Integration on manifolds by mapped low-discrepancy points and greedy minimal $k_{s^{\prime}}$-energy points

Stefano De Marchi ${ }^{a}$, Giacomo Elefante ${ }^{b}$
${ }^{a}$ University of Padova, demarchi@math.unipd.it,
${ }^{b}$ University of Fribourg, giacomo.elefante@unifr.ch

1. Low-Discrepancy Points

For the QMC method, because of KoksmaHawka inequality (cf. [3]) it is natural to use low-discrepancy sequences to integrate functions in $[0,1)^{d}$.
Low-discrepancy sequences are those whose star discrepancy has order $\log (N)^{d} / N$.
Some examples of low-discrepancy sequences are the Halton sequence, Hammersley point sets, Sobol sequences or the Fibonacci lattice (see e.g. [4]).

2. Preserving Measure Maps

Let us consider the measure \mathcal{H}_{2} on a manifold \mathcal{M} of dimension 2 which, by means of the area formula [1] is, with respect to the Lebesgue measure λ_{2} on a rectangle $\mathcal{U} \subset \mathbb{R}^{2}$, of the type

$$
\int_{\mathcal{U}} g(x) \mathrm{d} \lambda_{2}(x)
$$

with g a density function that depends on the parametrization Φ of \mathcal{M}.
Then, we look for a change of variables

$$
\begin{align*}
\Psi: & \mathcal{U}^{\prime} \\
x^{\prime} & \longrightarrow \mathcal{U} \tag{1}\\
& \longrightarrow \Psi\left(x^{\prime}\right)=x
\end{align*}
$$

with \mathcal{U}^{\prime} a rectangle of \mathbb{R}^{2}. And we require that

$$
\begin{equation*}
g\left(\Psi\left(\boldsymbol{x}^{\prime}\right)\right)\left|J \Psi\left(\boldsymbol{x}^{\prime}\right)\right|=g(\boldsymbol{x})=1 \tag{2}
\end{equation*}
$$

in order to have

$$
\mathcal{H}_{2}(\mathcal{M})=\mu(\mathcal{M})
$$

where $\mu(A):=\lambda_{2}\left(\Phi^{-1}(A)\right)=\int_{\Phi^{-1}(A)} \mathrm{d} \lambda_{2}$.
The points $\Phi(S)$, where S are uniformly distributed in the rectangle \mathcal{U}, are naturally uniformly distributed with respect to the measure μ on the manifold \mathcal{M}.
Then, by using the change of variables (1) we will have that the sequence $\Phi\left(\Psi\left(\mathcal{S}^{\prime}\right)\right)$, where \mathcal{S}^{\prime} is a sequence uniformly distributed on \mathcal{U}^{\prime} with respect the Lebesgue measure, will be uniformly distributed with respect to the measure \mathcal{H}_{2} on \mathcal{M}.

References

[1] G. B. Folland, Real Analysis: Modern Techniques and their applications. Wiley \& Sons.
[2] D. P. Hardin and E. B. Saff "Minimal Riesz energy point configurations for rectifiable d-dimensional manifolds.", Adv. Math., vol. 193, no. 1, pp. 174204, 2005
[3] L. Kuipers and H. Niederreiter, Uniform distribution of sequences. Dover Publications.
[4] J. Dick and F. Pillichshammer, Digital nets and sequences. Discrepancy theory and Quasi-Monte Carlo integration. Cambridge University Press.
[5] A. López-García and E. B. Saff "Asymptotics of greedy energy points", Math. Comp., vol. 79, no. 272, pp. 2287-2316, 2010
[6] S. De Marchi and G. Elefante "Integration on manifolds by mapped low-discrepancy and greedy minimal k_{s}-enegy points." Preprint. (1)

3. Greedy k_{s}-energy Points

Using a greedy algorithm we could have an approximation of the minimal Riesz s-energy points.
Let $k: X \times X \rightarrow \mathbb{R} \cup\{\infty\}$ be a simmetric kernel on a locally compact Hausdorff space X, and let $A \subset X$ be a compact set. A sequence $\left(a_{n}\right)_{n=1}^{\infty} \subset A$ is called a greedy minimal k-energy sequence on A if it is generated in the following way:
(i). a_{1} is selected arbitrarily on A.

4. Numerical Experiments

Let be.
$f_{1}(x, y, z):= \begin{cases}\cos (30 x y z) & \text { if } z<\frac{1}{2} \\ \left(x^{2}+y^{2}+z^{2}\right)^{3 / 2} & \text { if } z \geq \frac{1}{2},\end{cases}$
To compute the integrals
$\frac{1}{\mathcal{H}_{d}(\mathcal{M})} \int_{\mathcal{M}} f_{i}(\boldsymbol{x}) \mathrm{d} \mathcal{H}_{d}(\boldsymbol{x}), \quad i=1,2$
we use a QMC method with
$f_{2}(x, y, z):=e^{-\sin \left(2 x^{2}+3 y^{2}+5 z^{2}\right)}$.
(a). low discrepancy points mapped on the manifolds,
(b). greedy minimal k_{s}-energy points.
(ii). Assuming that a_{1}, \ldots, a_{n} are already selected, then a_{n+1} is chosen in such way that it satisfies
$\sum_{i=1}^{n} k\left(a_{n+1}, a_{i}\right)=\inf _{x \in A} \sum_{i=1}^{n} k\left(x, a_{i}\right)$, for every $n \geq 1$.
For the $\overline{\mathrm{M}}$. Riesz kernel in $X=\mathbb{R}^{d^{\prime}}$ which depends on a parameter s in $[0,+\infty)$ we set

$$
k_{s}(\boldsymbol{x}, \boldsymbol{y}):=K_{s}(|\boldsymbol{x}-\boldsymbol{y}|), \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{d^{\prime}}
$$

where $|\cdot|$ is the Euclidean norm and

$$
K_{s}(t):= \begin{cases}t^{-s} & \text { if } s>0 \\ -\log (t) & \text { if } s=0\end{cases}
$$

For $k=k_{s}$ we obtain the greedy k_{s}-energy points

Figure 1: 610 points on the cone

N	Halton	Fibonacci	GM k_{2}
144	$1.476 \mathrm{e}-01$	$1.089 \mathrm{e}-02$	$8.406 \mathrm{e}-02$
610	$4.415 \mathrm{e}-02$	$8.045 \mathrm{e}-05$	$4.872 \mathrm{e}-03$
2584	$6.847 \mathrm{e}-04$	$3.115 \mathrm{e}-06$	$5.177 \mathrm{e}-03$

Table 1: Relative errors for f_{1} on the cone with Fibonacci, Halton and Greedy Minimal k_{2}-energy points

N	Halton	Fibonacci	GM k_{2}
144	$3.282 \mathrm{e}-03$	$1.025 \mathrm{e}-04$	$2.834 \mathrm{e}-03$
610	$1.755 \mathrm{e}-03$	$5.727 \mathrm{e}-06$	$2.251 \mathrm{e}-03$
2584	$7.294 \mathrm{e}-05$	$3.190 \mathrm{e}-07$	$1.325 \mathrm{e}-03$

Table 2: Relative errors for f_{2} on the cone with Fibonacci, Halton and Greedy Minimal k_{2}-energy points

Figure 2: 610 points on the torus

N	Halton	Fibonacci	GM k_{2}
144	$1.218 \mathrm{e}-01$	$1.690 \mathrm{e}-01$	$3.081 \mathrm{e}-02$
610	$1.453 \mathrm{e}-01$	$1.410 \mathrm{e}-01$	$4.728 \mathrm{e}-02$
2584	$1.414 \mathrm{e}-01$	$1.411 \mathrm{e}-01$	$2.297 \mathrm{e}-02$

Table 3: Relative errors for f_{1} on the torus with Fibonacci, Halton and Greedy Minimal k_{2}-energy points

N	Halton	Fibonacci	GM k_{2}
144	$3.033 \mathrm{e}-02$	$3.426 \mathrm{e}-02$	$4.949 \mathrm{e}-03$
610	$2.716 \mathrm{e}-03$	$8.821 \mathrm{e}-03$	$1.349 \mathrm{e}-02$
2584	$8.763 \mathrm{e}-03$	$6.453 \mathrm{e}-03$	$1.673 \mathrm{e}-03$

Table 4: Relative errors for f_{2} on the torus with Fibonacci, Halton and Greedy Minimal k_{2}-energy points

