
Detecting Semantic Groups in MIP models

Domenico Salvagnin

IBM Italy and DEI, University of Padova, salvagni@dei.unipd.it

Abstract. Current state-of-the-art MIP technology lacks a powerful
modeling language based on global constraints, a tool which has long
been standard in constraint programming. In general, even basic seman-
tic information about variables and constraints is hidden from the un-
derlying solver. For example, in a network design model with unsplit-
table flows, both routing and arc capacity variables could be binary, and
the solver would not be able to distinguish between the two semanti-
cally different groups of variables by looking at type alone. If available,
such semantic partitioning could be used by different parts of the solver,
heuristics in primis, to improve overall performance. In the present pa-
per we will describe several heuristic procedures, all based on the concept
of partition refinement, to automatically recover semantic variable (and
constraint) groups from a flat MIP model. Computational experiments
on a heterogeneous testbed of models, whose original higher-level parti-
tion is known a priori, show that one of the proposed methods is quite
effective.

1 Introduction

Mixed-integer-programming (MIP) is a powerful paradigm to solve many combi-
natorial optimization problems coming from both theory and applications. De-
spite the admittedly limited set of constructs that are allowed in the paradigm,
namely linear inequalities and integer constrained variables, it turns out that
surprisingly many optimization problems of practical interest can be exactly, or
approximately, formulated as MIP models [27]. At the same time, MIP solvers
improved so much in the last decades that MIP is considered nowadays a mature
technology. The seemingly limited language of MIP was indeed (partly) instru-
mental to its success: although powerful enough to model many optimization
problems, it was at the same time easy enough to allow for a development of a
rich and general theory, and for the definition of a standard file format (namely
MPS) since the very beginning. By modeling an optimization problem as a MIP
and solving it with a MIP solver, one takes advantage from decades of past (and
future) developments in solver technology.

On the other hand, the limited language of MIP is actually a double-edged
sword: modeling real-world problems as MIPs is far from obvious—a thing that
seasoned MIP modelers tend to forget—and, more importantly, part of the global
structure, which could be exploited by problem-specific approaches, is lost when
translated into a flat MIP model. In general, even basic semantic information
about variables and constraints is hidden from the underlying solver.

Let us consider for example the prepack optimization problem [23]. This
problem arises in inventory allocation applications, where the operational cost
for packing the bins is comparable, or even higher, than the cost of the bins
(and of the items) themselves. Assuming that automatic systems are available
for packing, the required workforce is related to the number of different ways
that are used to pack the bins to be sent to the customers. Pre-packing items
into box configurations has benefits in terms of easier and cheaper handling;
on the other hand, it can reduce the flexibility of the supply chain, leading to
situations in which the set of items that are actually shipped does not match
exactly the demands—such deviations are usually penalized in the objective
function. Using the notation in [15], a mixed-integer nonlinear model for the
prepack optimization problem reads:

min
∑
s∈S

∑
i∈I

(αuis + βois) (1)

qbis = xbsybi (b ∈ B; i ∈ I; s ∈ S) (2)∑
b∈B

qbis − ois + uis = ris (i ∈ I; s ∈ S) (3)∑
i∈I

ybi =
∑
k∈K

k tbk (b ∈ B) (4)∑
k∈K

tbk = 1 (b ∈ B) (5)

ois ≤ δis (i ∈ I; s ∈ S) (6)

tbk ∈ {0, 1} (b ∈ B; k ∈ K) (7)

xbs ≥ 0 integer (b ∈ B; s ∈ S) (8)

ybi ≥ 0 integer (b ∈ B; i ∈ I) (9)

where I is the set of types of products, S the set of stores, K ⊂ Z+ the set of
available bin capacities, and B is the set of box configurations. Parameters ris
are the actual demands, while δis are upper bounds on the amount overstock-
ing. As for variables, integer variables ybi encode products’ packing into boxes,
while integer variables xbs encode the shipping of box configurations to stores.
Understocking and overstocking are expressed by decision variables uis and ois.
Then, we have additional binary variables tbk to map box configurations to bin
capacities and additional integer variables qbis = xbs ybi used to count the num-
ber of items of type i sent to store s through boxes loaded with configuration b.
Finally, the nonlinear products that define variables qbis are actually formulated
in a MIP framework by adding artificial binary variables (say v and w) that
basically provide the binary expansion of variables x and y and the correspond-
ing products. We refer to [15] for more details on the model. Although far from
complex, model (1)-(9) is a typical example of the ingenuity needed to model a
real-world problem as a MIP.

From a high-level point of view, model (1)-(9) is made of several different
sets of variables that are semantically distinct: for example x variables encode
shipping decisions, while y encode packing decisions. On the same line, v, and
w are artificial binary variables that are needed for the sole purpose of being
able to encode the constraints of the model as linear inequalities, and are also
semantically different. However, this semantic grouping is completely lost and
hidden from the MIP solver, that basically sees only a bunch of integer and
binary variables. In other words, for the purpose of solving, model (1)-(9) gets
flattened as an arbitrary general MIP model like:

min{cT z : Az ≤ b, zj ∈ Z ∀j ∈ J ⊆ {1, . . . , n}} (10)

Semantic partitioning is not the only piece of information which is lost in the
flattening process: the overall specific structure of the model (or part of it) is
usually lost too, as well as the mapping between variables and elements of the
sets of indices—actually, the index sets used during modeling are not even part
of the model that is submitted to the solver. As a matter of fact, modern MIP
solvers have a rich arsenal of algorithms that basically try to reverse-engineer
combinatorial substructures from a flat model like (10). Unfortunately, while
these procedures are usually cheap and effective, they are still heuristic in nature
and can be fooled by the many transformations that are applied to a given MIP
formulation in the preprocessing phase.

In this paper we are interested in general-purpose heuristic procedures to
recover, or approximate, the semantic partitioning of variables (and constraints)
present in the original high-level model from a flat one. The paper is organized
as follows: in Section 2 we will overview existing literature on the subject and
provide motivations for our study. In Section 3 we will present several different
partitioning algorithms and discuss their respective strengths and weaknesses. In
Section 4 we will present some computational results on a heterogenous testbed
of models, showing that some methods are indeed quite successful in this recon-
struction. Conclusions are finally drawn in Section 5.

2 Related Work

Current state-of-the-art MIP technology lacks a powerful modeling language
based on global constraints, a tool which has long been standard in constraint
programming [32]. For this reason, it has become standard practice in MIP im-
plementations to devise algorithms that basically try to reverse-engineer com-
binatorial substructures from a flat list of linear inequalities. In [3], a procedure
for detecting network structures was presented; such structure, when present, is
then used to improve cutting plane separation. In [34], a procedure for detect-
ing permutation problems, i.e., problems that optimize and arbitrary objective
function over the set of all possible permutations of a given ground set, was
introduced, with the purpose of devising a specialized primal heuristic for this
class of problems. Similarly, MIP solvers often have simple heuristics to detect

whether the problem at hand admits a specialized solution algorithm—for exam-
ple, a knapsack problem might be solved via dynamic programming—and switch
to the latter according to some effort predictions.

In addition to algorithms that look for specific structures, like networks and
permutations, modern MIP solvers also detect, usually during the preprocess-
ing stage, general-purpose global structures that are used later in the process
to improve the performance of the solver. Examples of global structures that
are widely used include the clique table, the implication graph [36], and sym-
metries [28]. Those global structures are used to improve different parts of the
solver, like domain propagation, cutting plane generation, and branching, see,
e.g.,[1]. Recently, in [18], the clique table and the implication graph have been
used to define neighborhoods for a LNS primal heuristic.

Semantic partitioning naturally belongs to the class of general-purpose global
structures, like the clique table or the symmetry group of the formulation. Such
piece of information, if available, could be used in many different components of
a MIP solver. In particular:

– branching : branching rules could be biased in order to prefer branching on
variables of the same class. This could help when other branching scores are
flat.

– aggregation: if a variable from a given class can be aggregated out, chances
are that all variables in the same class can be aggregated out—this happens,
for example, in many time-indexed formulations for scheduling problems [8].
This would eliminate part of the guess-work in the aggregation heuristics.

– relaxation: a partitioning of constraints based on semantics could open the
way to automatic Lagrangian relaxations, where constraints from the same
class are relaxed into the objective function.

– primal heuristics: semantic groups can be used to devise neighborhoods
in LNS approaches, for biasing fix-and-dive heuristics and to implement
general-purpose metaheuristics. An example is the alternate heuristics: given
two subsets of variables, it consists in alternately solving the problem with
the variables of one of the subsets fixed, and this is quite effective for some
classes of problems like pooling [6] and prepack optimization [15].

An alternative approach to the one studied here consists in extending the
solver to accept a higher-level model in the first place. In such an enriched envi-
ronment, the user is allowed to model the problem using expressions that com-
pactly encode complex substructures, and the solver, which is fully aware of those
expressions, can take advantage of specialized methods. This is the de-facto stan-
dard in constraint programming, where global constraints are used exactly for
this purpose. A further generalization of the concept is metaconstraints [20,12]:
a metaconstraint is syntactically specified much as a global constraint is, but
it is also amended with additional annotations that specify how it is to be re-
laxed, how it is supposed to do constraint propagation and to direct search (via
branching) in case it is violated. Metaconstraints, pioneered in the modeling sys-
tem SCIL [5], are partially supported in recent versions of high-level modeling

systems, like AMPL [17], ECLiPSE [30], MiniZinc [37] and SIMPL [40]: how-
ever they are fully exploited only if the underlying solver provides some native
support for them, which is currently not the case for most MIP solvers. A no-
table exception is the open-source solver SCIP [2], whose constraint handlers are
basically metaconstraints implemented at the C level.

While exploiting, as opposed to reverse-engineering, higher-level knowledge
has clear benefits and should be the winning approach in the long run, we have
to face the fact that currently most state-of-the-art MIP solvers accept only
very limited extensions w.r.t. the regular MIP language, namely indicator con-
straints [25] and piece-wise linear functions [19]. In addition, a modeling lan-
guage based on metaconstraints is not without its share of problems: as the
solver automatically translates global constraints into a MIP model, it often cre-
ates auxiliary variables. Variables introduced by different metaconstraints might
actually have the same meaning, but without some form of additional annota-
tions, like the semantic typing proposed in [12], the solver is unable to recognize
such relationships and produce a tight model, equivalent to what a human mod-
eler might produce by hand. The issue of modeling with metaconstraints ver-
sus reverse-engineering them from a flat model is also discussed, among others,
in [31,5,21,22].

Finally, there are connections between the subject of the current paper and
symmetry detection [28]: intuitively, if two variables are symmetric, they also
belong to the same semantic class, but the converse is not true. As such, semantic
grouping generalizes the orbit partitioning that is obtained as a side product of
symmetry detection, and it applies to a much wider range of problems, albeit
with a completely different usage.

3 Detection Algorithms

Recovering the high-level partition of variables (and constraints) is inherently
an ill-posed problem, as MIP solvers cannot truly have a notion of semantics.
As such, we need to replace the notion of belonging to the same semantic class
with something that is within the reach of the solver and can be inferred from
the model alone. In the present paper, we propose an overall approach based on
partition refinement, a basic tool in computer science. According to [4], partition
refinement is defined as follows: given a set S, an initial partition π of S into
pairwise disjoint blocks (also called cells) {B1, . . . , Bp}, and a function f on S1,
the task is to find the coarsest partition of S, say π′ = {E1, . . . , Eq}, such that:

1. π′ is consistent with π, that is each Ei is a subset of some Bj ;
2. π′ is compatible with f , which means that a and b in Ei imply f(a) and f(b)

are in some Ej .

Partition refinement can be implemented in O(n log n) time, for arbitrary π and
f , where n = |S|.
1 In applications, such as graph automorphism and DFA minimization, function f is

extended to dependent on a more complex domain than just S.

In our context, the partition we are interested in is obviously the one of vari-
ables and constraints in the model. The final outcome will depend on two choices,
namely the initial partition π and function f . As for the initial partition, we can
split variables according to their type and, optionally, according to whether
they appear in the objective function or not. For constraints, we can start from
their initial classification. Constraint classification [2,16] is a technique used to
achieve faster constraint propagation: for example, variable bounds, or set cover-
ing constraints, can be propagated way more efficiently than an arbitrary linear
constraint, and MIP solvers usually implement some form of classification in
order to take advantage of that. More details about the constraint classes used
in this paper are given in Section 4. As for function f , it must necessarily take
into account how variables and constraints are structurally connected in model:
a convenient tool is to encode the connections we are interested in a graph, and
then define f accordingly—in this case function f usually encodes some form
of vertex invariant in the graph. This is the approach taken, for example, in
symmetry detection codes [29,13,14], that work by implicitly constructing an
auxiliary graph and computing its automorphism group. Incidentally, partition
refinement is a crucial building block of all graph automorphism packages. In
those algorithms, function f is the so called connection function: given a vertex
v and a set of vertices B, f(v,B) gives the number of elements in B which are
connected to v. In other words, each refinement step will pick a target cell Bi, an
inducing cell Bj , and it will split the vertices in Bi according to their connection
count w.r.t. Bj . Note that there is no actual choice of B: each time a cell is split,
its pieces will act in turn as inducing cells, and the whole process is iterated
until a fixed point is reached. An example of partition refinement according to
the connection function is depicted in Figure 1.

1

2

3

4

5

6

7

(a)

[
1, 2, 3, 4 5, 6 7
2, 1, 1, 0 0, 0 0

]

[
1 2, 3 4 5, 6 7
2 1, 1 0 0, 0 0

]
(b)

Fig. 1. Example of partition refinement according to connection function. The first
row of each matrix on the right encodes the current partition, while the second gives
the connection function w.r.t. cell [5, 6].

In the rest of this section, we will describe several partitioning schemes, that
can all be cast into the refinement framework just described.

3.1 Simple Refinements

Some simple strategies rely entirely on carefully constructing an initial partition
π, and take function f as the identity. In this case, it trivially holds that π′ = π.
The two strategies that we tried in this class are:

– type: partition variables by type alone, and constraints according to their
initial classification.

– histogram: partition variables and constraints according to their so called
histogram. For variables, this amounts to counting the number of constraints
in which each variable appears, and partition based on this count—analogously
for constraints.

It is quite obvious that method type will not be powerful enough in most
cases, as it is often not possible to distinguish semantically different variables by
type alone—model (1)-(9) is an example, as is network design with unsplittable
flows. However, it is convenient to have the method as a baseline for benchmark-
ing.

3.2 Iterative Refinements

The strategies in this class implement the full-blown partition refinement algo-
ritm. They all start from the same initial partitioning described at the beginning
of the section, but use different connection functions. The three strategies that
we tried in this class are:

– fast. We construct a bipartite graph G = (V,K,E), where V is the set of
variables, K is the set of constraints classes, and there is edge (vi, kj) in the
graph if and only if variable vi appears in at least one constraint of class kj .
The connection function f is the regular connection function used in graph
automorphism packages.

– recursive. We construct a bipartite graph H = (V,C,E), where V is the set
of variables, C is the set of constraints, and there is edge (vi, cj) in the graph
if and only if variable vi appears in constraint cj . The connection function f
is a modified version of the regular connection function, that ignores actual
counts when deciding how to split a cell. In other words, a target cell Bi is
split only distinguishing between its elements that connect to the inducing
cell Bj from those that do not, without further refinement based on the
actual counts. On the example in Figure 1, refining cell [1, 2, 3, 4] w.r.t. [5, 6]
would thus yield [1, 2, 3|4] instead of [1|2, 3|4].

– auto. We construct the same bipartite graph H = (V,C,E) as in recursive,
but use the regular connection function. Note that H is the very same bi-
partite graph that would be constructed to compute symmetries in a binary
model [33], and auto then just performs the initial refinement step without
doing the enumeration required to properly compute the set of generators.

It is worth noting that fast could have been equivalently defined as using
the same connection function as recursive: given that the graph is bipartite,

and one set of vertices, namely K, is already partitioned into blocks of size 1,
no refinement can happen on K, and the connection count of a vertex v ∈ V
with a cell of K is always at most 1. As a result, fast can also be equivalently
implemented with a specialized algorithm that just computes for each variable
the subset of constraint classes it appears in and then just splitting V according
to this piece of information, with a bucket-sort like procedure. Note also that
fast does not produce a partitioning for constraints, although such a partition
can be computed a-posteriori, with a second bucket sort in which the roles of
constraints and variables are reversed.

The iterative refinement used in these methods is needed to be able to dis-
tinguish variables depending of the class of variables they connect to and not
just basing on the kind of constraints they participate in: for example, in the
prepack model, we have two sets of binary variables, namely w and v, that en-
code a binary expansion of two semantically different sets of variables (x and
y respectively). Without further information, a method like fast would not be
able to distinguish w from v, as those variables appear always in constraints of
the same kind. At the same time, this behaviour can be an overkill and lead
to an artificial split of variables. Consider, for example, a flow formulation on a
layered graph2: the flow variables associated to the first (and/or last) layer are
usually connected to some other variables in the model, while those associated
with inner layers are not. Iterative refinement will not only distinguish outer
layers from inner layers, but also recursively partition flow variables by layer,
ending up with a semantic class for each and every layer.

A common characteristic of all methods is that they completely ignore the
actual values of the coefficients in the model, but rather distinguish only be-
tween zero and non-zero values. This is in stark contrast with the symmetry
detection case: actual values are needed to compute proper symmetries, but
they are completely unsuited for semantic grouping, as variable semantics are
independent of numerics. Similarly, actual connection counts are ignored for all
methods but auto and histogram, although the situation is not as obvious as
for values: in some cases connection counts could indeed help, but they would
make the partitioning process too sensitive to trivial changes. For example, fix-
ing a variable—and getting rid of it during presolve—would create an unwanted
distinction between the variables that were connected to it and those that were
not, while ideally it should be a neutral chance in most circumstances. Similarly,
connection counts can be misleading when zero is a legitimate value for a pa-
rameter. For example, on instance markshare 5 0 from MIPLIB2010, which is
basically a multidimensional subset sum problem, the constraint matrix is ran-
domly generated and is almost fully dense: using exact counts would split the
(very few) variables whose columns do not cover all rows from those who do.

Finally, all methods come in two variants: one in which the initial partition
takes into account the objective function, by distinguishing whether a variable
appears in it or not, and one in which no such distinction is made. It is not obvi-

2 The same argument applies to the more common case of a general graph, but we
will consider the layered case for simplicity.

ous which one is more suited for the job: in some cases, like balanced subgraph
problems [24], the objective function is the only way to distinguish between ver-
tex variables and edge variables, given the current constraint classification. On
the other hand, as with the constraint matrix, zero might be a (rare but) le-
gitimate value for some of the parameters of the model, say a cost, hence the
resulting distinction would be artificial.

4 Computational Results

We implemented our code in C++, using IBM ILOG CPLEX 12.6.2 [25] as MPS
reader. All tests have been performed on a PC with an Intel Core i5 CPU running
at 2.66GHz, with 8GB of RAM. We collected a heterogeneous set of instances—
most included in MIPLIB2010 [26]—whose high-level structure was either known
or easily recoverable (by the author) from variables’ and constraints’ names,
and used that as our testbed. As for constraint classification, we considered the
following classes:

– set covering : inequality of the form
∑

j xj ≥ 1, involving binary variables
only (possibly complemented).

– set partitioning : equality of the form
∑

j xj = 1, involving binary variables
only (possibly complemented).

– set packing : inequality of the form
∑

j xj ≤ 1, involving binary variables
only (possibly complemented).

– cardinality : inequality of the form
∑

j xj ≤ K or
∑

j xj ≥ K, involving
binary variables only (possibly complemented).

– cardinality equation: equality of the form
∑

j xj = K, involving binary vari-
ables only (possibly complemented).

– variable bounds: inequality of the form ax ≤ by or ax ≥ by, with y binary.
– mixed : any inequality that does not fall in any of the classes above.
– mixed equality : any equality that does not fall in any of the classes above.

This classification is pretty basic, yet it can distinguish most of the constraint
classes used in practice, and can be implemented (and executed) very efficiently
with a single pass through the constraint matrix.

We tested all the methods described in the previous section, both in their
objective and no-objective variants: detailed results about the objective variant
are available in Table 1. In the table, we provide basic statistics about each
instance (namely, number of rows m and columns n), the known number of
variable semantic groups (column g), and the number of groups identified by the
proposed methods.

Interpreting the results of the table is not straightforward, as a method may
have incorrectly partitioned the set of variables even if it got the number of
blocks right, so a deeper analysis of the outcome of the algorithms is needed.
Here are some preliminary conclusions drawn from the synthetic numbers in the
table plus a detailed analysis of the outcome of the algorithms on the individual
instances. No method is always recovering the original semantic partitioning,

confirming that such a reverse-engineering is not a trivial task. In addition, it is
pretty clear that all methods that rely on exact counts, namely histogram and
auto, perform quite poorly, splitting the set of variables in way too many blocks.
The phenomenon is quite clear, for example, on seymour, which is a pure set
covering model, with all variables belonging to the same class. Surprisingly, also
recursive, which does not keep exact counts, often splits the blocks too finely,
in particular for scheduling models. The issue there (and on the multi-activity
from [35]) is exactly the one described in the previous section concerning flow
models.

Overall, fast qualifies as the best method: it is able to refine over the initial
partitioning (type) when needed, and it never returns too fine a partition, achiev-
ing a reasonable approximation of the true number of blocks. The method is
still not perfect though: for example, on the prepack model it cannot distinguish
understocking from overstocking variables (and similarly for the multi-activity
scheduling instance), and on the classification model it cannot distinguish the co-
efficients of the separating hyperplane from its right hand side–although whether
the two are actually semantically different is debatable.

As for running times, all methods except recursive and auto always execute
in a fraction of a second, while the other two can be relatively expensive, up to
a few seconds. In any case, all methods required a negligible time w.r.t. the time
that is needed to solve the instances, so that detection runtime is never an issue,
and we are actually free to choose the method to apply based on success rather
than on time.

Concerning the no-objective variant, the results are mixed: ignoring the ob-
jective function is not enough to fix the intrinsic weaknesses of recursive and
histogram, and it only marginally affects fast, which is often able to infer the
same partitioning with and without objective. On the one hand, ignoring the
objective fixes the behaviour of fast on the facility location problems; on the
other hand, it causes missing refinements on 5 other instances. Overall, taking
the objective function into accounts seems slightly superior.

5 Conclusions

We described a family of procedures, all based on partition refinement, to heuris-
tically recover the semantic grouping of variables from a MIP model. The prob-
lem is inherently ill-posed, given the lack of a truly semantic notion within MIP
solvers, but partition refinement seems to capture decently well the concept of
structurally equivalent variables, which is a proxy for semantic equivalence. In-
deed, one of the proposed methods is quite successful at recovering the high-level
variable partitioning of the model on an heterogeneous testbed of problems.

Still, no method is perfect, and for each example that supports a design
decision, like whether to ignore the objective function or to iteratively refine the
partition, there is a counterexample supporting the very opposite, confirming
the fact that once semantic information is lost, it is quite difficult to recover
in a robust way, if at all. As such, the experiments in the present paper are

Table 1. Number of variable groups found by objective variant of partition refinement
methods.

size methods
instance n m g type fast recursive histogram auto

ash608gpia-3col [26] 3,651 24,748 2 2 2 2 18 1,217
csched007 [39] 1,758 351 4 3 4 1,758 4 1,758
dfn-gwin-UUM [41] 938 158 3 3 3 8 3 26
n3700 [38] 10,000 5,150 2 2 2 2 2 2
reblock166 [9] 1,660 17,024 1 1 1 1 28 1,660
seymour [26] 1,372 4,944 1 1 1 1 126 1,155
toll-like [24] 2,883 4,408 2 2 2 2 31 2,163
triptim1 [10] 30,005 15,076 16 4 13 30,055 55 30,055
uc-case3 [26] 37,749 52,003 7 3 6 12,898 190 14,410
wachplan [26] 3,361 1,553 5 2 4 617 50 673

prepack [15] 84,376 197,154 8 4 8 12 8 12
multiactsched [35] 11,180 8,222 6 4 6 975 11 5590
classification[11] 204 100 5 3 4 4 4 4
zib54-UUE-SAN[41] 240,240 81,134 2 2 2 2 2 150
fac.location[7] 90,300 90,601 2 3 3 7 3 7

yet another piece of evidence that we should not dismiss so easily high-level
knowledge about the optimization models that we want to solve.

References

1. Achterberg, T.: Constraint Integer Programming. Ph.D. thesis, Technische Uni-
versität Berlin (2007)

2. Achterberg, T.: SCIP: solving constraint integer programs. Mathematical Program-
ming Computation 1(1), 1–41 (2009)

3. Achterberg, T., Raack, C.: The MCF-separator: detecting and exploiting multi-
commodity flow structures in MIPs. Mathematical Programming Computation
2(2), 125–165 (2010)

4. Aho, A., Hopcroft, J., Ullman, J.D.: The Design and Analysis of Computer Algo-
rithms. Addison-Wesley, Reading, MA (1974)

5. Althaus, E., Bockmayr, A., Elf, M., Jünger, M., Kasper, T., Mehlhorn, K.: SCIL
- symbolic constraints in integer linear programming. In: Möhring, R.H., Raman,
R. (eds.) Algorithms - ESA 2002, 10th Annual European Symposium, Rome, Italy,
September 17-21, 2002, Proceedings. Lecture Notes in Computer Science, vol. 2461,
pp. 75–87. Springer (2002)

6. Audet, C., Brimberg, J., Hansen, P., Digabel, S.L., Mladenovic, N.: Pooling prob-
lem: Alternate formulations and solution methods. Management Science 50(6),
761–776 (2004)

7. Avella, P., Boccia, M.: A cutting plane algorithm for the capacitated facility loca-
tion problem. Computational Optimization and Applications 43(1), 39–65 (2009)

8. Baker, K.R., Trietsch, D.: Principles of Sequencing and Scheduling. Wiley (2009)

9. Bley, A., Boland, N., Fricke, C., Froyland, G.: A strengthened formulation and
cutting planes for the open pit mine production scheduling problem. Computers
and Operations Research 37, 1641–1647 (2010)

10. Borndörfer, R., Liebchen, C.: When Periodic Timetables are Suboptimal. In: Kalc-
sics, J., Nickel, S. (eds.) Operations Research Proceedings 2007. pp. 449–454.
Springer (2008)

11. Brooks, J.P.: Support vector machines with the ramp loss and the hard margin
loss. Operations Research 59(2), 467–479 (2011)

12. Cire, A., Hooker, J.N., Yunes, T.: Modeling with metaconstraints and semantic
typing of variables. INFORMS Journal on Computing (to appear)

13. Darga, P.T., Liffiton, M.H., Sakallah, K.A., Markov, I.L.: Exploiting structure
in symmetry detection for CNF. In: Proceedings of the 41th Design Automation
Conference, DAC 2004, San Diego, CA, USA, June 7-11, 2004. pp. 530–534 (2004)

14. Darga, P.T., Sakallah, K.A., Markov, I.L.: Faster symmetry discovery using spar-
sity of symmetries. In: Proceedings of the 45th Design Automation Conference,
DAC 2008, Anaheim, CA, USA, June 8-13, 2008. pp. 149–154 (2008)

15. Fischetti, M., Monaci, M., Salvagnin, D.: Mixed-integer linear programming heuris-
tics for the prepack optimization problem. Discrete Optimization ((to appear))

16. Fischetti, M., Salvagnin, D.: Feasibility pump 2.0. Mathematical Programming
Computation 1(2–3), 201–222 (2009)

17. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A modeling language for math-
ematical programming. Thomson (2003)

18. Gamrath, G., Berthold, T., Heinz, S., Winkler, M.: Structure-based primal heuris-
tics for mixed integer programming. In: Fujisawa, K., Shinano, Y., Waki, H. (eds.)
Optimization in the Real World, Mathematics for Industry, vol. 13, pp. 37–53.
Springer Japan (2016)

19. GUROBI: GUROBI 6.0 User’s Manual (2015)
20. Hooker, J.N.: Integrated Methods for Optimization. Springer (2006)
21. Hooker, J.N.: Logic-based modeling. In: Appa, G., Pitsoulis, M., Leonidas, S.,

Williams, H.P. (eds.) Handbook on Modelling for Discrete Optimization. pp. 61–
102 (2006)

22. Hooker, J.N.: Hybrid modeling. In: van Hentenryck, P., Milano, M. (eds.) Hybrid
Optimization: The Ten Years of CPAIOR. pp. 11–62 (2011)

23. Hoskins, M., Masson, R., Melanon, G., Mendoza, J., Meyer, C., Rousseau, L.M.:
The PrePack Optimization Problem. In: Simonis, H. (ed.) Integration of AI and
OR Techniques in Constraint Programming, Lecture Notes in Computer Science,
vol. 8451, pp. 136–143. Springer Berlin / Heidelberg (2014)

24. Hüffner, F., Betzler, N., Niedermeier, R.: Separator-based data reduction for signed
graph balancing. Journal of Combinatorial Optimization 20, 335–360 (2010)

25. IBM ILOG: CPLEX 12.6.2 User’s Manual (2015)
26. Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby, R.E.,

Danna, E., Gamrath, G., Gleixner, A.M., Heinz, S., Lodi, A., Mittelmann, H.,
Ralphs, T., Salvagnin, D., Steffy, D.E., Wolter, K.: MIPLIB 2010 - Mixed Integer
Programming Library version 5. Mathematical Programming Computation 3, 103–
163 (2011)

27. Lodi, A.: Mixed integer programming computation. In: Jünger, M., Liebling, T.M.,
Naddef, D., Nemhauser, G.L., Pulleyblank, W.R., Reinelt, G., Rinaldi, G., Wolsey,
L.A. (eds.) 50 Years of Integer Programming 1958-2008 - From the Early Years to
the State-of-the-Art, pp. 619–645. Springer (2010)

28. Margot, F.: Symmetry in integer linear programming. In: 50 Years of Integer Pro-
gramming. Springer (2009)

29. McKay, B.D.: Practical graph isomorphism (1981)
30. Milano, M.: Constraint and Integer Programming: Toward a Unified Methodology.

Kluwer Academic Publishers (2003)
31. Mitra, G., Lucas, C., Moody, S., Hadjiconstantinou, E.: Tools for reformulating log-

ical forms into zero-one mixed integer programs. European Journal of Operational
Research 72(2), 262–276 (1994)

32. Rossi, F., van Beek, P., Walsh, T. (eds.): Handbook of Constraint Programming.
Foundations of Artificial Intelligence, Elsevier (2006)

33. Salvagnin, D.: A dominance procedure for Integer Programming. Master’s thesis,
University of Padova (2005)

34. Salvagnin, D.: Detecting and exploiting permutation structures in MIPs. In:
CPAIOR. pp. 29–44 (2014)

35. Salvagnin, D., Walsh, T.: A hybrid mip/cp approach for multi-activity shift
scheduling. In: CP. pp. 633–646 (2012)

36. Savelsbergh, M.W.P.: Preprocessing and probing for mixed integer programming
problems. ORSA Journal on Computing 6, 445–454 (1994)

37. Stuckey, P.J., Tack, G.: Minizinc with functions. In: Gomes, C.P., Sellmann, M.
(eds.) Integration of AI and OR Techniques in Constraint Programming for Com-
binatorial Optimization Problems, 10th International Conference, CPAIOR 2013,
Yorktown Heights, NY, USA, May 18-22, 2013. Proceedings. Lecture Notes in
Computer Science, vol. 7874, pp. 268–283. Springer (2013)

38. Sun, M., Aronson, J.E., McKeown, P.G., Drinka, D.A.: A tabu search heuristic
procedure for the fixed charge transportation problem. European Journal of Op-
erational Research 106, 441–456 (1998)

39. Yunes, T.: CuSPLIB 1.0: A library of single-machine cumulative scheduling prob-
lems (2009), http://moya.bus.miami.edu/ tallys/cusplib/

40. Yunes, T., Aron, I.D., Hooker, J.N.: An integrated solver for optimization problems.
Operations Research 58(2), 342–356 (2010)

41. SNDlib (2006), http://sndlib.zib.de

	Detecting Semantic Groups in MIP models
	Introduction
	Related Work
	Detection Algorithms
	Simple Refinements
	Iterative Refinements

	Computational Results
	Conclusions

