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Quantum walk represents one of the most promising resources for the simulation of physical quantum

systems, and has also emerged as an alternative to the standard circuit model for quantum computing.

Here we investigate how the particle statistics, either bosonic or fermionic, influences a two-particle

discrete quantum walk. Such an experiment has been realized by exploiting polarization entanglement to

simulate the bunching-antibunching feature of noninteracting bosons and fermions. To this scope a novel

three-dimensional geometry for the waveguide circuit is introduced, which allows accurate polarization

independent behavior, maintaining remarkable control on both phase and balancement.
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In the framework of quantum information processing,
quantum walk has attracted much attention in the last few
years [1]. Quantum walk is an extension of the classical
random walk: a walker on a lattice ‘‘jumping’’ between
different sites with a given probability. The features of the
quantum walker are interference and superposition which
lead to a nonclassical dynamic evolution. Two different
cases may be considered: discrete- and continuous-time
quantum walks [2]. The properties of these two walks have
shown several similarities [3]; however, the discrete quan-
tum walk exhibits a higher flexibility due to the possibility
of tailoring the quantum coin properties to investigate
different dynamic scenarios [4,5]. By endowing the walker
with quantum properties, many new interesting effects
appear: quantum walks allow the speed-up of search algo-
rithms [6] and the realization of universal quantum com-
putation [1]. Moreover it has been recently shown that
quantum walks with a large number of sites exhibit a
highly nontrivial dynamics, including localization and re-
currence [7,8]. Within this scenario, a possible application
is in the investigation on biophysical systems, like the
energy transfer process within photosynthesis [9].

Single-particle quantum walks yield an exponential
computational gain with respect to classical random
walks; it can be noted that they have an exact mapping to
classical wave phenomena and therefore they can be
implemented using purely classical resources. On the
other hand, quantum walks of more than one indistinguish-
able particle can provide an additional computational
power that scales exponentially with the resources em-
ployed. This could be used to improve simulation perfor-
mances in complex tasks, e.g., the graph isomorphism
problem [10]. However, they need quantum resources to be

implemented, since classical theory no longer provides a
sufficient description.
Different experimental implementations of single-

particle quantum walks were performed with trapped
atoms [11], ions [12,13], energy levels in NMR schemes
[14], photons in waveguide structures [15], and in a fiber
loop configuration [4,5]. Very recently quantum walks of
two identical photons have been performed [16,17].
However, up to now no experimental demonstration on
how the particle statistics, either bosonic or fermionic,
influences a two-particle quantum walk has been reported.
In this work, we report on the implementation of a

discrete quantum walk for entangled particles. By
changing the symmetry of entanglement we can simulate
the quantum dynamics of the walks of two particles
with bosonic or fermionic statistics. These results are
made possible by the adoption of novel geometries in
integrated optical circuits fabricated by femtosecond laser
pulses, which preserve the indistinguishability of the two
polarizations as well as provide high phase accuracy and
stability. In the discrete quantum walk the walker is repre-
sented by a quantum particle—such as an electron, atom or
photon—with an additional degree of freedom spanning a
two-dimensional space and named the ‘‘quantum coin.’’ At
any given time the particle may be in a superposition of the
two basis states, up (jUi) or down (jDi), representing the
two ‘‘coin faces’’ [Fig. 1(a)]. The quantum coin state
directs the motion of the particle and the stochastic evolu-
tion by a unitary process. A key difference with the clas-
sical case is that the many possible paths of the quantum
walker may exhibit interference, leading to a very different
probability distribution of finding the walker at a given
location.
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Indeed, the evolution of the walk can be described with
the step operator E ¼ P

jjj� 1ihjj � jUihUj þ jjþ 1i�
hjj � jDihDj, where jj� 1ihjj and jjþ 1ihjj stand for the
operators which move the particle in the lower and higher
position of the lattice, respectively. The coherent action of
the step operator E and coin tossing leads to entanglement
between the position and the internal degree of freedom.
After several steps, the counterintuitive profile of the quan-
tum walk probability distribution emerges as a result of
quantum interference among multiple paths.

More complex distributions arise when two particles are
injected into the same quantum walk. An important devel-
opment is the combination in the same platform of quan-
tum walk and entangled states [18,19]. In this case both the
initial and final state of the walkers are entangled states
and, depending on the entanglement symmetry, different
final distributions may be observed. As previously pro-
posed in Ref. [18], entangled states of two particles can
be exploited to carry out bosonic-fermionic quantum
walks: by changing the symmetry of the entangled state
we can simulate the quantum walk of two particles with
integer or semi-integer spin [20]. The fermionic and bo-
sonic behaviors drastically influence the dynamics of their
quantum walk on the line.

The simulation of single-particle quantum walks on a
line can be implemented using single photon states,
beam splitters, phase shifters, and photodetectors [21,22].
The quantum dynamics is achieved by an array of
balanced beam splitters (BSs) as shown in Fig. 1(b), each
vertical line of beam splitters representing a step of the
quantum walk. Horizontal stripes represent the position
jji of the walker. If a photon, at time T and in the stripe
j, is incident downward jDi (upward jUi) on the BS
we can represent its state as jj;DiT (jj; UiT). The
transition from time T to time T þ 1 is given by the BS

operator jj; DiT ! 1ffiffi
2

p ðjj� 1; DiTþ1 � jjþ 1; UiTþ1Þ,
jj; UiT ! 1ffiffi

2
p ðjjþ 1; UiTþ1 þ jj� 1; DiTþ1Þ. This opera-

tion simultaneously implements the coin (precisely the
Hadamard coin)

C ¼ 1ffiffiffi
2

p 1 1
1 �1

� �

and the step operator E. Note that, if the particle starts at
position jj ¼ 0i, at even (odd) times it will occupy only
even (odd) positions. Referring to Fig. 1(b), for a walk with
T� steps, the relation between the probabilities of photons
emerging from one of the N ¼ 2T� outputs of the BS array
(PBS

J ) and the final position of the walker (pwalk
j ) is:

pwalk
�T� ¼ PBS

1 ;

pwalk
�T�þ2k ¼ PBS

2k þ PBS
2kþ1; k ¼ 1; . . . ; T� � 1

pwalk
T� ¼ PBS

2T� :

(1)

Provided that all the optical devices used in the walk are
polarization insensitive, the polarization degree of freedom
may be exploited to entangle the photons injected into the
BS arrays. Moreover by changing the entangled state from
a symmetric one, such as the triplet, into an antisymmetric
one, the singlet, it is possible to mimic the quantum dy-
namics of two noninteracting bosonic and fermionic par-
ticles [see Fig. 1(c)]. It must be noted that the experimental
realization of such a network of BSs is exceedingly diffi-
cult with bulk optics, even for a small number of steps,
since it requires a quadratically growing number of ele-
ments. Furthermore, for correct operation of the quantum
walk, the phase introduced by the optical paths, passing
from each beam splitter to the following, must be con-
trolled and stable.
Our approach exploits an integrated waveguide archi-

tecture, which allows us to concentrate a large number of
optical elements on a small chip and to achieve intrinsic
phase stability due to the monolithic structure. In a wave-
guide implementation BSs are replaced by directional
couplers (DCs), i.e., structures in which two waveguides,
brought close together for a certain interaction length,
couple by evanescent field.
To realize the integrated optical circuits we adopted the

femtosecond laser writing technology [23,24]. Briefly,
nonlinear absorption of focused femtosecond pulses is
exploited to induce permanent and localized refractive
index increase in transparent materials. Waveguides are
directly fabricated in the bulk of the substrate by trans-
lation of the sample at constant velocity with respect to the
laser beam, along the desired path. Since it is a single-step
and maskless process, this technique allows rapid and cost-
effective prototyping of new devices. Furthermore, it has
intrinsic three-dimensional possibilities which have indeed
been exploited in this work.
In previous work we have demonstrated that femtosec-

ond laser technology can produce high-quality waveguides

FIG. 1 (color online). (a) Unidimensional quantum walk: de-
pending on the result of the coin toss the walker moves upward
(U) or downward (D). (b) Scheme of an array of beam splitters
(BSs) for a four-step quantum walk. Vertical dashed lines
indicate the steps T of the quantum walk and the horizontal
stripes represent the position jji of the walker. In an array with
an even (odd) number of steps the output ports J are grouped into
the even (odd) final positions jji of the walker. (c) Different
behaviors of bosons and fermions on a BS.
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able to support polarization entangled photon states
[25,26]. In these femtosecond laser written waveguides,
birefringence is low and does not significantly affect the
coherence of the photons. Anyway, the guided modes for
the two polarizations are still slightly different [as shown in
Fig. 2(a)] and this results in a residual polarization depen-
dence in the properties of the fabricated DCs. In fact, the
coupling coefficient depends on the overlap integral be-
tween the two guided mode profiles and is indeed quite
sensitive to even small differences in the mode dimensions
[27]. When several devices are cascaded, as in the case of a
DC array for implementing a quantum walk, small differ-
ences in the splitting ratios accumulate and in the end
affect the indistinguishability of the two polarizations.

The three-dimensional capabilities of the present tech-
nology can be exploited to tailor the polarization behavior
of the DCs. We have fabricated several DCs with the
waveguides lying on planes at different angles � with

respect to the horizontal [see inset of Fig. 2(b)], but fixed
interaction length and spacing between the waveguides. It
can be observed that the ratio between the measured cou-
pling coefficients for the two polarizations (CV and CH)
depends on �, as shown in Fig. 2(b). In particular there
exists an angle for which the ratio between the two coef-
ficients is unitary; i.e., the coupler becomes polarization
insensitive. In order to realize an experimental implemen-
tation of a discrete quantum walk with photons, we fab-
ricated a network of DCs, all realized with the tilted
geometry described above, where the two waveguides are
brought at 11 �m distance, at an angle of 62�, in the
interaction region, thus guaranteeing the polarization in-
dependence. The length of the interaction region is chosen
as L ¼ 2:1 mm in order to obtain a balanced splitting ratio.
In the interaction region the two waveguides are at

different depths in the glass. To connect one coupler to
the following, we designed a structure where the wave-
guides continuously vary the depth, as shown with the
color codes in Fig. 2(c). The basic cell of the network,
depicted in Fig. 2(d), acts as a Mach-Zehnder interferome-
ter. For the correct operation of the quantum walk all the
interferometers present in the network must be phase bal-
anced. This is intrinsically achieved with the highly sym-
metric three-dimensional geometry implemented in the
network [Figs. 2(c) and 2(d)]. The two central waveguides
of the structure start with an initial separation of 250 �m
to couple the device with a single-mode fiber array, while
at the output the waveguides are separated by 70 �m. The
whole chip is 32 mm long.
To carry out and characterize the different quantum

walks we adopted the experimental apparatus reported in
Fig. 3. Different single photon and two-photon states were
injected into the network of DCs. The singlet-triplet tran-
sition within the Bell basis was performed by applying
a � shift in the phase � of the state 1ffiffi

2
p ðjHiAjViB þ

ei�jViAjHiBÞ through rotations of half- and quarter-wave
plates (see Fig. 3). Fine phase adjustment was performed
by a voltage liquid crystal (LC) device intercepting
mode kA.
The output of the integrated device is collected by a

suitable telescope, split through a bulk beam splitter and
then coupled to two multimode fibers (MMFs). By inde-
pendently translating the MMFs on the arms C and D we
select the output ports to detect, respectively I and J, and
measure the single photon signals SCðIÞ and SDðJÞ and
two-photon coincidences CCDðI; JÞ.
As a first measurement we characterized the quantum

walk circuit with single photons injected in either mode kA
or kB. By measuring the output signals SCðIÞ we obtained
the single-particle distributions. In order to demonstrate
the polarization insensitivity of our device, we repeated
this measurement by injecting light in different polariza-
tion states—horizontal, vertical, diagonal and antidiago-
nal—always observing very similar distributions [28].

FIG. 2 (color online). Integrated optical circuits. (a) Measured
intensity profile for the guided modes with polarization V andH,
at 806 nm wavelength. The 1=e2 dimensions are reported.
(b) Ratio of the estimated coupling coefficient for polarization
V (CVÞ and polarization H (CH) in directional couplers fabri-
cated with different angles � between the waveguides (see inset),
but fixed interaction length (3 mm) and distance (11 �m). The
fitting line is a guide to the eye. (c) Schematic of the network of
directional couplers fabricated for implementing a four-step
quantum walk. The color coding indicates the writing depth of
the waveguides, which is varying from point to point. (d) 3D
representation of the basic cell of the network, which acts as a
Mach-Zehnder interferometer.
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Each experimental distribution was compared with the

expected one by the similarity S ¼ ðPi;j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DijD

0
i;j

q
Þ2=P

i;jDij

P
i;jD

0
ij, which is a generalization of the classical

fidelity between two distributions D and D0. The mean
value over the tested input polarization states is S1ph ¼
0:992� 0:002.

As a second step we injected two-photon entangled
states. The distribution of the triplet and singlet states
j�þi (� ¼ 0) and j��i (� ¼ �) emerging from the
quantum walk was reconstructed by measuring the coinci-
dence counts CCDðI; JÞ for each combination of the indices
I and J. The measured bosonic and fermionic distributions
compared with the expected ones are reported in Figs. 4(a)
and 4(b) for j�þi and j��i. As done for the measurements
on the single photon quantum walk, we plotted the proba-
bility distributions for the walkers to be in the final posi-
tions i, j of the quantum walk, which is related to the
probability of photons to emerge from the output ports I
and J of the BS array [28].

In Fig. 4 we observe how the particle symmetry affects
the quantum walks. Note that some of the diagonal ele-
ments of the fermionic two-particle walk are nonzero both
in the theoretical and experimental distribution. Indeed
Fig. 4 reports the probability distribution of the walk
positions and not of the physical spatial modes. In fact,
the expected probability to measure two fermions over the
same output spatial mode is vanishing [28].

Furthermore, by considering a generic phase � (differ-
ent from 0 and �), it is possible to simulate the behavior
of the quantum walk of two anyons, particles with a
non-semi-integer spin that represent a generalization of
fermions and bosons [29]. Precisely, the entangled state
j��i ¼ 1ffiffi

2
p ðjHiAjViB þ ei�jViAjHiBÞ simulates two any-

ons characterized by creation operators satisfying cicj ¼
ei�cjci and cic

y
j ¼ ei�cyj ci þ �ij. These systems exhibit

both bunching and antibunching behaviors (i.e., diagonal
and off-diagonal elements in the final distribution). As a
further measurement, we therefore prepared some anyonic
states j��i, in particular, with � ¼ �

4 ,
�
2 ,

3
4�, and mea-

sured the output probabilities. In Fig. 4(c) the distribution
for � ¼ �

2 is reported as an example of an anyonic

behavior.
The experimental data can be compared with the theo-

retical distributions by the similarity obtaining Sbos ¼
0:982� 0:002 and Sfer ¼ 0:973� 0:002 for the bosonic

and fermionic quantum walk and S�=4any ¼ 0:987� 0:002,

S�=2any ¼ 0:988� 0:001 and S3�=4any ¼ 0:980� 0:002 for the

anyonic quantum walks with � ¼ �
4 ,

�
2 ,

3
4�, respectively.

The obtained results are in good agreement with the ex-
pected behaviors.
In conclusion, we presented the behavior of a discrete

quantum walk based on an integrated array of symmetric,

FIG. 3 (color online). The experimental setup can be divided
into three parts. (i) The source: polarization entangled photon
pairs at wavelength � ¼ 806 nm generated via spontaneous
parametric down conversion in a 1.5 mm �-barium borate
crystal (BBO) cut for type-II noncollinear phase matching,
pumped by a cw diode laser with power P ¼ 50 mW [35].
Wave plates (WPs) allow generation of any single photon state
and the Bell states. A delay line is inserted to control the
temporal superposition of the photons, which are injected into
the integrated device through single-mode fibers (SMFs).
Interference filters determine the photon bandwidth �� ¼
6 nm. (ii) Integrated quantum walk circuit realized by ultrafast
laser writing technique (see inset on the left). (iii) Measuring
apparatus: the chip output is divided by a beam splitter (BS) and
magnified through a set of two lenses. The photons coupled to
multimode fibers (MMFs) are then delivered to single photon
counting modules. The MMFs are mounted on motorized trans-
lation stages in order to select an arbitrary combination of two
output ports and measure two-photon coincidences. Polarization
controllers (PCs) are used before the chip to compensate for the
polarization rotations induced by the fibers. FIG. 4 (color online). Two-particle quantum walks: ideal (left)

and measured (right) distributions of (a) bosonic, (b) fermionic
and (c) anyonic (with � ¼ �=2) quantum walks.
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polarization insensitive, directional couplers in which two-
photon polarization entangled states are injected.
Exploiting the different statistics of singlet and triplet
entangled states, such a scheme allowed us to simulate
how symmetric and antisymmetric particles travel through
the quantum walk.

The insensitivity to photon polarization, high accuracy
in the phase control and intrinsic scalability of the inte-
grated multi-DC network presented in this work, pave the
way to further advanced investigations on complexity
physics phenomena. For instance, by introducing suitable
static and dynamic disorder in the walk it would be pos-
sible to simulate the interruption of diffusion in a periodic
lattice, like Anderson localization [30–33], and the noise-
assisted quantum transport effect[9,34].

This work was supported by EU-Project CHISTERA-
QUASAR, FIRB-Futuro in Ricerca HYTEQ and PRIN
2009.

Note added.—Recently, the simulation of quantum sta-
tistics with entangled photons within a continuous quan-
tum walk was reported online [36].
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