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A recently introduced family of multipartite entangled states, the 4-qubit phased Dicke states, has been

created by 2-photon hyperentanglement. Our experimental method allows high state fidelity and

generation rate. By introducing quantum noise in the multipartite system in a controlled way, we have

tested the robustness of these states. To this purpose the entanglement of the resulting multipartite

entangled mixed states has been verified by using a new kind of structural witness.

DOI: 10.1103/PhysRevLett.105.250501 PACS numbers: 03.67.Mn, 03.65.Yz

The generation and detection of multipartite entangled
states is a remarkable challenge that needs to be accom-
plished in order to fully explore and exploit the genuine
quantum features of quantum information and many-body
physics. So far only a limited number of families of pure
multipartite entangled states has been experimentally pro-
duced. In view of future applications, it is particularly
important to test the robustness of the generated states in
the presence of unavoidable noise coming from the envi-
ronment. Here, we produce a new family of multipartite
entangled states, we experimentally introduce certain types
of noise in a controlled way and test the robustness prop-
erties of the states.

The experimental generation of multipartite entangled
states that we propose is based on hyperentangled photons
[1,2], which allows us to produce symmetric and phased
Dicke states. Dicke states have recently attracted much
interest, due to their resistance against photon loss [3]
and projection measurements [4], and have been produced
in experiments with photons [4–6]. Phased Dicke states are
achieved by introducing phase changes starting from ordi-
nary Dicke states [7]. Thus, they do not belong to the
symmetric subspace and offer new possibilities for multi-
partite communication protocols, in particular, because
their degree of entanglement (in terms of the geometric
measure of entanglement [8]) is higher or equal with
respect to the symmetric ones [9].

In order to test the presence of multipartite entanglement
we may adopt different kinds of entanglement witnesses.
Their experimental implementations are presented, e.g., in
Refs. [10] for bipartite qubits, and [4–6,11] for pure sym-
metric multipartite states. In this work we implement a
recently proposed new class of entanglement witnesses, so-
called structural witnesses [7], and further extend such a
class in order to achieve higher efficiency in entanglement
detection. Moreover, we test the robustness of the phased

Dicke states by introducing dephasing noise in a controlled
fashion and provide a measurement of the lower bound on
the robustness of entanglement. In this way we provide a
new experimental tool to investigate the entanglement
properties of multipartite mixed states. The method
adopted to create 4-qubit phased Dicke states is based on
2-photon hyperentanglement. This technique makes pos-
sible the realization of such multipartite states, with rele-
vant advantages in terms of generation rate and state
fidelity compared to 4-photon states. The measurements
were performed by a closed-loop Sagnac scheme that
allows high stability. Moreover, we were able to control
the noise in a photonic 4-qubit experiment (so far, to our
knowledge controlled noise on 4 qubits has only been
achieved with ions, see [12]).
An entanglement witness is defined as a Hermitian

operator W that detects the entanglement of a state � if it
has a negative expectation value for this state, hWi� ¼
Trð�WÞ< 0 while at the same time Trð�WÞ � 0 for all
separable states � [13,14]. For a composite system of N
particles, the structural witnesses [7] have the form

WðkÞ :¼ 1N � �ðkÞ ¼ 1N � 1
2½ ��ðkÞ þ ��ð�kÞ�; (1)

where k is a real parameter (the wave-vector transfer in a
scattering scenario), 1N is the identity operator, and

��ðkÞ ¼ 1

BðN; 2Þ ½cxŜ
xxðkÞ þ cyŜ

yyðkÞ þ czŜ
zzðkÞ�; (2)

with ci 2 R, jcij � 1. Here BðN; 2Þ is the binomial coeffi-

cient and the structure factor operators Ŝ��ðkÞ are defined as
Ŝ ��ðkÞ :¼ X

i<j

eikðri�rjÞS�i S
�
j ; (3)

where i, j denote the ith and jth spins, ri, rj their positions

in a one-dimensional scenario, and S�i are the spin operators
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with �, � ¼ x, y, z. In the following we normalize the
distances with the labels of the qubits as ri � rj ¼ i� j. In

the present work we focus on the case of 4-qubits phased
Dicke states defined as [7]:

jDph
4 i ¼ 1ffiffiffi

6
p ðj0011i þ j1100i þ j0110i þ j1001i

� j0101i � j1010iÞ: (4)

A suitable structural witnessW for the above phasedDicke
state is given by the operator (1) with k ¼ �, cx ¼ cy ¼
cz ¼ 1 and S�i being the Pauli operators [7]. This witness

leads to TrðjDph
4 ihDph

4 jW Þ ¼ � 4
9 .

A wider class of structural witness can be obtained by
generalizing the operator given in (2) to linear superposi-

tions of structure factor operators Ŝ��ðkÞ evaluated for
different values of k:

��ðkx; ky; kzÞ ¼ 1

BðN; 2Þ ½cxŜ
xxðkxÞ þ cyŜ

yyðkyÞ

þ czŜ
zzðkzÞ�; (5)

with ci 2 R, jcij � 1. Following the same argument as in
[7], it can be shown that any operator of the form (5)
combined as in (1) has non-negative expectation values
for separable states and is therefore an entanglement wit-
ness. Using this more general construction for the present
experiment we consider a witness operator with kx ¼
ky ¼ � and kz ¼ 0:

�W ¼ 1N � 1

6
½Ŝxxð�Þ þ Ŝyyð�Þ � Ŝzzð0Þ�: (6)

The expectation value of the above witness for the phased

Dicke state (4) is given by TrðjDph
4 ihDph

4 j �W Þ ¼ � 2
3 , that is

smaller than the one achieved by the structural witnessW
based on (2), thus leading to a more robust entanglement
detection in the presence of noise.

State generation.—Let us consider the following state
j�i � 1ffiffi

6
p ðj0010i � j1000i þ 2j0111iÞ. It is easy to show

that the phased Dicke state can be obtained by applying a
unitary transformation U to the state j�i:
jDðphÞ

4 i ¼ Z4CZ12CZ34CX12CX34H1H3j�i � Uj�i (7)

where Hj and Zj stands for the Hadamard and the Pauli �z

transformations on qubit j, CXij ¼ j0iih0j1j þ j1iih1jXj is

the controlled-NOT gate, and CZij ¼ j1iih1j1j þ j0iih0jZj

the controlled Z. An equivalent and more simple trans-
formation is given by U ¼ Z1CX12CX34H1H3. We used
the transformation given in (7) in order to compensate the
optical delay introduced by theCX gates in the Sagnac loop
of Fig. 1(b). We realized the Dicke state by using
4-qubits encoded into polarization and path of two para-
metric photons [A and B in Fig. 1(a)]. The j0i and j1i states
are encoded into horizontal jHi and vertical jVi polariza-
tion or into right jri and left j‘i path. Explicitly, we used the
following correspondence between physical states and
logical qubits: fj0i1; j1i1g ! fjriA; j‘iAg, fj0i2; j1i2g !
fjHiA; jViAg, fj0i3; j1i3g ! fjriB; j‘iBg, and fj0i4; j1i4g !
fjHiB; jViBg. According to these relations the state j�i reads

j�i ¼ 1ffiffiffi
6

p ½jHHiðjr‘i � j‘riÞ þ 2jVVijr‘i� (8)

and may be obtained by suitably modifying the source used
to realize polarization-momentum hyperentangled states
[1,15]. In each ‘‘ket’’ of (8) the first (second) term refers
to particle A (B). A vertically polarized UV laser beam
(P ¼ 40 mW) impinges on a type I �-barium borate
(BBO) nonlinear crystal in two opposite directions, back
and forth, and determines the generation of the polarization
entangled state corresponding to the superposition of the
spontaneous parametric down conversion (SPDC) emission
at degenerate wavelength [see Fig. 1(a)]. A 4-hole mask
selects four optical modes (two for each photon), namely
jriA, j‘iA, jriB, and j‘iB, within the emission cone of the
crystal. The SPDC contribution, due to the pump beam

FIG. 1 (color online). Generation of the 4-qubit phased Dicke state. (a) Scheme of the entangled 2-photon 4-qubit parametric source
that generates the state j�i. Mirror M reflects both the UV pump beam and the parametric radiation. The lens L is used to obtain
parallel modes at the output of the 4-hole screen. HWP (QWP) is an half- (quarter-) wave plate. (b) Optical setup used to transform j�i
into the state jDðphÞ

4 i and to measure Pauli operators. The phase ’ is used to properly generate j�iwhile ’A and ’B are used to measure

Pauli path operators for the A and B photon, respectively.
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incoming after reflection on mirror M, corresponds to the
term jHHi � ðjr‘i � j‘riÞ, whose weight is determined by
a half wave plate intercepting the UV beam (see [16] for
more details on the generation of the nonmaximally polar-
ization entangled state). The other SPDC contribution
2jVVijr‘i is determined by the first excitation of the
pump beam: here the j‘ri modes are intercepted by two
beam stops and a quarter wave plate QWP transforms the
jHHi SPDC emission into jVVi after reflection on mirror
M. The relative phase between the jVVi and jHHi is varied
by translation of the spherical mirror.

The transformation (7) j�i ! jDðphÞ
4 i is realized by using

wave plates and one beam splitter (BS): the two
Hadamards H1 and H3 in (7), acting on both path qubits,
are implemented by a single BS for both A and B modes.
For each controlled-NOT (or controlled-Z) gate appearing in
(7) the control and target qubit are, respectively, repre-
sented by the path and the polarization of a single photon: a
half wave plate (HWP) with axis oriented at 45� (0�) with
respect to the vertical direction and located into the left j‘i
(right jri) mode implements a CX (CZ) gate.

After these transformations, the optical modes are spa-
tially matched for a second time on the BS, closing in this
way a ‘‘displaced Sagnac loop’’ interferometer that allows
high stability in the path Pauli operator measurements [see
Fig. 1(b)]. Polarization Pauli operators are measured by
standard polarization analysis setup in front of detectors
DA and DB (not shown in the figure). The overall detection
rate is�500 Hz. Note that the j0i (j1i) states are identified
by the counterclockwise (clockwise) modes in the Sagnac
loop. It is worth stressing the high stability allowed in path
analysis by the Sagnac interferometric scheme. This par-
ticular configuration, operating on both the up and
down photon of the state, has made it possible to perform
a detailed investigation of the robustness of a multipartite
entangled state.

Decoherence.—We will now describe how we intro-
duced a controlled decoherence into the system. Consider
a single photon in aMach-Zehnder interferometer with two
arms (left and right). Varying the relative delay �x¼‘�r
between the right and left arm corresponds to a single qubit
path decoherence channel given by � ! ð1� pÞ�þ
pZ�Z. The parameter p is related to �x: when �x > c�,
where � represents the photon coherence time, then p ¼ 1

2 ,

while when �x¼0 we have p¼0. This can be understood
by observing that there are two time bins (one for each
path). By varying the optical delay, we entangle the path
with the time bin degree of freedom (DOF). Hence, by
tracing over time we obtain decoherence in the path DOF
depending on the overlap between the two time bins. In our
setup, this can be obtained by changing the relative delay
�x¼‘�r between the right and the left modes of the
photons in the first interferometer shown in Fig. 1. Since
the translation stage acts simultaneously on both photons,
this operation corresponds to two path decoherence
channels:

� ! ð1� q2Þ2�þ q2ð1� q2Þ½Z1�Z1 þ Z3�Z3�
þ q22Z1Z3�Z1Z3 (9)

where the parameter q2 is related to �x in the following
way. Let us consider the path terms in the jHHi contribu-
tion in j�i, namely jc�i ¼ 1ffiffi

2
p ðjr‘i � j‘riÞ. The decoher-

ence acts by (partially) spoiling the coherence between the
jr‘i and j‘ri term giving the state 1

2 ðj‘rih‘rj þ jr‘ihr‘jÞ �
1
2 ð1� 2q2Þ2ðj‘rihr‘j þ jr‘ih‘rjÞ. By assuming that for

jc�i the decoherence (9) is the main source of imperfec-
tions, the measured visibility ~Vexpð�xÞ of first interference
on BS may be compared with the calculated value ~V ¼
ð1� 2q2Þ2: then, the relation between �x and q2, shown in
Fig. 2, is obtained. The measured visibility is defined as
~Vexpð�xÞ ¼ B�C

B where B are the coincidences measured

out of interference (i.e., measured for�xmuch longer than
the single photon coherence length) andC the coincidences
measured in a given position of �x. It is worth noting that
at �x ¼ 0 we have q2 ¼ 0:0175	 0:0001 which corre-
sponds to a maximum visibility V0 ¼ 0:9313	 0:0005 at
�x ¼ 0.
The decoherence channel (9) acts on the state j�i.

However, it can be interpreted as a decoherence acting

on the phased Dicke state jDðphÞ
4 i. Using Eq. (7) and the

relations UZ1Uy ¼ �Y1Y2 and UZ3Uy ¼ Y3Y4, the
channel (9) may be interpreted as a collective decoherence

channel on jDðphÞ
4 i:

jDðphÞ
4 ihDðphÞ

4 j ! X4

j¼1

BjjDðphÞ
4 ihDðphÞ

4 jBy
j (10)

with B1 ¼ ð1� q2Þ1, B2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2ð1� q2Þ

p
Y1Y2, B3 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2ð1� q2Þ
p

Y3Y4, and B4 ¼ q2Y1Y2Y3Y4. A collective de-
coherence is a decoherence process that cannot be seen as
the action of several channels acting separately on two (or
more) qubits. A different type of collective noise, intro-
duced in [17], was experimentally demonstrated in [18] for
two polarization qubits in optical fibers.
Two other main sources of imperfections must be con-

sidered in our setup (see supplementary information for a
detailed discussion [19]): the first one is due to a non-
perfect superposition between forward and backward
SPDC emission, i.e., between the jHHi and jVVi contri-
butions. This imperfection can be modeled as a phase
polarization decoherence channel acting on qubit 2:

FIG. 2 (color online). Values of q2 corresponding to different
values of the path delay �x.
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� ! ð1� q1Þ�þ q1Z2�Z2. By selecting in j�i the corre-
lated modes jrli and by suitably setting the HWP on the
pump beam we obtain the following state: 1ffiffi

2
p ðjHHiAB þ

ei�jVViABÞjrli. Even in this case the value of the measured
polarization visibility (V� ’ 0:90) can be related to the

polarization decoherence channel as q1 ¼ 1�V�

2 ’ 0:05.

The second interference on the BS (i.e., after the Sagnac
loop) has been also investigated. In the measurement con-
dition we obtained an average visibility of Vk2 ’ 0:80

corresponding to a decoherence channel � ! ð1 �
q3Þ2� þ q3ð1 � q3Þ½Z1�Z1 þ Z3�Z3� þ q23Z1Z3�Z1Z3

with q3 ¼ 0:05.
Measurements.—We measured the witness operator (6)

for different values of q2. The results are shown in Fig. 3.
The dark curve corresponds to the theoretical curve ob-
tained by considering all the three decoherence channels
described above and setting q1 ¼ 0:05 and q3 ¼ 0:05 (see
the supplementary information about the details on the
theoretical curve [19]). Notice that the noise parameter
for which the witness expectation value vanishes gives a
lower bound on the robustness of the entanglement of the
produced state with respect to the implemented noise. The

witness �W measured for the phased Dicke state is

h �W iexp ¼ �0:382	 0:012: (11)

We also measured a witness Wmult introduced in [20] to

demonstrate that the generated state jDðphÞ
4 i is a genuine

multipartite state and to obtain a bound on the fidelity F. Its
expression is given in the supplementary information [19].
We obtained

hWmulti ¼ �0:341	 0:015 ! F � 0:780	 0:005: (12)

Varying the noise parameter q2, we obtained a negative
expectation value ofWmult for q2 � 0:114, thus proving the
existence of genuine multipartite entanglement up to this
noise level.

Following the approach of quantitative entanglement
witnesses [21], we can also use the experimental result
on the expectation value of the witness to provide a lower
bound on the random robustness of entanglement Er. This

is defined in [22] to be the maximum amount of white noise
that one can add to a given state � before it becomes

separable. When h �W i is negative, a lower bound on
Erð�Þ is given by

Erð�Þ � DjTrð� �W Þj
Trð �W Þ

; (13)

where D is the dimension of the Hilbert space on which �
acts. In our experiment the witness from Eq. (6) and its
expectation value given in Eq. (11) lead to

Erð�Þ � jh �W iexpj ¼ 0:382	 0:012: (14)

Other bounds for different values of q2 are shown in Fig. 3.

Equation (13) thus relates the value of �W in the presence
of the collective noise (10) with the resilience of entangle-
ment under the presence of a general white noise.
In summary, by two hyperentangled photons we studied

the structural properties and decoherence resilience of the
phased 4-qubit Dicke states. The multipartite entanglement
was detected up to considerable noise level and the robust-
ness of entanglement was tested by using an intrinsically
high phase stability setup. The realized phase Dicke states
have a high fidelity and, compared with other Dicke states
based on 4-photon entanglement, are produced at higher
repetition rate.
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[1] M. Barbieri et al., Phys. Rev. A 72, 052110 (2005).
[2] J. T. Barreiro et al., Phys. Rev. Lett. 95, 260501 (2005).
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