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A BOUND ON THE EXPECTED NUMBER

OF RANDOM ELEMENTS TO GENERATE A FINITE GROUP

ALL OF WHOSE SYLOW SUBGROUPS ARE d-GENERATED.

ANDREA LUCCHINI

Abstract. Assume that all the Sylow subgroups of a finite group G can be
generated by d elements. Then the expected number of elements of G which
have to be drawn at random, with replacement, before a set of generators is
found, is at most d+ η with η ∼ 2.875065.

1. introduction

In 1989, R. Guralnick [5] and the author [11] independently proved that if all
the Sylow subgroups of a finite group G can be generated by d elements, then the
group G itself can be generated by d + 1 elements. The aim of this paper is to
obtain a probabilistic version of this result.

Let G be a nontrivial finite group and let x = (xn)n∈N be a sequence of indepen-
dent, uniformly distributed G-valued random variables. We may define a random
variable τG by τG = min{n ≥ 1 | 〈x1, . . . , xn〉 = G}. We denote by e(G) the expec-
tation E(τG) of this random variable. In other word e(G) is the expected number
of elements of G which have to be drawn at random, with replacement, before a
set of generators is found. Some estimations of the value e(G) have been obtained
in [12]. The main result of this paper is:

Theorem 1. Let G be a finite group. If all the Sylow subgroups of G can be
generated by d elements, then

e(G) ≤ d+ η with η =
5

2
+
∑

p≥3

1

(p− 1)2
< 3.

From an accurate estimation of
∑

p(p−1)−2 given in [1], it follows η ∼ 2.875065...
This result is near to be best possible. For any prime p, let Ap,d be the elementary
abelian p-group of rank d and for any positive integer n consider An,d =

∏

p≤n Ap,d.

C. Pomerance [13] proved that limn→∞ e(An,d) = d+ σ, where σ ∼ 2.11846... (the
exact value of σ can be explicitly described in terms of the Riemann zeta–function).

If G is a p-subgroup of Sym(n), then G can be generated by ⌊n/p⌋ elements (see
[8]), so Theorem 2 has the following consequence:
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Corollary 2. If G is a permutation group of degree n, then e(G) ≤ ⌊n/2⌋+ η.

A profinite group G, being a compact topological group, can be seen as a prob-
ability space. If we denote with µ the normalized Haar measure on G, so that
µ(G) = 1, the probability that k random elements generate (topologically) G is
defined as

PG(k) = µ({(x1, . . . , xk) ∈ Gk|〈x1, . . . , xk〉 = G}),

where µ denotes also the product measure on Gk. The definition of e(G) can be ex-
tended to finitely generated profinite groups. In particular e(G) = supN∈N e(G/N),
being N the set of the open normal subgroups of G (see for example [12, Section 6]),
hence Theorem 2 remains true for profinite groups: if all the Sylow subgroups of a
profinite group G are (topologically) d-generated, then G is (topologically) (d+1)-
generated and e(G) ≤ d + η. A profinite group G is said to be positively finitely
generated, PFG for short, if PG(k) is positive for some natural number k, and the
least such natural number is denoted by dP (G). Not all finitely generated profinite

groups are PFG (for example if F̂d is the free profinite group of rank d ≥ 2 then
PF̂d

(t) = 0 for every t ≥ d, see [7]): if G is not PFG we set dP (G) = ∞. It can be

easily seen that e(G) =
∑

n≥0 1− PG(n) (see (2.1) in Section 2). Since PG(n) = 0

whenever n ≤ dP (G), we immediately deduce that e(G) > dP (G). In particular,
if all the Sylow subgroups of G are d-generated, then dP (G) < e(G) < d + 3, and
therefore we obtain the following result:

Theorem 3. If all the Sylow subgroups of a profinite group G are (topologically)
d-generated, then dP (G) ≤ d+ 2.

The previous result is best possible. For a given d ∈ N, let Ap,d be an elementary
abelian p-group of rank d, Ad =

∏

p6=2 Ap,d and consider the semidirect product

Gd = Ad ⋊ B, where B = 〈b〉 is cyclic of order 2 and ab = a−1 for every a ∈ Ad.
Clearly all the Sylow subgroups of G are d-generated. We claim that dP (G) = d+2.
It follows from the main theorem in [4] that for every k ∈ N, we have

PGd
(k) =

(

1−
1

2k

)

∏

p6=2

(

1−
p

pk

)

· · ·

(

1−
pd

pk

)

.

In particular PGd
(d+ 1) = 0 since the series

∑

p6=2

(

p

pd+1
+ · · ·+

pd

pd+1

)

=
∑

p6=2

pd+1 − 1

(p− 1)pd+1

is divergent. But then dP (G) > d+ 1, hence, by Theorem 3, we conclude dP (G) =
d+ 2.

2. Proof of the main result

Let G be a finite group and use the following notations:

• For a given prime p, dp(G) is the smallest cardinality of a generating set of
a Sylow p-subgroup of G.

• For a given prime p and a positive integer t, αp,t(G) is the number of
complemented factors of order pt in a chief series of G.

• For a given prime p, αp(G) =
∑

t αp,t(G) is the number of complemented
factors of p-power order in a chief series of G.

• β(G) is the number of nonabelian factors in a chief series of G.
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Lemma 4. For every finite group G, we have:

(1) αp(G) ≤ dp(G).
(2) α2(G) + β(G) ≤ d2(G).
(3) If β(G) 6= 0, then β(G) ≤ d2(G)− 1.

Proof. We prove the three statements by induction on the order of G. Let N be a
minimal normal subgroup of G.

(1) If N is not complemented in G or N is not a p-group, then, by induction,

αp(G) = αp(G/N) ≤ dp(G/N) = dp(G).

Otherwise G = N ⋊H for a suitable H ≤ G and αp(G) = αp(G/N) + 1 =
αp(H) + 1 ≤ dp(H) + 1 ≤ dp(G).

(2) If N is abelian, we argue as in (1). Assume that N is nonabelian and let P
be a Sylow 2-subgroup of G. By Tate’s Theorem [3, p. 431], P∩N 6≤ FratP,
and consequently β(G) = β(G/N) + 1 ≤ d2(G/N) + 1 ≤ d2(G).

(3) Suppose β(G) 6= 0. As before we may assume that N is nonabelian and
this implies d2(G/N) + 1 ≤ d2(G). If β(G/N) 6= 0, then we easily conclude
by induction. If β(G/N) = 0 then β(G) = 1 while d2(G) ≥ 2, since a Sylow
2-subgroup of a finite nonabelian simple group, and consequently of N, is
never cyclic. �

Notice that τG > n if and only if 〈x1, . . . , xn〉 6= G, so we have P (τG > n) =
1− PG(n), denoting by PG(n) the probability that n randomly chosen elements of
G generate G. Clearly we have:

(2.1)

e(G) =
∑

n≥1

nP (τG = n) =
∑

n≥1





∑

m≥n

P (τG = m)





=
∑

n≥1

P (τG ≥ n) =
∑

n≥0

P (τG > n) =
∑

n≥0

(1− PG(n)).

Denote by mn(G) the number of index n maximal subgroups of G. We have (see
[10, 11.6]):

(2.2) 1− PG(k) ≤
∑

n≥2

mn(G)

nk
.

Using the notations introduced in [9, Section 2], we say that a maximal subgroup
M of G is of type A if soc(G/CoreG(M)) is abelian, of type B otherwise, and we
denote by mA

n (G) (respectively mB
n (G)) the number of maximal subgroups of G of

type A (respectively B) of index n. Given an irreducible G-group V , let δV (G) be
the number of complemented factors G-isomorphic to V in a chief series of G and
qV (G) = |EndG(V )|. Moreover, for n ∈ N, let An be the set of the irreducible
G-modules V with δV (G) 6= 0 and |V | = n.

Lemma 5. Let n = pt for some prime p. If mA
n (G) 6= 0, then αp,t(G) 6= 0 and

mA
n (G) ≤

nαp,t(G)+1

p− 1
.
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Proof. For a given V ∈ An, let mV (G) be the number of maximal subgroups M of
G with soc(G/CoreG(M)) ∼=G V. From [9, Section 2] and [2, Section 4] it follows
that

mV (G) ≤
qV (G)δV (G) − 1

qV (G)− 1
|Der(G/CG(V ), V )|.

By [6, Theorem 1], we have |Der(G/CG(V ), V )| ≤ |V |3/2. Moreover (see for exam-
ple [14, Lemma 1]) |Der(G/CG(V ), V )| ≤ |V | if G/CG(V ) is soluble, which happens
in particular when qV (G) = n (indeed in this case G/CG(V ) is isomorphic to a sub-
group of the multiplicative group of the field of order qV (G)). If qV (G) 6= n, then
dimEndG(V ) V ≥ 2, hence n = |V | ≥ qG(V )2 and consequently

mV (G) ≤
qV (G)δG(V )n3/2

qV (G)− 1
≤

nδG(V )/2n3/2

p− 1
≤

nδG(V )+1

p− 1
.

On the other hand, if qV (G) = n, then

mV (G) ≤
qV (G)δG(V )n

qV (G)− 1
≤

nδG(V )n

p− 1
≤

nδG(V )+1

p− 1
.

We conclude

mA
n (G) =

∑

V ∈An

mV (G) ≤
n

p− 1

∑

V ∈An

nδV (G) ≤
n

p− 1

∏

V ∈An

nδV (G)

=
n1+

∑
V ∈An

δV (G)

p− 1
=

nαp,t(G)+1

p− 1
. �

Lemma 6. If mB
n (G) 6= 0, then n ≥ 5, β(G) 6= 0 and mB

n (G) ≤ β(G)(β(G)+1)n2

2 .

Proof. The condition n ≥ 5 follows from the fact there there is no unsoluble prim-
itive permutation group of degree n < 5. The remaining part of the statement
follows from [9, Claim 2.4]. �

Lemma 7. Let d = maxp dp(G) and let

µp(G) =
∑

k≥d+2





∑

t≥1

mA
pt(G)

ptk



 .

If αp(G) = 0, then µp(G) = 0. Otherwise

µp(G) ≤

{

1
pd−αp(G)

1
(p−1)2 ≤ 1

(p−1)2 if p is odd,
1

2d−α2(G)
1
2 ≤ 1

2 otherwise.
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Proof. First notice that, by Lemma 4, we have αp(G) ≤ dp(G) ≤ d. Let θp,t = 0 if
αp,t(G) = 0, θp,t = 1 otherwise. By Lemma 5 we have

∑

k≥d+2





∑

t≥1

mA
pt(G)

ptk



 ≤
p

p− 1

∑

k≥d+2





∑

t≥1

ptαp,t(G)θp,t
ptk





≤
∑

k≥d+2

p

p− 1





∑

t≥1

pαp,t(G)θp,t
pk



 ≤
p

p− 1

∑

k≥d+2

(

p
∑

t≥1 αp,t(G)

pk

)

≤
p

p− 1

∑

k≥d+2

pαp(G)

pk
≤

p

p− 1

∑

k≥d+2

pd

pkpd−αp(G)

≤
p

pd−αp(G)(p− 1)

∑

u≥2

1

pu
≤

1

pd−αp(G)

1

(p− 1)2
.

Notice that, for k > d ≥ d2(G) ≥ α2,t(G), we have

mA
2t(G)

2tk
≤

2tα2,t(G)+1

2tk
≤

2α2,t(G)

2k
if t > 1.

On the other hand,

mA
2 (G) = 2α2,1(G) − 1 ≤ 2α2,1(G).

Hence

∑

k≥d+2





∑

t≥1

mA
2t(G)

2tk



 ≤
∑

k≥d+2





∑

t≥1

2α2,t(G)θ2,t
2k



 ≤
∑

k≥d+2

(

2
∑

t≥1 α2,t(G)

2k

)

≤
∑

k≥d+2

2α2(G)

2k
≤
∑

k≥d+2

2d

2k2d−α2(G)
≤

1

2d−α2(G)

∑

u≥2

1

2u
≤

1

2d−αp(G)

1

2
. �

Lemma 8. Let d = maxp dp(G) and let

µ∗(G) =
∑

k≥d+2





∑

n≥5

mB
n (G)

nk



 .

If β(G) = 0, then µ∗(G) = 0. Otherwise

µ∗(G) ≤
1

4 · 5d−(β(G)+1)
≤

1

4
.
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Proof. Notice that, by Lemma 4, if β(G) 6= 0, then d ≥ d2(G) ≥ β(G) + 1 ≥ 2. We
deduce from Lemma 6 that

∑

k≥d+2





∑

n≥5

mB
n (G)

nk



 ≤
∑

k≥d+2





∑

n≥5

β(G)(β(G) + 1)n2

2nk





≤
β(G)(β(G) + 1)

2

∑

u≥2





∑

n≥5

n2

nd+u



 ≤
β(G)(β(G) + 1)

2 · 5d−2

∑

u≥2





∑

n≥5

1

nu





≤
β(G)(β(G) + 1)

2 · 5d−2

∑

n≥5





∑

u≥2

1

nu



 ≤
β(G)(β(G) + 1)

2 · 5d−2

∑

n≥5

1

n2

n

n− 1

=
β(G)(β(G) + 1)

2 · 5d−2

∑

n≥4

1

n(n+ 1)
=

β(G)(β(G) + 1)

2 · 5β(G)−1 · 5d−(β(G)+1)
·
1

4

≤
1

4 · 5d−(β(G)+1)
. �

Lemma 9. We have µ2(G) + µ∗(G) ≤ 1/2.

Proof. By Lemma 4, α2(G) + β(G) ≤ d2(G) ≤ d. If d = α2(G) then β(G) = 0, and
consequently

µ2(G) + µ∗(G) = µ2(G) ≤
1

2
.

In the remain cases, we have

µ2(G) + µ∗(G) ≤
1

2 · 2d−αp(G)
+

1

4 · 5d−(β(G)+1)
≤

1

4
+

1

4
=

1

2
. �

Proof of Theorem 2. From (2.1), (2.2) and the last three lemmas, we deduce

e(G) =
∑

k≥0

(1− PG(k)) ≤ d+ 2 +
∑

k≥d+2

(1 − PG(k))

≤ d+ 2 +
∑

p





∑

k≥d+2





∑

t≥1

mA
pt(G)

ptk







+
∑

k≥d+2





∑

n≥5

mB
n (G)

nk





= d+ 2 +
∑

p

µp(G) + µ∗(G) ≤ d+
5

2
+
∑

p>2

1

(p− 1)2
. �
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