZ, PRKD1, PRKD2, PSMA6, PSMD10, PTGS2, PYCARD, RASSF2, RBCK1, 

RC3H1, RC3H2, REL, RELA, RHEBL1, RHOA, RHOC, RHOH, RIPK1, RIPK2, RIPK3, RIPK4, 

RNF25, RNF31, RORA, RPS27A, RPS3, RPS6KA4, RPS6KA5, S100A12, S100A13, S100A4, 

S100A8, S100A9, S100B, SASH1, SECTM1, SHARPIN, SHISA5, SIRT1, SLC20A1, SLC35B2, 

SLC44A2, SPHK1, SQSTM1, STAT1, TAB1, TAB2, TAB3, TAK1, TBK1, TERF2IP, TFG, TGFB1, 

TGFBR3, TGM2, TICAM1, TICAM2, TIRAP, TLE1, TLR2, TLR3, TLR4, TLR6, TLR7, TLR9, 

TMED4, TMEM101, TMEM9B, TNF, TNFAIP3, TNFRSF10A, TNFRSF10B, TNFRSF11A, 

TNFRSF19, TNFRSF1A, TNFSF10, TNFSF11, TNFSF14, TNFSF15, TNFSF18, TNIP1, TNIP2, 

TNIP3, TRADD, TRAF1, TRAF2, TRAF3IP2, TRAF4, TRAF5, TRAF6, TRIM13, TRIM14, 

TRIM15, TRIM22, TRIM25, TRIM32, TRIM37, TRIM38, TRIM40, TRIM5, TRIM52, TRIM59, 

TRIM62, TRIM8, TRIP6, TSPAN6, UACA, UBA52, UBB, UBC, UBD, UBE2N, UBE2V1, 

UNC5CL, VAPA, WLS, WNT5A, ZC3HAV1, ZDHHC13, ZDHHC17, ZFAND6, ZFP91, 

ZMYND11, ZNF268. TGFβ pathway genes include: ACVR1, ACVR1B, ACVR1C, ACVR2A, 

ACVR2B, ACVRL1, AMHR2, ATF2, BAMBI, BMP1, BMP10, BMP15, BMP2, BMP3, BMP4, 

BMP5, BMP6, BMP7, BMP8A, BMP8B, BMPR1A, BMPR1B, BMPR2, CITED1, CITED2, 

CITED4, CREBBP, DCP1A, DCP1B, EP300, FKBP1A, FOSL1, FOXH1, GDF1, GDF10, GDF11, 

GDF15, GDF2, GDF3, GDF5, GDF6, GDF7, GDF9, GDNF, HRAS, INHBA, INHBB, INHBC, 

INHBE, JUN, JUNB, JUND, KRAS, LEFTY1, LEFTY2, MAP3K7, MAP3K7CL, MAPK1, MAPK10, 

MAPK11, MAPK12, MAPK13, MAPK14, MAPK3, MAPK8, MAPK9, MSTN, NODAL, NRAS, 

RRAS, RRAS2, SKI, SKIL, SMAD1, SMAD2, SMAD3, SMAD4, SMAD5, SMAD6, SMAD7, 

SMAD9, SMURF1, SMURF2, SNIP1, SOD1, TAB1, TGFB1, TGFB2, TGFB3, TGFBR1, TGFBR2, 

TLL1, TLL2, ZFYVE9. We selected 506 SNPs in the GWAS whose genomic coordinates lie 

within, or 10,000 kb up- or downstream from these genes. Note that while the Exome 

Chip contains mostly exonic SNPs, it also includes intronic or intergenic SNPs, mainly 

selected because of previous GWAS hits or other evidence of a functional regulatory 

role (chip design details at http://genome.sph.umich.edu/wiki/Exome_Chip_Design). 

We defined a “suggestive” Bonferroni-corrected significance threshold as p = 0.05/506 

prioritized SNPs = 9.9*10-5. 
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Validation cohort and methods. Initial validation of prioritized SNPs below the 

suggestive p-value threshold was performed in 108 CINRG participants who were not 

included in the GWAS experiment because of insufficient DNA quantity, but still had 

available DNA for targeted genotyping by TaqMan allele discrimination assays. As this 

was a multi-ethnic cohort, at risk for population stratification bias, and no genome-wide 

markers were available for MDS analysis, we restricted validation analyses to 76 

participants self-identifying with the Caucasian race and non-Hispanic ethnicity. 

Subsequently, we pooled clinical data (ambulatory vs. non-ambulatory; age at LoA or 

last follow-up; GC treated or untreated before LoA) from the following independent 

cohorts: Bio-NMD cohort [van den Bergen et al., 2015] consisting of 246 DMD patients 

from the Centers of Ferrara, Leiden, London, Montpellier, and Newcastle, including 

mostly patients of European descent; 95 Italian DMD patients followed at the University 

of Padova [Pegoraro et al., 2011]; 243 DMD patients (only those carrying truncating 

DMD mutations) from the US-based UDP cohort [Flanigan et al., 2013]. The statistical 

test used for validation was the same as in the GWAS, except for the following 

differences in the definition of the binary GC treatment covariate: in the Bio-NMD and 

Padova cohort, patients with any treatment duration before LoA were classified as 

“treated” (detailed treatment duration or dates were not available); in the UDP cohort, 

patients with at least 6 months of GC treatment before LoA were classified as “treated”. 

Furthermore, a categorical covariate for Center (CINRG, Bio-NMD Ferrara, Bio-NMD 

Leiden, Bio-NMD London, Bio-NMD Montpellier, Bio-NMD Newcastle, Padova, UDP) was 

added to the Cox proportional hazards model in the pooled validation analysis. Both 

additive and dominant inheritance models were tested in validation. Statistical 

significance was set at p < 0.05 for validation. 
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Results 

Figure 1. Tridimensional scatter plot of the first 3 principal components obtained by 

multidimensional scaling of genome-wide genotypes in 109 unrelated CINRG-DNHS 

participants of European/European American descent (CINRG Exome Chip cohort). A 

color gradient of red to black highlights negative to positive values along the C2 axis. No 

clustering of subgroups or extreme outlier individuals are observed. 

Of 340 CINRG-DNHS participants from 20 worldwide Centers, 175 (selected only on the 

basis of DNA availability) were genotyped with the Illumina HumanExome chip, focused 

on common and rare functional variants in gene-coding regions. For SPP1 and LTBP4 

validation, a sub-cohort of European/European-American ancestry had been selected by 
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multidimensional scaling (MDS) to reduce population stratification bias [Bello et al., 

2015a]. Our initial GWAS included 109 unrelated participants in this sub-cohort. 

Repeated MDS confirmed no gross stratification (Figure 1). 

The statistical test in the GWAS was a Cox proportional hazards model using age as time 

variable, LoA as event, GC treatment (defined in Methods) as a binary covariate, and an 

additive genotype model. The survival approach, unusual for GWAS, allowed inclusion of 

ambulatory (“censored”) participants. We applied a MAF threshold of > 0.05, as the very 

low numerosity precluded single-SNP or groupwise analyses of rare variants. These 

would require larger populations, or genotyping/sequencing of phenotypic extremes. 

The quantile-quantile (QQ) plot of observed p-values (Figure 2) excluded gross 

systematic bias (λGC = 1.09). In the Manhattan plot (Figure 3) no SNP reached the 

“exome-wide” significance threshold of p = 1.8*10-6 (Bonferroni correction for 27,027 

SNPs). Top p-value annotations are shown in Table 1. 

Due to recognized low statistical power in the initial GWAS, lack of “exome-wide” 

significance was expected. Nevertheless, some nominally significant p-values might hold 

true association. We decided to prioritize SNPs for independent validation. To this end, 

we introduced the hypothesis that SNPs within, or close to (10,000 kb) genes in the NF-

κB and TGFβ signaling pathways would be enriched for true associations. These are 

extensively studied inflammatory and pro-fibrotic pathways in dystrophin deficiency 

[Chen et al., 2005; Ceco and McNally, 2013; Rosenberg et al., 2015]. Furthermore, both 

known modifiers, which derived from unbiased hypothesis-generating experiments, i.e. 

expression profiles for SPP1
 [Pegoraro et al., 2011], murine genome mapping for LTBP4

 

[Flanigan et al., 2013), converged into these pathways. 
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Figure 2. Quantile-quantile

LoA with Exome Chip genotypes (27,027 SNPs with MAF > 0.05).
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quantile plot of p-values observed in the GWAS experiment of age at 

LoA with Exome Chip genotypes (27,027 SNPs with MAF > 0.05).  
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Figure 3. Manhattan plot of GWAS of age at loss of ambulation (Cox proportional 

hazards with glucocorticoid treatment as a covariate) for 

MAF > 0.05. SNPs within (<10,000 kb) candidate genes in the NF

are highlighted in green. The red horizontal line (p = 1.8*10

correction for 27,027 SNPs, while the blue line (p = 9.9*1

correction for 506 SNPs within (<10,000 kb) candidate genes. Top p

annotated with gene names (also see Table 1).
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Manhattan plot of GWAS of age at loss of ambulation (Cox proportional 

hazards with glucocorticoid treatment as a covariate) for 27,027 Exome Chip SNPs with 

MAF > 0.05. SNPs within (<10,000 kb) candidate genes in the NF-κB and TGFβ pathways 

are highlighted in green. The red horizontal line (p = 1.8*10-6) refers to Bonferroni 

correction for 27,027 SNPs, while the blue line (p = 9.9*10-5) refers to Bonferroni 

correction for 506 SNPs within (<10,000 kb) candidate genes. Top p-values are 

annotated with gene names (also see Table 1). 
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Table 1. SNPs showing top p-values in the GWAS of age at loss of ambulation in 109 

unrelated participants of European ancestry in the CINRG-DNHS  

 

SNP Chr BP Alleles 
Minor 

allele 
MAF 

BP 

from 

gene 

Gene Mutation 
GWAS p-

value 

Expressed in 

17 DMD 

muscle 

biopsies 

Expressed in 6 

normal 

muscle 

biopsies 

Expression 

probeset 

rs34561493 4 143043397 A/G A 0.09 0 INPP4B 
Synonymous 

S673S 
2.18E-06 Yes (17/17) Yes (6/6) 205376_at 

rs4275414 1 182854200 A/G A 0.27 0 DHX9 Intronic 6.28E-06 Yes (17/17) Yes (6/6) 212107_s_at 

rs72799568 16 84902483 T/A A 0.06 0 CRISPLD2 
Missense 

M294L 
1.06E-05 Yes (17/17) Yes (6/6) 221541_at 

rs4810485 20 44747947 A/C A 0.28 0 CD40 Intronic 3.53E-05 Yes (17/17) Yes (6/6) 35150_at 

rs6074022 20 44740196 A/G G 0.28 
6710 

(5') 
CD40 Promoter 3.53E-05 Yes (17/17) Yes (6/6) 35150_at 

rs35652107 11 46339011 A/G A 0.07 0 CREB3L1 
Missense 

A411T 
6.48E-05 Yes (13/17) No (0/6) 213059_at 

rs2014355 12 121175524 A/G G 0.22 0 ACADS Intronic 6.90E-05 Yes (17/17) Yes (6/6) 202366_at 

rs2281859 10 105271758 A/G G 0.36 0 NEURL1 
Intron - nc 

transcript 
7.69E-05 Yes (17/17) Yes (6/6) 204889_s_at 

rs9333269 10 15649698 A/C C 0.08 0 ITGA8 
Missense 

Q581P 
9.61E-05 Yes (17/17) Yes (5/6) 235666_at 

SNP: single nucleotide polymorphism. GWAS: genome wide association study. CINRG-

DNHS: Cooperative International Neuromuscular Research Group Duchenne Natural 

History Study. Chr: chromosome. BP: base pair position. MAF: observed minor allele 

frequency. DMD: Duchenne muscular dystrophy. nc: non-coding. 

We prioritized 506 SNPs in 392 NF-κB/TGFβ-related genes (see text) hence a 

“suggestive” Bonferroni-corrected threshold of p = 9.9*10-5, surpassed only by two 

neighboring SNPs in perfect LD (rs6074022 and rs4810485), situated respectively 6710 

bp upstream and within the CD40 gene on the long arm of chromosome 20. Median age 

at LoA in carriers of at least one copy of the minor allele was 2.8 years earlier (Figure 4, 



PhD Thesis  PhD Candidate: Dr. Luca Bello 

  80 

panel A), per-copy Hazard Ratio (HR) 2.10 (95% Confidence Interval [CI] 1.45 - 3.04), p = 

3.5*10-5. Thus, this locus was selected for independent validation. 

CD40, also known as TNFRSF5 (Tumor Necrosis Factor Receptor Super-Family member 

5), was included in the prioritization list as a NF-κB pathway component, and encodes a 

costimulatory protein for the Th polarization of T cells, found on the surface of antigen 

presenting cells (APCs). The SNPs rs6074022 and rs4810485 are located in the promoter 

and first intron respectively, tagging a haplotype spanning the 5’ region of the gene. 

CD40 is expressed in healthy and dystrophic muscle (positive present call analysis on 

17/17 DMD muscle biopsy samples and 6/6 healthy muscle samples, probeset 

35150_at). Genotypes were in Hardy-Weinberg equilibrium (HWE), and the MAF of 28% 

was close to expected for European ancestry (24% in 1000 Genomes [1000G] CEU). 

Targeted genotyping (TaqMan) of rs1883832 (C/T, minor allele T) was used for 

validation. This SNP is situated in the CD40 5’ UTR between rs4810485 and rs6074022, 

in perfect LD with both (confirmed by TaqMan in the Exome Chip cohort). 

The first validation step was performed in 108 CINRG-DNHS participants, not 

overlapping the Exome Chip cohort. Carriers of the T allele showed 1.5-year earlier LoA, 

Cox proportional hazards p = 0.07 for additive and 0.02 for dominant genotype model 

(data not shown). Although these data pointed towards validation of rs1883832 as a 

modifier, we were aware of potential population stratification bias, as some non-

European ancestries, e.g. East Asian, show higher rs1883832 MAF (1000G), and earlier 

LoA in the CINRG-DNHS [Bello et al., 2015a]. Thus, we limited validation to 76/108 

participants of self-identified non-Hispanic European race/ethnicity. In these, the T allele 

was associated with 0.8-year earlier LoA, p = n.s. (Figure 4, panel B).  

Subsequently, we expanded validation studies to other independent DMD cohorts, using 

the same statistical model (except minor differences in GC treatment covariate 

definition, see Methods). In the Bio-NMD cohort (n = 246), the T allele was associated 

with 0.6-year earlier median LoA (Figure 4, panel C), p = 0.08 (additive) and 0.0496 

(dominant). In the Padova cohort (n = 95), the T allele was associated with a 0.3-year 
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earlier median LoA (Figure 4, panel D), p = n.s.. Finally, in the UDP cohort (n = 243 DMD, 

mostly European/American) the T allele was associated with a 0.5-year earlier median 

LoA (Figure 4, panel E), p = 0.13 (additive) and 0.04 (dominant). 

The pooled validation cohorts comprised 660 DMD patients, 50% treated with GCs, 47% 

untreated, and 8% with unknown GC treatment status. The CD40 rs1883832 SNP was in 

HWE, with a MAF of 28% (close to expected for European ancestry). The T allele was 

associated overall with a 1-year earlier median LoA (Figure 4, panel F), per-copy HR = 

1.16 (95% CI 1.02 - 1.32), p = 0.02 (additive model), and HR 1.31 (95% CI 1.10 - 1.56), p = 

0.002 in the dominant model. This pooled validation analysis included a covariate to 

adjust for differences between cohorts (see Methods). Survival analysis parameters for 

all cohorts are presented in Table 2. 
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Figure 4. Kaplan-Meier plots of age at loss of ambulation by CD40 rs1883832 genotype 

(additive and dominant models) in the CINRG Exome Chip cohort (panel A) and 

validation cohorts: CINRG self-identified Caucasian validation cohort (panel B), Bio-NMD 

cohort (panel C), Padova cohort (panel D), UDP cohort (panel E), and overall validation 

cohort (sum of CINRG validation Bio-NMD, Padova, and  UDP, panel F). “add”: additive 

inheritance model. “dom”: dominant inheritance model. 
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Table 2. Parameters for Kaplan-Meier and Cox proportional Hazards analyses of age at 

loss of ambulation by CD40 rs1883832 genotype in the CINRG Exome Chip and 

validation cohorts. 

 

 CINRG: Cooperative International Neuromuscular Research Group.  GC: glucocorticoid 

corticosteroids.  LoA: loss of ambulation.  CI: confidence interval.  HR: Hazard Ratio. 

  

Cohort 

Kaplan-Meier analysis parameters Cox proportional hazards parameters 

Parameter 

Genotype 

Parameter 

Covariate 

CC CT TT 
CT and TT 

(dominant) 
Total 

Additive 

genotype 

Dominant 

genotype 

GC 

treatment 

CINRG 

Exome 

Chip 

cohort 

n 56 44 9 53 109 HR 2.10 2.64 0.16 

Median age at 

LoA (years) 
14.0 11.3 11.0 11.2 13.0 95% CI 1.45 - 3.04 1.60 - 4.35 0.09 - 0.29 

95% CI 13.0 - 15.2 10.0 - 13.2 9.0 - NA 10.4 - 13.0 12.0 - 14.0 p-value 0.00004 0.0001 < 0.0001 

CINRG 

validation 

cohort 

n 42 28 6 34 76 HR 1.21 1.02 0.29 

Median age at 

LoA (years) 
12.0 11.0 12.0 11.2 12.0 95% CI 0.69 - 2.11 0.67 - 1.55 0.15 - 0.55 

95% CI 11.6 - 13.8 10.0 - 13.0 11.1 - NA 10.5 - 13.0 11.2 - 12.5 p-value n.s. n.s. 0.0002 

BIO-NMD 

validation 

cohort 

n 118 98 30 128 246 HR 1.22 1.36 0.31 

Median age at 

LoA (years) 
10.6 10.0 11.0 10.0 10.5 95% CI 0.98 - 1.51 1.00 - 1.84 0.21 - 0.44 

95% CI 10.0 - 11.0 9.6 - 10.9 10.0 - 12.5 10.0 - 11.0 10.0 - 11.0 p-value 0.08 0.0496 < 0.0001 

Padova 

validation 

cohort 

n 47 40 8 48 95 HR 1.20 1.19 0.41 

Median age at 

LoA (years) 
11.0 10.8 10.2 10.7 11.0 95% CI 0.81 - 1.79 0.75 - 1.90 0.25 - 0.67 

95% CI 10.0 - 13.0 10.2 - 11.9 10.0 - NA 10.2 - 11.9 10.3 - 12.0 p-value n.s. n.s. 0.0004 

UDP 

validation 

cohort 

n 139 91 13 104 243 HR 1.18 1.32 0.68 

Median age at 

LoA (years) 
10.5 9.5 11.5 10.0 10.0 95% CI 0.96 - 1.45 1.01 - 1.73 0.52 - 0.89 

95% CI 10.0 - 11.0 9.0 - 10.0 9.5 - NA 9.0 - 10.0 10.0 - 10.5 p-value 0.13 0.038 < 0.0001 

Overall 

validation 

cohort* 

n 346 257 57 314 660 HR 1.16 1.31 0.483 

Median age at 

LoA (years) 
11.0 10.0 11.1 10.0 10.6 95% CI 1.02 - 1.32 1.10 - 1.56 0.40 - 0.58 

95% CI 10.5 - 11.0 10.0 - 10.5 10.2 - 12.0 10.0 - 10.5 10.2 - 11.0 p-value 0.02 0.002 0.005 
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Discussion 

The hypothesis-prioritized GWAS suggested a modifier effect of the CD40 locus, which 

was subject to a strong independent validation in a large independent, collaborative 

cohort. Because of a “winner’s curse” effect, effect size is substantially smaller in the 

validation than GWAS cohorts (1 vs. 2.8 years); the smaller size effect in the larger 

validation cohort is probably the most realistic estimate. The GWAS was run with an 

additive inheritance model, representing the most balanced hypothesis when testing 

thousands of loci in parallel, as a complete dominant effect is rare for common SNPs. 

Nevertheless, median LoA by genotype in studied populations suggests a dominant 

model for a damaging effect of the T allele on the ambulation phenotype in DMD. 

The C>T transition at rs1883832, adjacent to translation start in the 5’ UTR, disrupts a 

translationally relevant Kozak sequence, and the promoter SNP rs6074022 (in perfect LD 

with rs1883832) influences CD40 transcriptional activity [Gandhi et al., 2010]. 

Furthermore, the minor allele at this locus has been associated to enhanced alternative 

splicing of a Δexon6 secreted isoform, which might act as a decoy receptor [Onouchi et 

al., 2012]. Overall the minor allele, which we observed in association to earlier LoA in 

DMD, seems to downregulate CD40 signaling by multiple transcriptional and post-

transcriptional mechanisms [Field et al., 2015]. The list of described genetic associations 

at this locus is long [Jacobson et al., 2005; Pineda et al., 2008; Raychaudhuri et al., 2008; 

Skibola et al., 2008; van der Linden et al., 2009; del Río-Espínola et al., 2010; Blanco-

Kelly et al., 2010; Rodríguez-Rodríguez et al., 2010; Gandhi et al., 2010; Orozco et al., 

2010; Wang et al., 2011; Nieters et al., 2011; Shuang et al., 2011; Tanizawa et al., 2011; 

Chen et al., 2012; Li et al., 2012; Yang et al., 2012; García-Bermúdez et al., 2012; 

Onouchi et al., 2012; Joo et al., 2013; Sokolova et al., 2013; Yun et al., 2014; İnal et al., 

2015; Jiang et al., 2015; Wu et al., 2015; Chen et al., 2015; Panach et al., 2015; Field et 

al., 2015], and includes GWA and candidate gene studies of inflammatory diseases (but 

also of bone density, atherosclerosis, lymphoma, etc.), with bidirectional odds ratios. 

This bidirectionality (risk or protective factor) suggests that CD40 signaling regulates 
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immunity in a complex manner, which might enhance or dampen immune and 

inflammatory processes based on the physiopathological context. 

In DMD, there is a well-established role of T cells in the pathogenesis [Gussoni et al., 

1994; Morrison et al., 2000; Morrison et al., 2005; Farini et al., 2007; Pinto-Mariz et al., 

2010; Villalta et al., 2014; Cascabulho et al., 2012] and response to glucocorticoids 

[Kissel et al., 1991], both muscle fibers and immune cells being able to act as APCs and 

present antigens to T cells [Sugiura et al., 2000]. CD40 is upregulated in inflammatory 

muscle diseases, influencing chemokine production, and expressed on both infiltrating 

cells and muscle fibers [Sugiura et al., 2000], a mechanism which might also regulate 

secondary inflammation in muscular dystrophy. Functional studies are warranted to 

investigate specific molecular mechanisms underlying this association. 

The only previous study identifying a modifier gene of a Mendelian disease phenotype 

with a genome-wide approach was the discovery of DCTN4 variants as a risk factor for P. 

Aeruginosa infection in cystic fibrosis [Emond et al., 2012]. This study was based on 

exome sequencing of extreme phenotypes (early vs. late or no infection) in 91 patients, 

focused on moderately rare and rare variants (MAF < 12.5%), adopted a gene-wise 

burden test, and also relied on subsequent validation. We illustrate an alternative 

approach, which takes into account that even common functional variants may have 

strong modifier effects in Mendelian diseases, when the affected gene is pathologically 

upregulated. These different approaches may prove complementary in explaining 

variable expressivity of rare monogenic diseases. 

In conclusion, we report a novel modifier locus of the rare disease DMD, identified by an 

initial underpowered GWAS focused on common functional variants, hypothesis-based 

prioritization of GWAS p-values, and validation in independent cohorts, in an 

international collaborative effort which collectively represents the largest DMD genetic 

association study so far. Reduced CD40-mediated cell-cell signaling in carriers of the 

minor rs1883832 allele might precipitate failed regeneration and fibrosis, and this 

pathway represents a novel therapeutic target in DMD. This study represents a 
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paradigm for the investigation of common functional variants as modifiers of rare 

monogenic diseases. 
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Aim 5: Genotype-phenotype correlations in BMD 

Background 

Becker muscular dystrophy (BMD) is an X-linked neuromuscular disorder caused by non-

truncating mutation in the DMD gene, leading to quantitatively and/or qualitatively 

altered dystrophin protein being expressed in skeletal and cardiac muscle [Hoffman et 

al., 1989]. Most frequently, causative mutations are single- or multi-exon deletions 

(approximately 70%), while single or multi-exon duplications and small (sub-exonic) 

mutations represent approximately 15% each [Darras et al., 2000]. 

The typical clinical picture of BMD comprises proximal muscle wasting and weakness, 

presenting in adolescents or young adults, more evident at the thigh extensors and 

pelvic girdle than the shoulder girdle; pronounced calf hypertrophy; possible loss of 

motor functions, such as rising from the floor or walking independently, occurring years 

or decades after onset; and frequent dilated cardiomyopathy, with no obvious 

correlation with the severity of skeletal muscle involvement [Darras et al., 2000]. BMD 

can be distinguished from the more severe allelic disorder, Duchenne muscular 

dystrophy (DMD), which is characterized at the molecular level by truncating mutations 

and abolished dystrophin expression [Hoffman et al., 1987]. A classic clinical definition 

classifies as BMD those patients who remain ambulatory after the age of 16 years, while 

DMD patients lose ambulation by the age of 13 [Darras et al., 2000]. However, this 

general principle is challenged by the existence of intermediate forms (IMD) and by the 

improvement of standards of care in DMD, so that the distinction between severe cases 

of BMD and “outlier” DMD/IMD patients may be blurred. Conversely, at the mild end of 

the BMD spectrum are patients who present with muscle hypertrophy (prominently of 

the calves) and/or elevated creatin kinase (CK) levels, but virtually no muscle wasting or 

weakness [Angelini et al., 1994a]. 
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Genotype-phenotype correlation studies have shown that loss of functionally crucial 

actin- or dystroglycan-binding domains, respectively at the N- or C-terminus, can result 

in DMD-like phenotypes despite detectable protein [Hoffman et al., 1991; Aartsma-Rus 

et al., 2006; Kesari et al., 2008]. Deletions in the large dystrophin rod domain, which 

harbours the majority of BMD causing mutations, might differently affect the physical 

properties of resulting internally deleted dystrophin, depending on the preservation or 

loss of structural “phase” between spectrin repeats and hinge regions [Kaspar et al., 

2009]. Some specific deletions, such as deletions of in-frame exons in the proximal rod 

domain [Angelini et al., 1994a], and deletions including the hinge 3 domain encoded by 

exons 50 and 51 [Carsana et al., 2005; Anthony et al., 2011], have been more frequently 

associated to mild or asymptomatic cases; while frequently observed deletions situated 

in the DMD mutational hotspot around exon 45-53 [White and Den Dunnen, 2006], but 

not including exons 50-51, have been linked with a typical clinical picture of BMD 

[Bushby et al., 1993; Anthony et al., 2014a; van den Bergen et al., 2014b]. Moreover, a 

quantitative correlation between dystrophin content in muscle and BMD severity has 

been described, both as a linear or threshold effect [Angelini et al., 1994a; Angelini et 

al., 1996; Comi et al., 1994; Anthony et al., 2011; van den Bergen et al., 2014b]. 

Recently, renewed interest has been kindled in this field, as some BMD-causing 

deletions can be regarded as naturally occurring models of the in-frame deletions 

produced at the transcript level by splice-modulating antisense oligonucleotides (AONs), 

employed in the treatment of DMD with the exon skipping approach [Aartsma-Rus, 

2012; Arechevala-Gomez et al., 2012]. 

While establishing and refining genotype-phenotype correlations, and describing natural 

history is relevant for prognosis and counseling, the longitudinal description of 

validated, clinically meaningful outcome measures is needed for the optimal design of 

clinical trials for upcoming therapeutic interventions. While this has been the object of 

increasing attention in DMD [Mazzone et al. 2011; Mazzone et al., 2013; Henricson et 

al., 2013; McDonald et al., 2013; Pane et al., 2014a], there is scarce data describing the 

application of standardized functional measures in BMD, with a cross-sectional or 
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longitudinal approach. We mutuated outcome measures currently established in natural 

history studies and clinical trials for ambulatory DMD patients: the Six Minute Walk Test 

(6MWT), measuring the walking distance a patient is able to cover in 6 minutes 

[McDonald et al., 2010], the North Star Ambulatory Assessment (NSAA), a scale scoring 

the ability to perform motor tasks of everyday life with or without compensation 

[Mayhew et al., 2011; Scott et al., 2012], and three timed function tests (TFTs): run/walk 

10 m, rise from the floor, climb four standard steps. These were evaluated at baseline 

and after 1 year in a population of BMD patients referring to our Center. 
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Methods 

Informed consent. The study was approved by the local Ethics committee, and all 

patients or their legal guardians consented to study procedures. 

Inclusion criteria. We selected male patients with a diagnosis of BMD based on the 

following criteria: muscle tissue Western Blot (WB) or immunofluorescence (IF) showing 

reduced dystrophin relative to control, in the presence of a DMD gene mutation; or 

altered molecular weight dystrophin identified by WB; or evidence of an in-frame DMD 

gene mutation. 

Dystrophin quantification. Dystrophin Western blot was performed following SDS-

PAGE, according to methods described elsewhere [Angelini et al., 1996], using a 

monoclonal antibody against the C-terminus and visualization on X-ray films by ECL-

chemioluminescence method (Amersham). Control and patient samples were loaded in 

adjacent lanes to determine both molecular weight and relative abundance. Dystrophin 

quantity was determined by densitometric analysis of dystrophin bands, normalized to 

myosin bands in the post-transfer Coomassie blue stained gels, with subtraction of 

background. 

Functional measures. 6MWT, NSAA, and TFTs (run or walk 10 m, rise from the floor 

starting in a straight-leg sitting position, climb 4 standard stars) were performed by 

trained neuromuscular physicians in compliance with validated protocols [Mazzone et 

al., 2009; Mazzone et al., 2010; McDonald et al., 2010; Mayhew et al., 2011], at baseline 

and after 12 ± 1 months. For the purposes of cross-sectional analyses (descriptive 

statistics, correlations) of baseline functional measures, patients who were unable to 

perform tasks because of loss of function (e.g. 6MWT and run/walk velocity in non-

ambulatory) were scored as zero. For the purposes of longitudinal analyses of functional 

changes after 1 year, only patients who were able to perform tasks at baseline were 

included. 
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Disease milestones. Loss of independent ambulation (LoA) was defined as continuous 

wheelchair use, and loss of the ability to run (LoR) was defined as the inability to 

accelerate significantly from normal gait and lift both feet off the ground. The times at 

loss of ability to climb stairs and rise from the ground was also noted in the patient 

history, but were not analyzed because many patients were unable to date these events 

with precision. 

Grouping of patients for statistical analyses. We grouped patients with DMD deletions 

predicted to result at the transcript level from exon skipping with antisense 

oligonucleotides currently being experimented in DMD clinical trials. These included the 

deletions of exons 45-47, 45-48, 45-49, and 45-55, hereafter called collectively as “del 

45-x”, as models of exon 45 skipping (28 patients), and the deletions of exons 34-51, 45-

51, 48-51, and 50-51, hereafter called collectively “del x-51”, as models of exon 51 

skipping (10 patients). While the deletion of exons 45-51 might result at the transcript 

level from the skipping of both exons 45 and 51, we included this deletion in the “del x-

51” group because the 45-50 deletion is a more common cause of DMD than the 46-51 

deletion [White and den Dunnen, 2006]. Furthermore, as the isolated deletion of exon 

48 was the most frequent mutation not included in the groups described above (10 

patients), we considered it as a separate group for statistical analyses (“del 48”). This 

resulted in four mutation groups: “del 45-x”, “del 48”, “del x-51”, and “other”. For 

graphical representation and summary statistics of functional measures associated to 

different levels of dystrophin quantity, we grouped patients with available WB 

dystrophin quantification into 3 groups, showing 0-33%, 34-66%, and 67-100% 

dystrophin quantity relative to control. 

Statistical analyses. Differences in age between mutation groups were tested by 

Student’s t test, while dystrophin levels were compared by Mann-Whitney U test. Time-

to-event analyses of loss of ambulation and ability to run were performed, with loss of 

function as event, age as time variable, and censoring patients able to walk/run at last 

follow-up. Age at loss of function was compared between groups by log-rank test, and 
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hazard ratios (HRs) associated to WB dystrophin levels were estimated by Cox 

regression. Baseline correlations between dystrophin quantity and functional measures, 

between age and functional measures, and between different functional measures were 

assessed by Spearman’s rank correlation coefficient. Baseline functional differences 

between mutation groups were tested by Kruskal-Wallis rank sum test. Significance of 

functional changes after 1 year in the whole cohort and individual mutation groups was 

tested by Friedman rank sum test. Correlation between dystrophin quantity and 

functional change at 1 year was tested by Spearman’s rank correlation coefficient. 

Statistical significance was set at p < 0.05. Statistical analyses were performed with R 

version 3.2.1. Power calculations were performed with PS version 3.0.43 [Dupont and 

Plummer, 1990], using the paired design t-test option. 
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Results 

Patients. We recruited 69 BMD patients aged 6 to 69 years (mean ± standard deviation 

[SD] 33.2 ± 16.5, Table I), from 61 unrelated families. Familial cases included one family 

with three affected brothers, four families with two affected brothers, one family with 

affected maternal uncle and nephew, and one with affected maternal grandfather and 

grandson. 

Mutations. The majority of patients (56/69, 81%) harboured a deletion of one or more 

DMD exons. Ordered by frequency, these were: del 45-48, 14 patients; del 48, 10 

patients; del 45-47, 10 patients; del 45-51, 5 patients; del 48-49, 3 patients; del 45-49, 

del 45-55, del 48-51, del 50-51, del 10-25, 2 patients each; del 3-9, del 10-29, del 11-30, 

del 34-51, 1 patient each. Two patients (3%) harboured a duplication (dup 13-42 and 

dup 19-41). Sub-exonic in-frame microdeletions were identified in one patient 

(c.10099_10101delGAA, p.Glu3386del) and 3 brothers (c.676_678delAAG, p.Lys226del). 

Two brothers had a frame-shifting sub-exonic microdeletion (c.10587_10588delAG, 

p.Lys3505AlaFsX8) in exon 74, and a muscle biopsy performed in one of the borthers 

showed reduced dystrophin immunolabeling with the “DYS1” antibody directed against 

the rod domain of dystrophin. One patient had a missense mutation (c.478A>C, 

p.Thr160Pro), and two brothers had a synonymous mutation (c.4299G>T, p.Gly1433Gly) 

predicted in silico to disrupt an exon splicing enhancer (ESE) site [Desmet et al., 2009]. 

Splicing out of exon 30 was not confirmed at the RNA level, but the remaining gDNA 

sequence was normal and WB showed low amounts (10-30%) of dystrophin with slightly 

reduced molecular weight on WB. The c.4299G>T synonymous variant was not found in 

the dbSNP, 1000 Genomes, and ExAC databases. Two patients harboured nonsense 

mutations: c.4980G>A, p.Trp1660* in exon 35, with rescue of 29% dystrophin with 

slightly reduced molecular weight at WB; and c.3843G>A, p.Trp1281* in exon 28, with 

rescue of 17% dystrophin with slightly reduced molecular weight. After grouping 

patients by mutation as explained in Methods, there were 28 patients in the “del 45-x” 

group, 10 in the “del 48” group, 10 in the “del x-51” group, while the remaining 21 were 
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grouped as “other”. Average age in the “del 48” and “del x-51” groups was younger than 

in the “del 45-x” group by 13.0 and 13.3 years respectively (p = 0.08 and 0.02,). Average 

age by mutation group is summarized in Table I. 

 

Table I. Age and dystrophin quantity by DMD mutation. 

 

Mutation 

group 

Individual 

mutation 

Age (years) Dystrophin (% of control) 

n Mean ± SD median (range) n Mean ± SD median (range) 

“del 45-x” 

del 45-47 10 38.1 ± 13.0 40.1 (10.7 ~ 55.9) 5 39 ± 27 28 (10 ~ 75) 

del 45-48 14 38.5 ± 17.2 38.0 (9.2 ~ 69.6) 12 57 ± 28 49 (16 ~ 100) 

del 45-49 2 32.1 ± 17.9 32.1 (19.4 ~ 44.7) 1 28 ± NA 28 (28 ~ 28) 

del 45-55 2 29.3 ± 31.7 29.3 (6.9 ~ 51.6) 2 90 ± 14 90 (80 ~ 100) 

"del 45-x" total 28 37.2 ± 16.0 38.3 (6.9 ~ 69.6) 20 54 ± 29 49 (10 ~ 100) 

“del 48” del 48 10 24.2 ± 19.5 14.5 (6.1 ~ 65.8) 7 67 ± 21 58 (40 ~ 100) 

“del x-51” 

del 34-51 1 50.7 ± NA NA 1 70 ± NA NA 

del 45-51 5 16.8 ± 6.8 16.2 (8.6 ~ 25.7) 4 90 ± 12.5 93 (74 ~ 100) 

del 48-51 2 37.8 ± 7.2 37.8 (32.7 ~ 42.9) 2 64 ± 24 64 (47 ~ 81) 

del 50-51 2 14.3 ± 2.1 14.3 (12.9 ~ 15.8) 2 82 ± 18 82 (69 ~ 95) 

"del x-51" total 10 23.9 ± 14.1 18.7 (8.6 ~ 50.7) 9 80 ± 17 81 (47 ~ 100) 

“other” 

del 3-9 1 13.1 ± NA NA 1 100 ± NA NA 

rod domain del* 4 33.7 ± 14.2 29 (22.6 ~ 54.2) 4 100 ± 0 100 (100 ~ 100) 

del 48-49 3 50.2 ± 13.1 54.7 (35.4 ~ 60.3) 3 37 ± 38 30 (3 ~ 78) 

duplications 2 39.9 ± 6.9 39.9 (35 ~ 44.7) 2 30 ± 35 30 (5 ~ 55) 

nonsense 2 28.6 ± 4.8 28.6 (25.2 ~ 32) 2 23 ± 8 23 (17 ~ 29) 

missense 1 37.6 ± NA NA 1 13 ± NA NA 

small deletions 6 35.4 ± 18.1 34.9 (17.4 ~ 54.1) 1 39 ± NA 39 (39 ~ 39) 

synonym 2 40.7 ± 8 40.7 (35 ~ 46.3) 2 23 ± 4 23 (20 ~ 26) 

"other" total 21 36.5 ± 14.2 35.0 (16.1 ~ 50.3) 16 51 ± 39 34.5 (3 ~ 100) 

Total 69 33.2 ± 16.5 34.9 (6.1~69.6) 52 59 ± 31 57 (3 ~ 100) 

 

SD: standard deviation. del: deletion. * Including deletions of exons 10-25, 10-29, del 

11-30. 
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Figure 1. Dystrophin quantity by mutation. Box plot of quantity of dystrophin, expressed 

as % of control assessed by Western Blot, associated to different kinds of DMD 

mutations. Data for each mutation group (“del 45-x”, “del 48”, “del x-51”, “other”) is 

presented in a separate rectangle. Data for each individual mutation is represented as 

empty box plots with circles for individual data points. The rightmost, coloured boxplot 

in each rectangle represents the total for each mutation group. Axis labels: numbers 

represent deletions of corresponding exons; TOT: total; rod del: rod domain deletions 

including deletions of exons 10-25, 10-29, and 11-30; dup: duplications of exons 13-42 

and 19-41; stop: nonsense mutations; small: sub-exonic microdeletion.  
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Dystrophin quantity. Average dystrophin quantity was 59.5 ± 31.3% relative to control. 

There were differences in dystrophin levels between mutation groups (Figure 1, Table I). 

In particular, dystrophin levels in the “del x-51” group were higher than in the “del 45-x” 

group (80.3 ± 17.4% vs. 54.5 ± 29.5%, n = 9 and 20 respectively, p = 0.03). Dystrophin 

levels associated with exon 48 deletion were in between these two groups (66.6 ± 21.4, 

n = 7). Mutations showing dystrophin levels similar to control included deletion of exons 

45-55 and rod domain deletions (del 10-25, 10-29, and 11-30). 

Loss of independent ambulation. At baseline, three/69 patients were using a 

wheelchair full time: one 60 year old patient carrying the deletion of exon 45-48 (LoA at 

59 years); one 47 year old patient carrying the deletion of exon 45-47 (LoA at 41 years); 

and one 18 year old patient carrying an in-frame microdeletion (LoA at 17 years). Two 

additional patients lost ambulation during the study: a 22 year old patient carrying a 

distal out-of-frame microdeletion (with reduced dystrophin on IF); and a 38 year old 

patient carrying a missense mutation. All LoA events were observed in the “del 45-x” or 

“other” mutation groups, and none in the “del x-51” or “del 48” groups, although this 

difference was not statistically significant (log-rank test) due to the small number of 

events, which also made it impossible to estimate median ages at LoA. Cox regression 

did not show a significant association of earlier LoA with lower dystrophin levels, 

although this analysis was scarcely powered, with only 3 patients becoming non-

ambulatory and having available dystrophin quantification data. Kaplan-Meier plots of 

walking ability by age are shown in Figure 2A-B. 

Loss of the ability to run. Similar to LoA, all patients who lost the ability to run were in 

the “del 45-x” (14/28, 50%) or “other” (11/21, 52%) mutation groups. Nine of these 

could not date the LoR event at a precise age, and were excluded from time-to-event 

analyses. Median age at LoR in the whole cohort was 31 years (95% confidence interval 

[CI] 26 ~ ∞), and earlier in the “del 45-x” group (median 26 years, 95% CI 17 ~ 27). The 

difference in age at LoR between mutation groups was significant (log-rank p < 0.001 

with 3 degrees of freedom). Cox regression showed a significant association of lower 
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dystrophin quantity with earlier LoR (HR 0.98, 95% CI 0.90 ~ 0.99, p = 0.03). Kaplan

Meier plots of running ability by age are shown in Figure 2C

Figure 2. Kaplan-Meier plots of loss of ability to walk and run. The proportion of patients 

able to walk at increasing ages are represented, grouped by A) mutation group (“del 45

x”, “del 48”, “del x-51”, and “other”), and B) dystrophin quantity (0

100%). The proportion of patients able to run at increasing ages are represented by C) 

mutation group, and D) dystrophin quantity.

Baseline functional measures.

in the following paragraphs a
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dystrophin quantity with earlier LoR (HR 0.98, 95% CI 0.90 ~ 0.99, p = 0.03). Kaplan

Meier plots of running ability by age are shown in Figure 2C-D.

Meier plots of loss of ability to walk and run. The proportion of patients 

able to walk at increasing ages are represented, grouped by A) mutation group (“del 45

51”, and “other”), and B) dystrophin quantity (0-33%, 34

100%). The proportion of patients able to run at increasing ages are represented by C) 

mutation group, and D) dystrophin quantity. 

Baseline functional measures. Results of baseline functional evaluations are presented 

in the following paragraphs and summarized in Table II. 
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Table II. Baseline functional measures overall and by mutation. 

Baseline 

functional 

measure 

Mutation 

group 
n 

Mean value ± 

SD 

Median value 

(range) 

Comparison* between 

mutation groups 

6MWT distance 

(m) 

del 45-x 27 347 ± 167 372 (0 ~ 615) 

6MWT differs significantly 
between mutation groups  

(p = 0.02) 

del 48 10 459 ± 121 482 (183 ~ 656) 

del x-51 10 497 ± 100 474 (386 ~ 721) 

other 21 365 ± 147 413 (0 ~ 595) 

All BMD 68 391 ± 155 425 (0 ~ 721) 

NSAA score 

del 45-x 27 20.9 ± 11.1 20 (2 ~ 34) 

NSAA differs significantly 
between mutation groups  

(p < 0.001) 

del_48 10 33.9 ± 0.32 34 (33 ~ 34) 

del_x-51 10 33.7 ± 0.95 34 (31 ~ 34) 

other 21 23.0 ± 11.2 24 (2 ~ 34) 

All BMD 68 25.3 ± 10.8 32.5 (2 ~ 34) 

Run/walk 10 m 

velocity (m/s) 

del 45-x 27 1.55 ± 1.05 1.25 (0 ~ 3.33) 

Run/walk velocity differs 
significantly between 

mutation groups (p < 0.001) 

del 48 9 3.52 ± 1.01 3.33 (1.67 ~ 5) 

del x-51 10 3.95 ± 1.19 4.17 (2 ~ 5) 

other 21 1.99 ± 1.41 1.67 (0 ~ 5) 

All BMD 67 2.31 ± 1.49 3.00 (0 ~ 5) 

Rise from floor 

velocity (s^ ~ 1) 

del 45-x 28 0.19 ± 0.19 0.17 (0 ~ 0.5) 

Rise from floor velocity differs 
significantly between 

mutation groups (p < 0.001) 

del 48 9 0.52 ± 0.2 0.5 (0.33 ~ 1) 

del x-51 10 0.62 ± 0.28 0.5 (0.33 ~ 1) 

other 21 0.27 ± 0.27 0.17 (0 ~ 1) 

All BMD 68 0.32 ± 0.28 0.33 (0 ~ 1) 

Climb stairs 

velocity (steps/s) 

del 45-x 28 1.20 ± 1.21 0.8 (0 ~ 4) 

Cimb stairs velocity differs 
significantly between 

mutation groups (p < 0.001) 

del 48 9 2.96 ± 1.25 4 (1.33 ~ 4) 

del x-51 10 3.13 ± 1.14 4 (1.33 ~ 4) 

other 21 1.57 ± 1.38 1.33 (0 ~ 4) 

All BMD 68 1.83 ± 1.46 1.33 (0.00 ~ 4.00) 

 

6MWT: 6 Minute Walk Test. NSAA: North Star Ambulatory Assessment. * Kruskal-Wallis rank sum test for 

differences between mutation groups. 
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Baseline 6MWT. One patient refused to perform the 6MWT because of recent trauma, 

and four were assigned a “zero meter” distance for the purpose of cross-sectional 

baseline analyses (e.g. comparisons within mutation groups). Of these, 3 where using a 

wheelchair continuously and one could not walk more than a few steps with a wheeled 

walking frame. Average distance covered in the 6MWT was 391 ± 155 m (414 ± 123 m 

excluding the four “zero” values). No patient experienced dyspnea, dizziness, 

palpitations, arrhythmia, or other cardiac or respiratory symptoms during the test. 

There were no falls and no test interruptions. 

Baseline NSAA. NSAA was scored in 68/69 patients (one could not be scored in all items 

because of recent trauma) and averaged 25.3 ± 10.8, with a range of 2-34 and a heavily 

right-skewed distribution (median 32.5), due to a “ceiling effect”: 28 patients with 

substantially normal muscle function scored the maximum (34 points). On the other 

hand, the minimum observed score of 2 was due all patients having preserved anti-

gravity strength of the neck flexor muscles, thus scoring 2 points in the “lift head” item 

despite inability to stand or perform postural transfers independently. 

Baseline TFTs. One patient refused to perform the 10 m walk/run because of recent 

trauma, and one could not perform TFTs because of a logistic issue. Due to disease 

progression, 4/67 patients (6%) were unable to walk 10 m, 18/68 (26%) were unable to 

rise from the floor, and 9/68 (13%) were unable to climb 4 standard steps. These 

patients were assigned a “zero” velocity in the corresponding activities for the purpose 

of cross-sectional comparisons. Average baseline velocities were as follows: 10 m 

run/walk 2.31 ± 1.49 m/s, rise from floor 0.32 ± 0.28 s-1, climb 4 standard steps 1.83 ± 

1.46 steps/s. Excluding “zero” velocity values, baseline velocities were 2.45 ± 1.42 m/s, 

0.44 ± 0.23 s-1, and 2.11 ± 1.36 steps/s respectively. 
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Figure 3. Correlation matrix of dystrophin quantity, age, and functional measures. 

Panels in the diagonal indicate parameters represented on corresponding columns and 

rows. Upper panels show correlation parameters (Spearman’s ρ and corresponding p

value) between parameters on corresponding the row and column, while lower panels 

show scatter plots, with data po

lines. 
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Figure 3. Correlation matrix of dystrophin quantity, age, and functional measures. 

indicate parameters represented on corresponding columns and 

rows. Upper panels show correlation parameters (Spearman’s ρ and corresponding p

value) between parameters on corresponding the row and column, while lower panels 

show scatter plots, with data points color-coded for mutation group, and regression 
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Correlations between baseline functional measures, dystrophin quantity, and age. All 

functional measures (6MWT, NSAA, and TFTs) were positively correlated with 

dystrophin quantity assessed by WB, and negatively correlated with age. Furthermore, 

all functional measures were positively correlated within each other. Scatter plots 

showing these correlations, and the corresponding parameters (Spearman’s ρ, p value), 

are shown in Figure 3. Due to a NSAA “ceiling effect” in milder mutation groups (“del 

48” and “del x-51”), correlations between NSAA and other parameters appeared more 

linear in the other, more severe groups (“del 45-x”, “other”), although still significant in 

the overall BMD cohort. 

Baseline functional differences between mutation groups. For all functional measures 

at baseline, there were significant differences between mutation groups (Table II). 

Compared to the “del 45-x” group, patients in the “del 48” and “del x-51” mutation 

groups walked respectively 112 m and 150 m farther in the 6MWT. Furthermore, while 

NSAA scores showed an approximately nomal distribution in the “del 45-x group”, with a 

mean ± SD of 20.9 ± 11.1 and median of 20, patients in the “del 48” and “del x-51” 

groups almost always (90% in both groups) scored a maximum 34/34 in the NSAA, 

hence the “ceiling effect” observed with this measure, and registered higher velocities 

in all timed items. 

Functional changes after 1 year. Fifty-four patients completed the 6MWT at baseline 

and after 1 year, showing stability of this measure: average change was 3 ± 66 m. 

Conversely, there was a significant decrease of -0.9 ± 1.6 NSAA score points in 57 

patients who completed this evaluation after 1 year (p < 0.001). TFTs were stable after 1 

year, with non-significant changes of -0.03 ± 0.58 m/s in run/walk velocity, 0.06 ± 0.25 s-

1 in rise from floor velocity, and -0.13 ± 0.6 steps/s in climb stairs velocity. Two patients 

who lost ambulation during follow-up (see paragraph about ambulatory status and 

disease milestones) were assigned “zero” values for 6MWT distance and 10 m walk 

velocity at the 1-year evaluation. At baseline, their 6MWT distances were 161 and 170 

m, and their 10 m walk speeds were 0.77 and 0.45 m/s. No patient lost the ability to rise 
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from the floor during follow up, while two (47 year old patient carrying a deletion of 

exons 45-47, and a 53 year old patient carrying a small sub-exonic deletion) lost the 

ability to climb 4 standard steps after 1 year. Grouping of functional changes by 

mutation groups (Figure 4) showed that patients in the “del 45-x” group (n = 27 with 

complete longitudinal data) “lost” -12 ± 31 m in average 6MWT distance after 1 year (p 

= 0.059). The same patients presented a significant within-group decrease of -1.3 ± 1.7 

NSAA score points at 1 year (p = 0.001). We did not observe any significant velocity 

changes in any of the TFTs after 1 year. Functional changes at 1 year are summarized by 

mutation group in Table III. There was a trend towards a correlation between dystrophin 

quantity and 1-year changes of 6MWT (ρ = 0.3, p = 0.055) and NSAA (ρ = 0.025, p = 

0.09), while no correlation between dystrophin quantity and timed item changes was 

observed (Figure 5). Functional changes at 1 year by dystrophin quantity classes are 

summarized in Table IV. 
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Figure 4. Functional changes after 1 year in different BMD mutation groups. Box plots 

showing baseline and 1-year values of A) 6MWT distance, B) NSAA score, C) 10 m 

run/walk velocity, D) rise from floor velocity, and E) climb 4 standard steps velocity. 

Boxes are color-coded for mutation group, and trajectories of each individual patient 

are illustrated by dots connected by segments.  
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Figure 5. Functional changes after 1 year in different dystrophin quantity level groups. 

Box plots showing baseline and 1-year values of A) 6MWT distance, B) NSAA score, C) 10 

m run/walk velocity, D) rise from floor velocity, and E) climb 4 standard steps velocity. 

Boxes are color-coded for dystrophin levels of 0-33%, 34-66%, and 67-100% relative to 

control, and trajectories of each individual patient are illustrated by dots connected by 

segments.   
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Table III. Functional changes after 1 year, overall and by mutation. 

 

  

Functional 

measure change 

at 1 year 

Mutation 

class 
n Mean change ± SD 

Median change 

(range) 

6MWT distance 

(m) 

del 45-x 27 -12  ± 31§ -15 (-87 ~ 45) 

del 48 9 14 ± 43.2 79 (-58 ~ 79) 

del x-51 10 17 ± 71 135 (-90 ~ 135) 

other 17 4 ± 95 7 (-170 ~ 273) 

All BMD 54 3 ± 66 -2.5 (-170 ~ 273) 

NSAA score 

del 45-x 20 -1.3 ± 1.7** -1 (-5 ~ 1) 

del_48 9 -0.3 ± 0.5 0 (-1 ~ 0) 

del_x-51 10 0 ± 0 0 (0 ~ 0) 

other 18 -1.3 ± 2.2 0 (-6 ~ 1) 

All BMD 57 -0.9 ± 1.6*** 0 (-6 ~ 1) 

Run/walk 10 m 

velocity (m/s) 

del 45-x 18 0.22 ± 0.65 0 (-0.42 ~ 2.5) 

del 48 9 -0.36 ± 0.6 0 (-1.67 ~ 0) 

del x-51 10 -0.17 ± 0.53 0 (-1.67 ~ 0) 

other 17 -0.04 ± 0.43 0 (-0.83 ~ 0.83) 

All BMD 54 -0.03 ± 0.58 0 (-1.67 ~ 2.5) 

Rise from floor 

velocity (s^ ~ 1) 

del 45-x 13 0.11 ± 0.25 0 (-0.1 ~ 0.8) 

del 48 9 0.1 ± 0.17 0.5 (0 ~ 0.5) 

del x-51 10 0.01 ± 0.38 0.67 (-0.5 ~ 0.67) 

other 12 0.024 ± 0.17 0 (-0.17 ~ 0.5) 

All BMD 44 0.06 ± 0.25 0 (-0.5 ~ 0.8) 

Climb stairs 

velocity (steps/s) 

del 45-x 16 -0.03 ± 0.16 0 (-0.29 ~ 0.33) 

del 48 9 -0.15 ± 0.73 0 (-2 ~ 0.67) 

del x-51 10 -0.2 ± 0.71 0 (-2 ~ 0.67) 

other 16 -0.17 ± 0.76 0 (-2 ~ 0.67) 

All BMD 51 -0.13 ± 0.6 0 (-2 ~ 0.67) 

 

6MWT: 6 Minute Walk Test. NSAA: Norths Star Ambulatory Assessment. § 

Functional change close to statistical significance (p = 0.059). ** Statistically 

significant functional change (p = 0.001). ***Statistically significant functional 

change (p < 0.001). 
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Table IV. Functional changes after 1 year, by dystrophin quantity. 

 

Functional 

change at 1 

year 

Dystrophin  

(% of 

control) 

n 

Mean 

change  

± SD 

Median 

change (range) 

Correlation between 

dystrophin % and 

functional change 

6MWT 

distance (m) 

0-33 11 -21 ± 62 -9 (-170 ~ 52) 

ρ = 0.3, p = 0.055 34-66 8 4 ± 31 1.5 (-29 ~ 51) 

67-100 23 18 ± 75 10 (-90 ~ 273) 

NSAA score 

0-33 11 -0.91 ± 1.58 -1 (-5 ~ 1) 

ρ = 0.025, p = 0.09 34-66 10 -0.8 ± 1.82 0 (-5 ~ 1) 

67-100 24 -0.38 ± 0.93 0 (-4 ~ 0) 

Run/walk 10 

m velocity 

(m/s) 

0-33 11 -0.03 ± 0.41 0 (-0.83 ~ 0.83) 

ρ = 0.22, p = n.s. 34-66 8 -0.13 ± 0.7 0 (-1.67 ~ 0.83) 

67-100 23 0.09 ± 0.67 0 (-1.67 ~ 2.5) 

Rise from 

floor velocity 

(s^-1) 

0-33 7 0.16 ± 0.24 0 (0 ~ 0.5) 

ρ = 0.07, p = n.s. 34-66 7 -0.01 ± 0.1 0 (-0.17 ~ 0.17) 

67-100 22 0.07 ± 0.32 0 (-0.5 ~ 0.8) 

Climb stairs 

velocity 

(steps/s) 

0-33 10 0 ± 0.26 0 (-0.29 ~ 0.67) 

ρ = 0.06, p = n.s. 34-66 9 0.11 ± 0.33 0 (-0.33 ~ 0.67) 

67-100 22 -0.35 ± 0.83 0 (-2 ~ 0.67) 

 
6MWT: 6 Minute Walk Test. NSAA: North Star Ambulatory Assessment.  

 

Power calculation for a hypothetical BMD clinical trial. As the NSAA was able to detect 

a significant functional change in one year, we could perform a power calculation in 

order to answer the question: how many BMD patients per study arm would be needed, 

in order to show the effectiveness of a 1-year course of treatment in slowing NSAA 

decrease? As the NSAA decrease was mostly due to patients in the “del 45-x” group 

(typical BMD phenotype), and was significant in this group in itself, the power 

calculation is based on this population alone, which showed a mean ± SD NSAA change 

of -1.3 ± 1.7. Assuming a type I error α = 0.05 and power (1 - β) = 0.8, it would take 

approximately 15 patients per study arm to identify the effect of an intervention able to 

arrest disease progression (1.3 point difference in NSAA change). This figure would 

correspond to approximately 20, 40, and 65 patients per arm for NSAA change 
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differences of 1, 0.75, and 0.5 respectively (Figure 6). Inclusion criteria in this 

hypothetical trial should be limited to patients with “typical” BMD, based on mutation 

or baseline functional status, as it is clear from longitudinal NSAA data (Table III, Figure 

5) in the “del x-51” and “del 48” group that patients with mild BMD have a “ceiling” 

effect with NSAA and stable scores after 1 year. 
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Figure 6. Power calculation for a hypothetical 1-year trial in typical BMD, using NSAA as 

an outcome measure. This power calculation assumes selection of BMD patients with a 

typical BMD phenotype based on functional or genetic criteria, and exclusion of patients 

with mild/asymptomatic or DMD-like phenotypes; an accepted type I error rate of α = 

0.05, and a required statistical power (1 - β) = 0.8, and a blinded placebo-controlled 

design. The number of patients per study arm required for adequate power increases, as 

the hypothetical difference in 1-year NSAA change between treatment and placebo 

decreases. 
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Discussion 

The patient population recruited in our study recapitulates the usually described BMD 

mutation distribution (81% deletions), and the phenotypic variability commonly 

observed in BMD [Darras et al., 2000]. The most severe cases showed progressive 

muscle wasting and LoA in early adulthood, while milder cases presented normal muscle 

strength and function [Angelini et al., 1994a]. 

We confirm that deletions ending on exon 51 are associated with relatively high 

dystrophin levels, averaging ~80%, very similar to levels measured in the same mutation 

group by a different technique quantitative immunohistochemistry by other 

laboratories [Anthony et al., 2011]. Although the two dystrophin quantification 

techniques are not directly comparable, both our data and previous report point to 

relatively abundant dystrophin in this mutation group. As expected, these patients 

displayed normal or close-to-normal muscle strength and function, and did not present 

any functional deterioration over the course of one year. The functional picture was 

similar in a group of patients carrying the isolated deletion of exon 48, despite slightly 

lower dystrophin levels, averaging ~65%. Patients in both the “del x-51” and “del 48” 

groups did not suffer from loss of the ability to walk or run, even in the adult age, 

although this observation was somewhat limited by younger average age in these 

groups. 

Patients in the “del 45-x” group, on the other hand, were confirmed to display a typical 

BMD phenotype [Bushby et al., 1993; Anthony et al., 2014a; van den Bergen et al., 

2014b], with progressive muscle wasting and weakness resulting in loss of motor 

function, as shown by loss of the ability to run and rarely to walk, and by reduced 6MWT 

distance, NSAA scores, and TFT velocities. Dystrophin WB quantitative data paralleled 

functional data in this group, showing dystrophin levels averaging 40~50%. This was 

again close to levels measured by quantitative immunohistochemistry in a similar BMD 

subpopulation [Anthony et al., 2014a]. The exception within the “del 45-x” group was 

represented by two patients carrying the deletion of exons 45-55, who had higher 

dystrophin levels (~90%) and a milder phenotype (both NSAA = 34, 6MWT > 400 m), as 
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previously reported for this mutation [Ferreiro et al., 2009]. This is probably due to the 

the fact that the 45-55 deletion spans exons 50 and 51, encoding the hinge III domain, 

whose absence from internally deleted dystrophin seems to stabilize the protein 

[Carsana et al., 2005]. Subsequently, while these patients have been included in the “del 

45-x” group based on DMD exon skipping models, they bear in fact more similarities 

with the “del x-51” group from the standpoint of genotype-phenotype correlation. 

Taken together, these observations confirm that skipping of exon 51 could be expected 

to be more effective than skipping of exon 45 for the treatment of DMD [Anthony et al., 

2011; Anthony et al., 2014a]. Theoretically, AON cocktails promoting the skipping of 

multiple exons may be expected to be more effective than single-exon skipping AONs 

for DMD patients with “hotspot” deletions, if multi-exon skipping caused the exclusion, 

rather than inclusion, of exons 50 and 51 from the resulting spliced transcript. Multi-

exon skipping of exons 45-55 has been proposed as a potential therapy for up to 40-45% 

DMD patients, although issues related to low efficacy and toxicity of AON mixtures 

complicates the translation of this approach to human trials [Aoki et al., 2013]. If these 

technical hurdles were overcome, this approach could be considered also for BMD 

patients with relatively common deletions such as those of exons 45-47, 45-48, and 45-

49, for whom skipping of exons up to 55 (or 51) could be expected to convert typical 

BMD into mild or asymptomatic BMD. 

Some individual patients with rare mutations in our cohort offer further interesting 

insights into genoype-phenotype correlations. A 13 year old patient with a deletion of 

exons 3-9, which ablates most of the N-terminal actin binding domain, nevertheless 

presented a mild clinical picture with a NSAA score of 34/34. Dystrophin function might 

be preserved because of the existence of secondary actin-binding sites within the rod 

domain of dystrophin [Amann et al., 1998]. The novel missense mutation p.Thr160Pro 

was associated to a relatively severe phenotype (LoA at 38 years in a patient who 

previously underwent a heart transplant). This mutation introduces a proline, probably 

disrupting secondary structure, within the functionally critical actin-binding domains 

encoded by exon 6. A synonym nucleotide substitution (c.4299G>T, p.Gly1433Gly), 
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which likely causes the exclusion of exon 30 from the mature mRNA by disrupting an 

ESE, caused mild dystrophinopathy (NSAA 34/34, 6MWT > 400 m) in two brothers aged 

35 and 47 years who had reduced (10~30%) dystrophin with slightly reduced molecular 

weight at WB. These cases represent a rare kind of pathogenetic mutation, and also 

display well preserved muscle strength and function despite relatively low dystrophin 

quantity ascertained by WB. Two patients in our cohort presented nonsense mutations. 

One, carrying the mutation c.4980G>A, p.Trp1660* in exon 35, presented a relatively 

mild BMD phenotype (32 year old, NSAA 32/34, 6MWT > 400 m) and 29% dystrophin at 

WB, while the other, carrying the mutation c.3843G>A, p.Trp1281* in exon 28,  suffered 

from substantial weakness (25 years, NSAA 12/34, 6MWT 312 m) and had 17% 

dystrophin. A BMD phenotype is sometimes observed with nonsense mutations situated 

within in-frame exons of the rod domain, especially if the corresponding exon is 

predicted to have weak exon recognition signals, i.e. low splice acceptor site strength 

and low ESE density, leading to endogenous exon skipping [Flanigan et al., 2011]. 

Interestingly, exons 28 and 35 are actually predicted in the cited paper by Flanigan et al. 

to have relatively strong splice acceptor sites and average-to-high ESE density, so that 

other unidentified factors may be at play in these mutations, which determine 

alternative splicing to occur. These nonsense mutations have not been observed in 

other patients in the Leiden database [Aartsma-Rus et al., 2006]. Two brothers had an 

out-of-frame microdeletion in exon 74 (c.10587_10588delAG, p.Lys3505AlaFsX8), and 

were included in this study because of the presence of reduced dystrophin identified by 

IHC with the DYS-1 antibody directed towards the rod domain, and a BMD phenotype 

(one brother lost ambulation at the age of 22 years, and the other is ambulatory at 17 

years). The distal situation of this frameshifting mutation may determine the escape of 

part of the transcript from nonsense-mediated decay, leading to reduced amounts of 

distally truncated dystrophin. Unfortunately, no muscle tissue was available to quantify 

dystrophin by WB. Finally, two patients with large duplications involving exons 13-42 

and 19-41, which gave rise to abnormally large dystrophin proteins (up to 600 kDa), 

presented symptomatic BMD, suggesting altered structure and function of these 
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aberrant proteins. The patients carrying the larger duplication (13-42) was previously 

described as displaying a relatively mild phenotype [Angelini et al., 1990], but 25 years 

from the original report, his weakness has progressed (NSAA score of 12 at 35 years of 

age); conversely, the patient with the relatively smaller mutation (19-41) is more mildly 

affected (NSAA 33 at 47 years of age). Further studies would be required to establish if 

sheer protein size, or subverted phasing of protein domains, are dictating phenotype in 

these patients. 

As proposed by other authors [Angelini et al., 1994a; Angelini et al., 1996; Comi et al., 

1994; Anthony et al., 2011; van den Bergen et al., 2014b], we did identify a moderate 

correlation of dystrophin quantity with phenotype severity in the whole cohort (Figure 

3). It is interesting to speculate on which molecular mechanisms stabilize internally 

deleted DMD transcripts and/or dystrophin proteins, and thus modulate the BMD 

phenotype. We did not observe a clear correlation between dystrophin quantity and 

phenotype severity within the most numerous mutation groups (deletions of exons 45-

47 and 45-48, see the “del 45-x” data series in Figure 3), which was similar to findings in 

a Dutch cohort of BMD patients [van den Bergen et al., 2014b]. Observing a correlation 

within a homogeneous mutation group would eliminate the confounding effects due 

different mutations, and suggest more clearly that disease severity might be actually 

dictated by inter-individual variability in dystrophin quantity. Although this analysis is 

hindered by low patient numbers, challenges in accurate dystrophin quantification 

[Anthony et al., 2014b], and sampling variability of dystrophin in human muscle 

biopsies, there does not seem to exist such a linear correlation within homogeneous 

mutation groups. On the other hand, parallel differences in both dystrophin quantity 

and phenotype severity across different mutation groups, which are commonly and 

consistently observed, suggest that the physical properties of internally deleted 

dystrophin proteins dictate disease severity, by causing varying degrees of downstream 

pathogenetic phenomena, such as altered costamere resistance to mechanical stress, 

membrane hyperpermeability, and disrupted recruitment of, and interaction with 

dystrophin-associated glycoproteins and other relevant factors (e.g. nNOS, syntrophin, 
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dystrobrevin). It has recently been shown that the inflammatory milieu characterizing 

active dystrophic pathology, and specifically the activation of the TNFα - NF-κB signaling 

pathway, upregulate several microRNAs which target the DMD 3’ untranslated region, 

thus inhibiting dystrophin translation [Fiorillo et al., 2015]. Based on this model, 

quantitative dystrophin reduction might be a consequence of qualitative dystrophin 

alterations in BMD, and in turn sustain a vicious cycle of exacerbated pathology. As a 

corollary, the use of anti-inflammatory agents might be beneficial in BMD with active 

dystrophic pathology, if compounds were available that had an improved benefit-to-

side-effect ratio than glucocorticoids, which are currently considered too harmful for 

long-term treatments in typical BMD. 

One of the main aims of this study was to test the adequacy of the 6MWT as an 

outcome measure in a BMD population. Despite a wide variability, the correlations with 

dystrophin quantity, age, and all other functional measures support its clinical 

meaningfulness. Patients with a mild or asymptomatic clinical picture (34/34 NSAA 

score) always walked more than 400 m, which is considered a threshold for exclusion 

from some DMD clinical trials because of low probability of functional deterioration in 

the following one to three years [Pane et al., 2014a]. The only exception was one 

patient suffering from a schizophrenic disorder, who could collaborate fully to study 

procedures, but had a slow gait with mixed hysterical and iatrogenic dystonic 

alterations, and covered only 183 m in the 6MWT despite a 34/34 score in the NSAA. 

Within the “del 45-x” mutation group, there was a strong inverse correlation of 6MWT 

distance with age, similar to findings reported in other cohorts with a composite muscle 

strength quantification [van den Bergen et al., 2014b]. 

The NSAA, on the other hand, showed an obvious “ceiling effect” in mild or 

asymptomatic patients, especially those in the “del 48” and “del x-51” mutation groups. 

For these patients, NSAA does not appear to be a feasible clinical endpoint. On the 

contrary, for typical BMD patients (e.g. the “del 45-x” group) there was an even 

distribution of patients among scale scores, a tight inverse correlation with age, and a 

strong correlation with 6MWT and timed items, suggesting a clinically meaningful 
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outcome measures. Similar considerations apply to TFTs. Asymptomatic patients were 

very fast in the proposed tasks, so that the accuracy of time measurements sometimes 

became an issue, but there was a gradual decrease of velocities with age and good 

correlations with other measures in typical BMD. 

The 6MWT distance was stable after 1 year in the overall population, suggesting that 

the observation period was not long enough to detect a deterioration of walking 

function in BMD. Breakdown of 6MWT changes by mutation group revealed some 

apparent “improvements” in a few young, mildly affected or asymptomatic patients, 

probably due to a limitation of our study which did not include a baseline test-retest, 

causing some “learning effect”. Importantly, however, a trend towards a distance 

decrease (-12 m) was observed in the typical BMD population (Figure 4, panel A), hinting 

at a possible detection of significant changes with longer observation periods, and 

supporting the clinical meaningfulness of longitudinal 6MWT in BMD. 

NSAA changes, although not informative for mild patients (“del 48”, “del x-51”) 

appeared even more sensitive in detecting disease progression, as there was a 

statistically significant decrease of -0.9 points in the whole cohort (Figure 4, panel B). 

This change was driven by a decrease of -1.3 points in the “del 45-x” group (Figure 4, 

panel B), which was in itself statistically significant. In this group, most patients (13/18) 

decreased of one or more point, and only one increased one point. The design of the 

NSAA scale renders the clinical meaning of a 1-point decrease immediate and specific by 

comparison with baseline values, e.g. the patient has lost the ability to rise from the 

floor, or needs handrail support to climb a step. The observation of a statistically 

significant decrease of NSAA in a group of patients with typical BMD has several 

important implications. First, the selection of patients based on functional 

characteristics appears paramount in order to be able to measure differences in disease 

progression due to the intervention under study; a baseline NSAA score of 10 to 32 

might be an example of such a criterion. Second, we were able to provide a power 

calculation for a hypothetical BMD clinical trial, which should be considered preliminary 

and warrants collection of natural history data in larger BMD populations for longer 
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time periods, but nevertheless represents a step towards clinical trial readiness in BMD. 

Third, more in-depth analyses of the patterns of loss of function underlying decreased 

NSAA score are warranted to improve our understanding of BMD natural history (e.g. 

chronological order in the loss of differenct motor functions) and possibly adapt the 

NSAA scale, which was tailored specifically on DMD patterns of functional deterioration 

by Rasch analysis [Mayhew et al., 2011].  

Longitudinal changes of TFTs did not appear to be sensitive in describing disease 

progression. Even more than with 6MWT, we observed noise due to learning effect and 

inconsistent performances, so that longer observation times are probably needed to 

accomplish meaningful results with these measures.  

We acknowledge several limitations to this study, including the lack of test - retest at 

baseline, the unavailability of WB dystrophin quantification in all patients, and the loss 

of follow-up at 1 year in some patients. We plan to continue the collection of natural 

history data and expand the cohort to overcome these limitations. 

In conclusion, we confirm genotype-phenotype correlations that have been previously 

established for BMD: deletions bordering exon 45 (but not including exons 50-51) cause 

a typical BMD phenotype, while deletions bordering exon 51 and isolated exon 48 

deletions cause mild or no muscle wasting and weakness. In the perspective of exon 

skipping outcomes for DMD caused by “hotspot” (exon 45-53) deletions, we also 

confirm an outlook of potential better outcomes for exon skipping treatments resulting 

in the absence of the hinge III domain (exons 50-51) from the rescued, internally deleted 

dystrophin protein. Based on the novel longitudinal natural history data presented here, 

it appears crucial to select BMD patients with measurable muscle weakness and 

dysfunction at baseline, in order to observe meaningful functional changes during a 1-

year time frame. NSAA, and to a lesser extent 6MWT, hold promise as feasible and 

clinically meaningful outcome measures for BMD clinical trials. 
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Conclusions 

The development of the aims of this thesis has led to relevant results, which help 

deciphering several different and interconnected aspects of the clinical variability 

observed in Duchenne and Becker muscular dystrophy. 

1. Our study of the known DMD modifiers in the CINRG-DNHS [Bello et al., 2015a], in 

addition to providing independent validation of the genetic associations described in the 

original cohorts, offered insights into the dynamics of disease modifying mechanisms. In 

particular, it became apparent that SPP1 genotype may be a pharmacodynamic 

biomarker of glucocorticoid treatment response in DMD, rather than a modifier of 

disease progression by itself; and we highlighted the relevance of controlling for 

population stratification in DMD cohorts recruited in clinical studies, as this can be a 

powerful confounder in the interpretation of results. These findings have relevant 

implications for patient care, trial design, and interpretation of the data of natural 

history studies and interventional trials. 

2. Genotype-phenotype correlations in the CINRG-DNHS confirmed that deletions 

amenable to exon 44 skipping often present a mild phenotype, and that in DMD the 

selection of placebo groups in trials of mutation-specific drugs should probably be 

limited to patients with similar or comparable mutations from the standpoint of natural 

history. Similarly, trials of non-mutation specific drugs should make an effort to balance 

mutations with “atypical” disease courses equally between treatment and placebo 

groups. 

3. Treatment with deflazacort may have a greater efficacy than treatment with 

prednisone in DMD [Bello et al., 2015b], a hypothesis generated by the CINRG-DNHS 

observational data, and currently being tested by the phase 3 “FOR-DMD” trial for 

Finding the Optimum glucocorticoid Regimen in DMD. 

4. We performed the first GWAS aiming to discover genetic modifiers in a rare 

neuromuscular disease. This GWAS and the subsequent validation studies included a 
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total of 769 DMD patients from 4 continents, and demonstrated that CD40 is a novel 

modifier locus of DMD, highlighting the relevance of cell-mediated inflammatory 

mechanisms in DMD pathogenesis, and representing an interesting therapeutic target. 

5. Our longitudinal natural history study of BMD identifies NSAA and 6MWT as feasible, 

clinically meaningful outcome measures for clinical trials in BMD, and provides the bases 

to power these studies appropriately and design inclusion criteria. Furthermore, we 

were able to predict better efficacy of exon 51 than 45 skipping in DMD. 

Future perspectives include: functional studies to elucidate through which molecular 

mechanisms CD40 signaling modifies dystropathology, and fine-tune potential 

interventions aimed at modulating this pathway in “in vivo” models; continued 

collection of DMD and BMD natural history data to expand genetic modifier studies with 

enlarged populations; discovery studies of genetic modifiers in other neuromuscular 

diseases. 

Ultimately, the overarching aim of our research in the field of genetic modifiers of 

neuromuscular diseases will be to exploit the growing potential of genotyping and next 

generation sequencing, in order to not only identify the pathogenetic mutation for each 

patient, but also interpret the role of the genetic background in dictating the 

phenotype, the clinical course, and the response to treatments; and use this information 

to provide improved care.  
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