
Random bits, true and unbiased, from
atmospheric turbulence
Davide G. Marangon, Giuseppe Vallone & Paolo Villoresi

Department of Information Engineering, University of Padova, via Gradenigo 6/B, Padova, Italy.

Random numbers represent a fundamental ingredient for secure communications and numerical
simulation as well as to games and in general to Information Science. Physical processes with intrinsic
unpredictability may be exploited to generate genuine random numbers. The optical propagation in strong
atmospheric turbulence is here taken to this purpose, by observing a laser beam after a 143 km free-space
path. In addition, we developed an algorithm to extract the randomness of the beam images at the receiver
without post-processing. The numbers passed very selective randomness tests for qualification as genuine
random numbers. The extracting algorithm can be easily generalized to random images generated by
different physical processes.

I
t is well established that genuine and secure randomness can not be achieved with deterministic algorithms. On
the contrary, generators exploiting physical processes as the source of entropy are devices that approach more
than any other the concept of true random number generators (TRNG).
The working principle of a TRNG consists of sampling a natural random process and then to output an

uniformly distributed random variable. Sources of entropy recently exploited include the amplification of elec-
tronic noise1, phase noise of semiconductor lasers2, unstable free running oscillators3 and chaotic maps4. In
addition, a specific class of TRNG employs the intrinsic randomness of quantum processes such as the detection
statistics of single photons5–7, entangled photons8,9 or the fluctuations of vacuum amplitudes10. There are at least
two issues with TRNGs. The first one is theoretical and is about the fact that a chaotic physical system has a
deterministic evolution in time, at least in principle. Therefore, a detailed analysis is needed for selecting those
initial conditions which won’t lead the system to some periodical, completely predictable trajectory11,12. This
selection can be performed by means of a robust statistical model for the physical system in use. The second
problem deals with the unavoidable hardware non-idealities which spoil the entropy of the source, i.e. temper-
ature drifts modify the thresholds levels, or the amplifier stages of photon detector make classical noise to leak
inside a quantum random signal. Most of the TRNGs are then forced to include a final post-processing stage with
the purpose of increasing the entropy of the emitted bits (this kind of problem involves also QRNGs, which
although being theoretically shielded by the postulates of Quantum Mechanics, have to deal with classical
imperfect hardware. Recent literature has shown an even growing interest in developing efficient post-processing
techniques to be employed in QRNG).

A beam of coherent light propagating along a random scatterer was studied in the context of random walks.
Indeed, the complex field undergoes subsequent diffusion process which according to the type of medium may be
either described as a normal random walk or as a Lévy flight13, giving rise to a random distribution of the intensity
as consequence of the interference effects14. Static speckle patterns obtained by passing a laser beams through
volumetric scatterers15,16 have been already exploited for the purpose of random number generation and as key
element of physical un-clonable functions17. However, these approaches are based on still scattering medium and
cannot be used for real time random number generation.

In this Letter, we describe a novel principle for TRNG which is based on the observation that a coherent beam of
light crossing a very long path with atmospheric turbulence may generate random and rapidly varying images.
We evaluated the experimental data to ensure that the images are uniform and independent. Moreover, we assess
that our method for the randomness extraction based on the combinatorial analysis is optimal in the context of
Information Theory.

To implement our method in a proof of concept demonstrator, we have chosen a very long free space channel
used in the last years for experiments in Quantum Communications at the Canary Islands18–21. Here, after a
propagation of 143 km at an altitude of the terminals of about 2400 m, the turbulence in the path is converted into
a dynamical speckle at the receiver.
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The source of entropy is then the atmospheric turbulence. Indeed,
for such a long path, a solution of the Navier-Stokes equations for the
atmospheric flow in which the beam propagates is out of reach.
Several models are based on the Kolmogorov statistical theory22,
which parametrizes the repartition of kinetic energy as the inter-
action of decreasing size eddies. These are mainly ruled by temper-
ature variations and by the wind and cause fluctuations in the air
refractive index. When a laser beam is sent across the atmosphere,
this latter may be considered as a dynamic volumetric scatterer.
However, such models only provide a statistical description for the
spot of the beam and its wandering23–25 and never an instantaneous
prediction for the irradiance distribution, which could be calculated
by the Laplace demon only.

Results
Method for extracting random bits from turbulence. We estab-
lished a free space optical (FSO) link 143 km long by sending a l 5

810 nm laser beam between the Jacobus Kaptein Telescope (JKT) in
the Island of La Palma, to the ESA Optical Ground Station (OGS) in
the Island of Tenerife (see Figure 1 for details). The intensity of the
laser was adjusted in order to conveniently exploit the camera dyna-
mic range to properly acquire the typical effects of beam propagation
in strong turbulence, including wandering, beam spreading and
scintillation23. The motion of eddies larger than the beam cross
section, bends it and causes a random walk of the beam center on
the receiver plane. Whereas, small scale inhomogeneities diffract and
refract different parts of the beam which then constructively and
destructively interfere giving rise to a speckle pattern on the tele-
scope pupil. Both the previous factors spread the beam beyond the
inherent geometrical limit. Furthermore, it is possible to observe
scintillation, namely fluctuations in the irradiance of the signal.

In free-space optical propagation, the speckle pattern formation is
related to the atmospheric turbulence and the propagation length.
The strength of the turbulence is quantified by the structure constant

C2
n (dimensions L½ �{

2
3) which expresses the spatial fluctuation of the

air refractive index23. Typically, values for weak turbulence are in the
order of 10216 m22/3 , 10218 m22/3 whilst, for strong turbulence,
C2

n~10{13m{2=3*10{14m{2=3. To estimate the turbulence effects
on a laser beam, it is necessary to evaluate the Rytov variance, defined
as s2

R~1:23k7=6C2
nL11=6 where k is the modulus of the wave-vector

and L the length of the path. Indicatively, one has strong or weak

effects for s2
Rw1 or s2

Rv1 respectively26. The optical beam is sub-
jected to significant wandering and intensity speckles are observed at
the receiver when s2

R overtakes unity: the weaker is the level of
turbulence, the longer has to be the link in order to apply our method.

For the link between La Palma and Tenerife we have estimated a
night-time average structure constant C2

n<3:10{17m{2=3: this value
is consistent with the values obtained in other studies, i.e.27. Recently,
in28 a C2

n oscillating between < 5 ? 10216 m22/3 and < 4 ? 10217 m22/3

has been reported. Although a detailed analysis of the turbulence
strength would necessarily require from time to time a (hardly
achievable) value of the structure constant for every part of the link,
from these estimations one can safely draw the conclusion that due to
the length of the channel we are working in the condition of large
Rytov variance. By our estimation of C2

n and using the 143 km length
of the Canary Island link, we had s2

R<11 such that the condition for
the speckle pattern formation was always satisfied.

Since the eddies are continuously moving according the unpre-
dictable turbulent flow of the atmosphere, the distribution of the
scintillation peaks in the receiver plane evolves randomly. So, for
the purpose of random number generation, we acquired images
with a CCD camera (Thorlabs DCC 1545 CMOS camera 1280 3

1024 pixels) at 12 and 25 frame per second (fps), with an expo-
sure time of 3 ms, shorter than the characteristic time of fluctua-
tions in order to not average out the dynamic of the process. A
detailed analysis about the statistical independence of the frames
and the stability of the link is presented in the Supplementary
Information.

We now describe the method used to extract random numbers
from the speckle positions: the CCD relevant pixels are labelled
sequentially with an index s, s g {1, …, N} and the nf speckle cen-
troids of the frame f are elaborated (for details on the centroid extrac-
tion see Methods, subsection A). A threshold is set in order to skip
those frames which could be affected by noise when the optical signal
is too low, for example because an obstacle has crossed the path of the
beam and then no light is detected. By considering then the pixels

where a centroid fall in, an ordered sequence Sf ~ s1,s2, . . . snf

n o
with s1vs2v � � �vsnf , can be formed. In this way the pixel grid
can be regarded as the classical collection of urns - the pixel array -
where the turbulence randomly throws in balls - the speckle cen-
troids: a given frame f ‘‘freezes’’ one Sf out of the

Figure 1 | Experimental setup. At the transmitter side in La Palma, a l 5 810 nm laser beam is collimated with a 230 mm achromatic singlet, explicitly

realized to limit geometrical distortions, and then sent through a 143 km free space optical channel. At the receiver side, at the OGS observatory in

Tenerife, the pupil of the Ritchey-Chrétien telescope (diameter of 1016 mm) is illuminated by the distorted wave-front and imaged on a high resolution

CCD camera. This figure was produced by the authors.
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Tf ~
N!

N{nf

� �
!nf !

ð1Þ

possible and equally likely sequences of nf centroids. Among all of
them, a given Sf can be univocally identified with its lexicographic
index I(Sf)

I Sf
� �

~
Xnf

k~1

N{sk

nf {kz1

� �
ð2Þ

with 0 # I(Sf) # Tf 2 1. Basically, (2) enumerates all the possible
arrangements which succeed a given centroids configuration and the
TRNG distillates randomness by realizing the correspondence
Sf uI Sf

� �
. Indeed, as an uniform RNG is supposed to yield numbers

identically and independently distributed (i.i.d.) in a range [X, Y], as
this method generates a random integer in the range [0, Tf 2 1]. In
order to obtain formula (2) we need to enumerate the combination of
nf balls contained in N urns. The positions of the ball are identified
with the integers s1vs2v � � �vsnf . The number of possible combi-

nations is Tf ~
N
nf

� �
. Let’s first calculate the number of combinations

that precede the given combination. This can be obtained by sum-
ming all the possible combinations in which the first ball falls in the

positions s’1 with s’1vs1, namely
Xs1{1

m~1
N{m
nf {1

� �
, plus all the com-

bination in which the first ball is in s1 and the second ball is in s’2 with

s1vs’2vs2, namely
Xs2{1

m~s1z1
N{m{1
nf {2

� �
, plus all the combination

in which the first ball is in s1, the second in s2 and the third ball is in s’3
with s2vs’3vs3 and so on. This number is given by

p Sf
� �

~
Xnf {1

k~0

Xskz1{1

m~skz1

N{m

nf {k{1

� �
ð3Þ

where we defined s0 5 0. From
Xn

k~0
k
j

� �
~ nz1

jz1

� �
, it can be shown

that
Xskz1{1

m~skz1
N{m
nf {k{1

� �
~ N{nk

nf {k

� �
{

N{nkz1z1
nf {k

� �
so that p Sf

� �
~

N
nf

� �
{
Pnf

k~1
N{sk
nf {kz1

� �
{1. The number of combination that suc-

ceed Sf can be easily computed by

I Sf

� �
~

N

nf

� �
{1{p Sf

� �
~
Xnf

k~1

N{sk

nf {kz1

� �
ð4Þ

where 0 # I(Sf) , Tf. The number Tf 2 1 represents then the upper
bound to the uniform distribution of arrangement indexes which can
be obtained by all the possible arrangements of nf centroids: the
largest index, that is I(Sf) 5 Tf 2 1, is obtained when all the centroids
occupy the first urns of the grid.

To be conveniently handled, a binary representation bIf of the
random integers I(Sf) must be given. The simpler choice is to trans-
form the integer I(Sf) in binary base, obtaining a sequence with
LTf ~tlog2Tf s bits. However, only if Tf mod 2i 5 0 for i g N, every
frame f would theoretically provide strings LTf bits long. In general

this is not the case and hence, all the frames with log2I Sf

� �
§LTf

should be accordingly discarded to avoid the so-called modulo bias.
This issue, which clearly limits the rate of generation, can be solved

by adopting the encoding function E : bIf ?E bIf

h i
:b’If developed

by P. Elias29. With this approach, a string longer than LTf is mapped
into a set of shorter sub-strings with equal probability of appearance.
To convert the integer I(Sf), uniformly distributed in the interval [0,
Tf 2 1], into an unbiased sequence of bits, we may first consider the
binary expansion of Tf

Tf ~2LzaL{1
:2L{1z � � �za0

:20 ð5Þ

where L~tlog2Tf s and ak 5 0, 1. Random bit strings are associated
to I(Sf) according to the following rule: find the greatest m such that

I Sf
� �

v

XL

k~m

ak2k ð6Þ

and extract the first m bits of the binary expansion of I(Sf). By this
rule, when I(Sf) , 2L, L bits can be extracted; when 2L # I(Sf) , 2L 1
aL212L21, L 2 1 bits can be extracted and so on; when I(Sf) 5 Tf 2 1
and a0 5 1 (namely when m 5 0) no string is assigned. It can be easily
checked that this method, illustrated in Fig. 2, produces unbiased
sequences of bits from integers uniformly distributed in the interval
[0, Tf 2 1].

This approach is optimal: the positions of nf centroids in N pixels
can be seen as a biased sequence of N bits, with nf ones and N 2 nf

zeros. The content of randomness of this biased sequence is h2(q) 5

2q log2 q 2 (1 2 q) log2(1 2 q) with q~
nf

N
. By the Elias method it is

possible to unbias the sequence in an optimal way: it can be shown

that the efficiency g~
Lb’h i
N

, the ratio between the average length of

b’If and N, reaches the binary entropy h2(q) in the limit of large N,
limN R ‘ g 5 h2(q). In this way it has been possible to preserve the
i.i.d. hypothesis for the set [0, 1] maximizing the rate of the
extraction.

The combinatorial approach here introduced allows a general
approach compared to other techniques used to convert into random
numbers the pixel coordinates of a detector. For example, in15, bi-
dimensional random number arrays are obtained by converting in
bits the position of those active pixels whose thresholds were adjusted
in order to get the desired bivariate random distribution when illu-
minated with an uniform speckle pattern (i.e. to get an uniform
distribution would be necessary to have half of the pixels over thresh-
old and half below). With respect to the direct conversion approach,
our method is more resilient, because by extracting the maximal
entropy for a given frame, we do not need to constantly adjust the
detector thresholds in function of the speckle pattern to get an uni-
form distribution of 0 s and 1 s.

Analysis of the extracted bits. By implementing this technique with
different configurations of masks and centroids, we were able to
reach a maximum average rate of 17 kbit/frame (with a grid of
891000 urns and an average of 1600 centroids per frame). It is
worth to stress that, for the present proof of principle, the
distillation of random bits has been done off-line so, theoretically,
having used a frame rate of 24 frame/s this method could provide a
rate of 400 kbit/s using a similar camera and it could further increase
by using a larger sensor.

The suitability of the method for random number generation
depends on the statistical properties of the atmospheric turbulence
over the time, in other words the stationarity and ergodicity of the
physical process employed. It has been then fundamental to check
the i.i.d. hypothesis for the numbers obtained by joining the bits
belonging to frames of the same videos. A visual evidence that an
overall uniformity is preserved during the whole acquisition time, it
is given in Figure 3 where the distribution of 1.4 ? 106 bytes obtained
from a 671 frames video sample is plotted. If the bytes were used for
cryptographic purposes, it is meaningful to consider the binary min-
entropy hmin 5 maxi[2log2(pi)] where pi is the measured appearance
probability of the byte i g [0, 255]. A value of h’min~7:936 bits per
byte has been measured and this is compatible with the expected
min-entropy for a sample of that size, that is Hmin 5 7.946 6

0.007. This experimental value is thus in agreement with the expected
value from the theoretical prediction on uniform distribution, asses-
sing an eavesdropper has no advantage with respect to random gues-
sing (see Methods, subsection B, for a derivation of the expected
min-entropy Hmin).

www.nature.com/scientificreports
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For assessing the randomness of a TRNG, in addition to a sound
knowledge of the physical process employed, it is necessary to apply
statistical tests in order to exclude the presence of defects caused by a
faulty hardware. The theory and the positive results of the a selection
of powerful tests are presented in the Methods and in Tables I and II.
In particular, to obtain a confirmation of the i.i.d. hypothesis for the
whole sets of bits, the numbers were thoroughly analyzed with three
state-of-the-art batteries of tests whose results are reported in
Table II. At present time, the TEST-U0133 is the most stringent
and comprehensive suite of tests; among all, we chose a pair sub-
batteries, Rabbit and Alphabit respectively, specifically designed to

tests TRNGs. Note that, other batteries designed for algorithmic
generators do not include tests sensitive to the typical TRNGs
defects, such as correlations and bias. As it can be seen all the results
were outside the limits of P-valƒ10{3 or P-val§0:990. The SP-
800-2234 is developed by the NIST and it represents a common
standard in RNG evaluation. For this suite, the files were partitioned
in sub-strings 20 000 bits long: this length was chosen in order to
obtain string sample sizes enough large such that with a significance
level of a 5 0.01, it is statistically likely to fail the tests in case of poor
randomness (the sample sizes were then of 113, 207 and 559 strings
respectively). Therefore, the tests suitable for this string size were

Figure 2 | We report two sample frames, with the centroids of the brightest speckles evaluated. It is worth to stress that for illustrative purposes the

image has been simplified: in the real implementation centroids are evaluated on different intensity levels and every cell corresponds to a pixel. To

illustrate the method, let’s consider 20 urns (the pixels) and 4 balls (the centroids) as in top figure. The total number of combinations is T~ 20
4

� �
~4845

with L~tlog2Ts~12. The ball positions are defined by the sequence S ; {s1, s2, s3, s4} 5 {2, 9, 13, 19} that corresponds to the lexicographic index I(S) 5

3247. Since I(S) , 2L it can be expressed with L 5 12 bits, i.e. the binary expansion of I(S) ‘‘110010101111’’, can be extracted from S. A similar procedure is

used for the bottom figure with 8 balls in 20 urns giving I(S) 5 112477. We have L 5 16 and I(S) $ 2L: in this case less than 16 bits can be extracted. The

method explained in the main text allows to extract the sequence b9(I) 5 11011101011101.

Figure 3 | (Left) The histogram represents the relative frequencies of byte occurrences, obtained from 1.4?106 bytes corresponding to 671 frames.

The distribution is uniform, as demonstrated by the chi-square test on the frequency giving a P-val~0:77. (Right) Zoom of the histogram: the

frequencies randomly distributed at the sides of the expected mean value (green line). Furthermore, the maximal byte frequency (corresponding to the

byte 216) is fully compatible with its expected value fM (red solid line) and the 6s limits (red dashed lines).

www.nature.com/scientificreports
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applied with the NIST recommended parameters. Also in this case
we registered successful results, being both the ratio between the sub-
strings with P-val§10{2 and the total number of strings and the
second-order test on P-val distribution, over the critical limits (pas-
sing ratios depends, time to time, on the number of strings analyzed,
see Table II. For the goodness-of-fit test on the p-value distribution
the limit isP-valƒ10{5). Eventually, on the largest file obtained, we
successfully applied also the AIS-3135 suite developed by the German
BSI. The AIS-31 offers three sub-batteries of increasing difficulty
which are intended to be applied on-line, that is to monitor the out-
put of TRNG in order to detect failures and deviation from random-
ness: according to which level is passed, a TRNG can be considered
preliminary suitable for different purposes (T0 pre-requisite level, T1
level for TRNGs used in connection with PRNG, T2 level for stand-
alone TRNGs). From this analysis, where the more stringent and
effective tests were applied and passed, the i.i.d. hypothesis resulted
confirmed and strengthened.

Discussion
As pointed out above, we are here addressing the two issues of intro-
ducing a method to extract good random numbers from random
images and of generating these images from light propagating
through the atmosphere. In particular, we exploited the propagation
of the light over 143 km of turbulent atmosphere, giving rise to
random speckle patterns at the receiver. The advantages of the
method above presented in comparison with other TRNG resides
in exploiting a good entropy source and in an efficient method to
convert this entropy in a string of random bits. Indeed, when the
conditions for strong optical turbulence are met, the scintillation
images are resulting from a process that cannot be predicted, pro-
viding to a significant amount of entropy that may be extracted. In
particular, the analytical models that are presently known to describe
the dynamic of a turbulent fluid are not able to provide the evolution
of the instantaneous intensity distribution. Moreover, if such models
will be conceived, it is very presumable that they would require an
extreme computational power to model the outcome of the pro-
pagation and still, according to the principle of the underlying non-
linear dynamics, maintaining the peculiar sensitivity on the initial
conditions.

Other types of generators rely on small scale chaotic processes,
such as sampling of laser intensity noise, but they must be carefully
tuned in order to avoid the physical system to end in periodic tra-
jectories and predictable outputs during the operation36. In particu-
lar, we can compare our method with the one proposed in30 and
realized in31 where random numbers are obtained by sampling a
detector illuminated with speckles produced by passing a laser beam
between two rotating diffusers: such an approach however, as
stressed by the authors themselves, could lead to periodicity due to
the possibility that the same pattern repeats itself. Our TRNG is more

resilient because we can safely exclude any periodicity of the speckle
pattern.

A further advantage in exploiting optical beam propagation in
turbulence is the fact that the physical process and the hardware
are less prone to be influenced and controlled by an attacker, as is
the case of generators which operate at the noise level limit. For
example, generators based on measuring low amplitude voltage fluc-
tuations in a resistor caused by the electronic thermal noise, can be
easily influenced by modifying the environmental temperature37.

We now give two examples of application of our method. Our
method could be directly applied in situations involving similar
optical links, such as long range quantum communication experi-
ments that require the generation of random numbers38,39. The sec-
ond case is to apply the method by reducing the scale of the
generator. The problem is then to individuate physical processes
which can give rise to a speckle pattern randomly evolving in time.
Different techniques, such as the dynamic light scattering, exploit
speckle pattern analysis to infer a characterization of the diffusers,
typically ranging from turbid media to organic tissues40,41. Such dif-
fusers could be valid candidates for the purpose of continuous ran-
dom number generation. By illuminating a colloidal suspension with
a coherent light, random numbers could be extracted from the ran-
domly evolving speckle pattern caused by the Brownian motions of
the particles42.

Concerning our extraction technique, the algorithm here devised
can be applied to any image from which it is possible to distill a spatial
distribution of points. For example the lexicographic algorithm could
be easily embedded in device which have a camera as mobile
phones43,44 (cleary it would be necessary to investigate the possibility
of finding a suitable kind of images to be taken with the phone
camera from which i.i.d. random variables can be obtained). As last
point we want to stress that the data obtained passed the most sens-
itive tests for TRNGs. The fact that here the randomness is generated
without the need of any post-processing technique demonstrates the
effectiveness of the present method.

Methods
Test of randomness. The output of a test on a bit string is another random variable
with a given distribution of probability, the so-called test statistic. Hence, theP-value
are computed, namely the probability of getting an equal or worse test statistic,
holding true the i.i.d. hypothesis. If the P-values are smaller than some a priori
defined critical value the tests are considered failed: these limits are usually chosen as
P-valuev0:01 and P-valuev0:001, corresponding to a confidence level of 99% and
99.9% respectively. Otherwise, whenever one obtains P-values equal or greater than
these limits, the i.i.d. hypothesis for the tested string is assessed.

As first result of the statistical analysis, we present the outcomes of two tests, the
frequency and the autocorrelation test respectively32. The first test checks whether the
fraction of 0 s and 1 s departs from the expected value of 1/2 beyond the acceptable
statistical limits. The second test evaluates whether the bit values depend on the
neighboring bits. The output of both the tests (the serial autocorrelation with bit lag
from 1 to 64) are test-statistics normally distributed and the analysis results are
reported in Table I. From the frames we extracted and analysed 1483 strings 20 000
bits long (this string size has been selected for two main reasons: the first one in order
to have a string sample large enough to comply the significance level both a 5 0.01 (at
least 100 elements) and a 5 0.001 (at least 1 000). The second reason is because this
string size is commonly used in standard tests suits such as FIPS-140-1 and AIS31,
such that by passing or failing the above tests helps to understand the odds to pass also
deeper statistical tests): the number of test statistics the i.i.d. hypothesis does not hold
for (with a confidence of 99% and 99.9%, corresponding to 62.58s and 63.29s
respectively) are inside the critical limits of statistical fluctuations, confirming the
uniformity and the absence of correlations of the numbers. The main consequence of
major defects at single bits level, is an even repartition of the Hamming weights which
allows to pass also the so-called serial tests for the uniform distribution of many bits
words. Applied on 2-bits, 2-bits overlapped and three 3-bits words the tests were all
passed, as shown in Tab. I.

Image processing. To extract the randomness from the frames of the videos, typical
algorithms for image analysis which allows to compute several so-called digital
moments were employed. More precisely, given E the number of bits used by the
acquisition software to encode the intensity (color) levels of monochromatic light on
the active area m?n of the sensor, we can consider the recorded image as a two
variables function I(x, y) where x g {0, …, m}, y g {0, …, n} and I(x, y) g {0, …, 2E}.
The (j, k)th moment of an image is then defined as

Table I | In table, for every test (first column) the overall number of
tests statistics (second column) obtained from videos recorded in
different conditions are reported. The number of failures are listed
in the third and fourth columns. These numbers can be compared
with the theoretical number of failures (inside the parentheses)
which are expected when the i.i.d. hypothesis hold true. As it can
be seen for all the tests the failures are inside the limits both for the
99% and 99.9% confidence levels

Test Statistics P-Val , 0.01 P-Val , 0.001

Correlation Test 94912 921 (1042) 80 (124)
Bias test 1483 20 (26) 1 (5)
Serial 2 bits 1483 18 (26) 1 (5)
Serial 2 bits over. 1483 17 (26) 1 (5)
Serial 3 bits 1483 17 (26) 1 (5)
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Mjk~
Xm

x~1

Xn

y~1

I x,yð Þxjyk: ð7Þ

The center of gravity C (also known as centroid) of an image is then located at position
(x̂, ŷ) where the coordinates are accordingly given by

x̂~ M10

M00 , ŷ~ M01

M00 ð8Þ

We applied then a technique for instance used in Biology to count the number of cells
in biological samples. Indeed in images composed by distinguishable components (as
coloured cells on a uniform background), it is possible to locally calculate the
centroids Ci of those components, by binarizing the intensity level, i.e. by setting E 5

1, and then evaluating the moments on the closed subsets Si 5 {(x, y)jI(x, y) 5 1}, that
is

Mjk Sið Þ~
X
x,yð Þ[Si

I x,yð Þxjyk ð9Þ

where the index i runs on the different elements of the image.
To extract more randomness from the geometrical pool of entropy, the intensity

profile of the frames has been partitioned into eight different sub-levels. We treated
separately every different intensity level, L, as a source of spots; more specifically then
we generated sets SL,i out of the L g {1, …, 8} levels. For a given L and a spot i the
coordinates of a centroids are then

x̂L,i~
1

Ai,L

P
x[Si,L

x ŷL,i~
1

Ai,L

X
y[Si,L

y ð10Þ

where Ai,L simply the area of the spot, that is the total number of pixels which
compose that spot. In order to remove edge effects due to the shape irregularities of
the pupil, pixels close to irregular edges were removed.

Min-entropy estimation. In this section we show how to estimate the expected min-
entropy. In a sample with L bytes, the single byte occurrence ,i (i~1, � � � 256) are

random variables distributed according the Poisson distribution with mean l~
L

256
.

In order to estimate the expected min-entropy we need the distribution of the
maximum of the occurrences and we can proceed as follow. Given a sample of n
random variables X1, X2, …, Xn whose cumulative distribution function (CDF) is D(x)
and the probability density function (PDF) is F(x), they can be re-ordered as
Xp 1ð ÞƒXp 2ð Þƒ � � �ƒXp nð Þ: the Xp(k) is called statistic of order k, such that
min {X1, X2, …, Xn} 5 Xp(1) and max {X1, X2, …, Xn} 5 Xp(n). In order to derive the
distribution function of an order k statistic, given h the number of Xi # x, one can
note that

Dk xð Þ~P Xp kð Þƒx
� �

~P h§kð Þ~
Xn

i~k

P h~ið Þ

~
Xn

i~k

n

i

 !
D xð Þ½ �k 1{D xð Þ½ �n{k

ð11Þ

Working with integer random variables the PDF is then obtained by

Fk xð Þ~Dk xð Þ{Dk x{1ð Þ ð12Þ

Being interested in the byte frequencies maximal values, that is k 5 n, the previous
equation becomes

Fn xð Þ~ D xð Þ½ �n{ D x{1ð Þ½ �n ð13Þ

In a sample with size L, the distribution of the maximum ,M of the single byte
occurrence ,i can be computed by using the previous equation with

D xð Þ~e{l
Xx

j~0

lj

j!
, l~

L
256

and n 5 256:

P ‘Mð Þ~ e{l
X‘M

j~0

lj

j!

 !n

{ e{l
X‘M {1

j~0

lj

j!

 !n

~
C ‘Mz1,lð Þ
C ‘Mz1ð Þ

� �n

{
C ‘M ,lð Þ
C ‘Mð Þ

� �n
ð14Þ

The expected value and variance of the maximum of the ,i’s, are then easily evaluated

by applying the definitions ‘Mh i~
X?

x~0
xP xð Þ and s2~ ‘2

M

� 	
{ ‘Mh i2

respectively. With a sample size of L 5 1399852 bytes and n 5 256, the theoretical
reference values are then evaluated to be Æ,Mæ 5 5678.4 6 29.4 counts with

corresponding expected relative frequency fM~
‘Mh i
L

~ 4:056+0:021ð Þ:10{3. This

value corresponds to a theoretical min-entropy of Hmin 5 2log2 fM 5 7.946 6 0.007
bits per byte. If the obtained experimental min-entropy is compatible with the
predicted theoretical value, the sample can be considered as uniformly
distributed.
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