A BOUND ON THE EXPECTED NUMBER OF RANDOM ELEMENTS TO GENERATE A FINITE GROUP ALL OF WHOSE SYLOW SUBGROUPS ARE d-GENERATED.

ANDREA LUCCHINI

Abstract

Assume that all the Sylow subgroups of a finite group G can be generated by d elements. Then the expected number of elements of G which have to be drawn at random, with replacement, before a set of generators is found, is at most $d+\eta$ with $\eta \sim 2.875065$.

1. INTRODUCTION

In 1989, R. Guralnick [5] and the author [11] independently proved that if all the Sylow subgroups of a finite group G can be generated by d elements, then the group G itself can be generated by $d+1$ elements. The aim of this paper is to obtain a probabilistic version of this result.

Let G be a nontrivial finite group and let $x=\left(x_{n}\right)_{n \in \mathbb{N}}$ be a sequence of independent, uniformly distributed G-valued random variables. We may define a random variable τ_{G} by $\tau_{G}=\min \left\{n \geq 1 \mid\left\langle x_{1}, \ldots, x_{n}\right\rangle=G\right\}$. We denote by $e(G)$ the expectation $\mathrm{E}\left(\tau_{G}\right)$ of this random variable. In other word $e(G)$ is the expected number of elements of G which have to be drawn at random, with replacement, before a set of generators is found. Some estimations of the value $e(G)$ have been obtained in [12]. The main result of this paper is:

Theorem 1. Let G be a finite group. If all the Sylow subgroups of G can be generated by d elements, then

$$
e(G) \leq d+\eta \quad \text { with } \quad \eta=\frac{5}{2}+\sum_{p \geq 3} \frac{1}{(p-1)^{2}}<3
$$

From an accurate estimation of $\sum_{p}(p-1)^{-2}$ given in [1], it follows $\eta \sim 2.875065 \ldots$ This result is near to be best possible. For any prime p, let $A_{p, d}$ be the elementary abelian p-group of rank d and for any positive integer n consider $A_{n, d}=\prod_{p \leq n} A_{p, d}$. C. Pomerance [13] proved that $\lim _{n \rightarrow \infty} e\left(A_{n, d}\right)=d+\sigma$, where $\sigma \sim 2.11846 \ldots$ (the exact value of σ can be explicitly described in terms of the Riemann zeta-function).

If G is a p-subgroup of $\operatorname{Sym}(n)$, then G can be generated by $\lfloor n / p\rfloor$ elements (see [8), so Theorem 2 has the following consequence:

[^0]Corollary 2. If G is a permutation group of degree n, then $e(G) \leq\lfloor n / 2\rfloor+\eta$.
A profinite group G, being a compact topological group, can be seen as a probability space. If we denote with μ the normalized Haar measure on G, so that $\mu(G)=1$, the probability that k random elements generate (topologically) G is defined as

$$
P_{G}(k)=\mu\left(\left\{\left(x_{1}, \ldots, x_{k}\right) \in G^{k} \mid\left\langle x_{1}, \ldots, x_{k}\right\rangle=G\right\}\right)
$$

where μ denotes also the product measure on G^{k}. The definition of $e(G)$ can be extended to finitely generated profinite groups. In particular $e(G)=\sup _{N \in \mathcal{N}} e(G / N)$, being \mathcal{N} the set of the open normal subgroups of G (see for example [12, Section 6]), hence Theorem 2 remains true for profinite groups: if all the Sylow subgroups of a profinite group G are (topologically) d-generated, then G is (topologically) $(d+1)$ generated and $e(G) \leq d+\eta$. A profinite group G is said to be positively finitely generated, PFG for short, if $P_{G}(k)$ is positive for some natural number k, and the least such natural number is denoted by $d_{P}(G)$. Not all finitely generated profinite groups are PFG (for example if \hat{F}_{d} is the free profinite group of rank $d \geq 2$ then $P_{\hat{F}_{d}}(t)=0$ for every $t \geq d$, see [7]): if G is not PFG we set $d_{P}(G)=\infty$. It can be easily seen that $e(G)=\sum_{n \geq 0} 1-P_{G}(n)$ (see (2.1) in Section (2). Since $P_{G}(n)=0$ whenever $n \leq d_{P}(G)$, we immediately deduce that $e(G)>d_{P}(G)$. In particular, if all the Sylow subgroups of G are d-generated, then $d_{P}(G)<e(G)<d+3$, and therefore we obtain the following result:

Theorem 3. If all the Sylow subgroups of a profinite group G are (topologically) d-generated, then $d_{P}(G) \leq d+2$.

The previous result is best possible. For a given $d \in \mathbb{N}$, let $A_{p, d}$ be an elementary abelian p-group of rank $d, A_{d}=\prod_{p \neq 2} A_{p, d}$ and consider the semidirect product $G_{d}=A_{d} \rtimes B$, where $B=\langle b\rangle$ is cyclic of order 2 and $a^{b}=a^{-1}$ for every $a \in A_{d}$. Clearly all the Sylow subgroups of G are d-generated. We claim that $d_{P}(G)=d+2$. It follows from the main theorem in [4] that for every $k \in \mathbb{N}$, we have

$$
P_{G_{d}}(k)=\left(1-\frac{1}{2^{k}}\right) \prod_{p \neq 2}\left(1-\frac{p}{p^{k}}\right) \cdots\left(1-\frac{p^{d}}{p^{k}}\right) .
$$

In particular $P_{G_{d}}(d+1)=0$ since the series

$$
\sum_{p \neq 2}\left(\frac{p}{p^{d+1}}+\cdots+\frac{p^{d}}{p^{d+1}}\right)=\sum_{p \neq 2} \frac{p^{d+1}-1}{(p-1) p^{d+1}}
$$

is divergent. But then $d_{P}(G)>d+1$, hence, by Theorem 3, we conclude $d_{P}(G)=$ $d+2$.

2. Proof of the main result

Let G be a finite group and use the following notations:

- For a given prime $p, d_{p}(G)$ is the smallest cardinality of a generating set of a Sylow p-subgroup of G.
- For a given prime p and a positive integer $t, \alpha_{p, t}(G)$ is the number of complemented factors of order p^{t} in a chief series of G.
- For a given prime $p, \alpha_{p}(G)=\sum_{t} \alpha_{p, t}(G)$ is the number of complemented factors of p-power order in a chief series of G.
- $\beta(G)$ is the number of nonabelian factors in a chief series of G.

Lemma 4. For every finite group G, we have:
(1) $\alpha_{p}(G) \leq d_{p}(G)$.
(2) $\alpha_{2}(G)+\beta(G) \leq d_{2}(G)$.
(3) If $\beta(G) \neq 0$, then $\beta(G) \leq d_{2}(G)-1$.

Proof. We prove the three statements by induction on the order of G. Let N be a minimal normal subgroup of G.
(1) If N is not complemented in G or N is not a p-group, then, by induction,

$$
\alpha_{p}(G)=\alpha_{p}(G / N) \leq d_{p}(G / N)=d_{p}(G)
$$

Otherwise $G=N \rtimes H$ for a suitable $H \leq G$ and $\alpha_{p}(G)=\alpha_{p}(G / N)+1=$ $\alpha_{p}(H)+1 \leq d_{p}(H)+1 \leq d_{p}(G)$.
(2) If N is abelian, we argue as in (1). Assume that N is nonabelian and let P be a Sylow 2-subgroup of G. By Tate's Theorem [3] p. 431], $P \cap N \not \leq$ Frat P, and consequently $\beta(G)=\beta(G / N)+1 \leq d_{2}(G / N)+1 \leq d_{2}(G)$.
(3) Suppose $\beta(G) \neq 0$. As before we may assume that N is nonabelian and this implies $d_{2}(G / N)+1 \leq d_{2}(G)$. If $\beta(G / N) \neq 0$, then we easily conclude by induction. If $\beta(G / N)=0$ then $\beta(G)=1$ while $d_{2}(G) \geq 2$, since a Sylow 2-subgroup of a finite nonabelian simple group, and consequently of N, is never cyclic.

Notice that $\tau_{G}>n$ if and only if $\left\langle x_{1}, \ldots, x_{n}\right\rangle \neq G$, so we have $P\left(\tau_{G}>n\right)=$ $1-P_{G}(n)$, denoting by $P_{G}(n)$ the probability that n randomly chosen elements of G generate G. Clearly we have:

$$
\begin{align*}
e(G) & =\sum_{n \geq 1} n P\left(\tau_{G}=n\right)=\sum_{n \geq 1}\left(\sum_{m \geq n} P\left(\tau_{G}=m\right)\right) \tag{2.1}\\
& =\sum_{n \geq 1} P\left(\tau_{G} \geq n\right)=\sum_{n \geq 0} P\left(\tau_{G}>n\right)=\sum_{n \geq 0}\left(1-P_{G}(n)\right) .
\end{align*}
$$

Denote by $m_{n}(G)$ the number of index n maximal subgroups of G. We have (see [10, 11.6]):

$$
\begin{equation*}
1-P_{G}(k) \leq \sum_{n \geq 2} \frac{m_{n}(G)}{n^{k}} \tag{2.2}
\end{equation*}
$$

Using the notations introduced in [9, Section 2], we say that a maximal subgroup M of G is of type A if $\operatorname{soc}\left(G / \operatorname{Core}_{G}(M)\right)$ is abelian, of type B otherwise, and we denote by $m_{n}^{A}(G)$ (respectively $m_{n}^{B}(G)$) the number of maximal subgroups of G of type A (respectively B) of index n. Given an irreducible G-group V, let $\delta_{V}(G)$ be the number of complemented factors G-isomorphic to V in a chief series of G and $q_{V}(G)=\left|\operatorname{End}_{G}(V)\right|$. Moreover, for $n \in \mathbb{N}$, let \mathcal{A}_{n} be the set of the irreducible G-modules V with $\delta_{V}(G) \neq 0$ and $|V|=n$.

Lemma 5. Let $n=p^{t}$ for some prime p. If $m_{n}^{A}(G) \neq 0$, then $\alpha_{p, t}(G) \neq 0$ and

$$
m_{n}^{A}(G) \leq \frac{n^{\alpha_{p, t}(G)+1}}{p-1}
$$

Proof. For a given $V \in \mathcal{A}_{n}$, let $m_{V}(G)$ be the number of maximal subgroups M of G with $\operatorname{soc}\left(G / \operatorname{Core}_{G}(M)\right) \cong_{G} V$. From [9, Section 2] and [2, Section 4] it follows that

$$
m_{V}(G) \leq \frac{q_{V}(G)^{\delta_{V}(G)}-1}{q_{V}(G)-1}\left|\operatorname{Der}\left(G / C_{G}(V), V\right)\right|
$$

By [6. Theorem 1], we have $\left|\operatorname{Der}\left(G / C_{G}(V), V\right)\right| \leq|V|^{3 / 2}$. Moreover (see for example [14, Lemma 1]) $\left|\operatorname{Der}\left(G / C_{G}(V), V\right)\right| \leq|V|$ if $G / C_{G}(V)$ is soluble, which happens in particular when $q_{V}(G)=n$ (indeed in this case $G / C_{G}(V)$ is isomorphic to a subgroup of the multiplicative group of the field of order $\left.q_{V}(G)\right)$. If $q_{V}(G) \neq n$, then $\operatorname{dim}_{\operatorname{End}_{G}(V)} V \geq 2$, hence $n=|V| \geq q_{G}(V)^{2}$ and consequently

$$
m_{V}(G) \leq \frac{q_{V}(G)^{\delta_{G}(V)} n^{3 / 2}}{q_{V}(G)-1} \leq \frac{n^{\delta_{G}(V) / 2} n^{3 / 2}}{p-1} \leq \frac{n^{\delta_{G}(V)+1}}{p-1}
$$

On the other hand, if $q_{V}(G)=n$, then

$$
m_{V}(G) \leq \frac{q_{V}(G)^{\delta_{G}(V)} n}{q_{V}(G)-1} \leq \frac{n^{\delta_{G}(V)} n}{p-1} \leq \frac{n^{\delta_{G}(V)+1}}{p-1}
$$

We conclude

$$
\begin{aligned}
m_{n}^{A}(G) & =\sum_{V \in \mathcal{A}_{n}} m_{V}(G) \leq \frac{n}{p-1} \sum_{V \in \mathcal{A}_{n}} n^{\delta_{V}(G)} \leq \frac{n}{p-1} \prod_{V \in \mathcal{A}_{n}} n^{\delta_{V}(G)} \\
& =\frac{n^{1+\sum_{V \in \mathcal{A}_{n}} \delta_{V}(G)}}{p-1}=\frac{n^{\alpha_{p, t}(G)+1}}{p-1} .
\end{aligned}
$$

Lemma 6. If $m_{n}^{B}(G) \neq 0$, then $n \geq 5, \beta(G) \neq 0$ and $m_{n}^{B}(G) \leq \frac{\beta(G)(\beta(G)+1) n^{2}}{2}$.
Proof. The condition $n \geq 5$ follows from the fact there there is no unsoluble primitive permutation group of degree $n<5$. The remaining part of the statement follows from [9, Claim 2.4].

Lemma 7. Let $d=\max _{p} d_{p}(G)$ and let

$$
\mu_{p}(G)=\sum_{k \geq d+2}\left(\sum_{t \geq 1} \frac{m_{p^{t}}^{A}(G)}{p^{t k}}\right)
$$

If $\alpha_{p}(G)=0$, then $\mu_{p}(G)=0$. Otherwise

$$
\mu_{p}(G) \leq \begin{cases}\frac{1}{p^{d-\alpha_{p}(G)}} \frac{1}{(p-1)^{2}} \leq \frac{1}{(p-1)^{2}} & \text { if } p \text { is odd } \\ \frac{1}{2^{d-\alpha_{2}(G)}} \frac{1}{2} \leq \frac{1}{2} & \text { otherwise } .\end{cases}
$$

Proof. First notice that, by Lemma 4, we have $\alpha_{p}(G) \leq d_{p}(G) \leq d$. Let $\theta_{p, t}=0$ if $\alpha_{p, t}(G)=0, \theta_{p, t}=1$ otherwise. By Lemma 5 we have

$$
\begin{aligned}
\sum_{k \geq d+2} & \left(\sum_{t \geq 1} \frac{m_{p^{t}}^{A}(G)}{p^{t k}}\right) \leq \frac{p}{p-1} \sum_{k \geq d+2}\left(\sum_{t \geq 1} \frac{p^{t \alpha_{p, t}(G)} \theta_{p, t}}{p^{t k}}\right) \\
& \leq \sum_{k \geq d+2} \frac{p}{p-1}\left(\sum_{t \geq 1} \frac{p^{\alpha_{p, t}(G)} \theta_{p, t}}{p^{k}}\right) \leq \frac{p}{p-1} \sum_{k \geq d+2}\left(\frac{p^{\sum_{t \geq 1} \alpha_{p, t}(G)}}{p^{k}}\right) \\
& \leq \frac{p}{p-1} \sum_{k \geq d+2} \frac{p^{\alpha_{p}(G)}}{p^{k}} \leq \frac{p}{p-1} \sum_{k \geq d+2} \frac{p^{d}}{p^{k} p^{d-\alpha_{p}(G)}} \\
& \leq \frac{p}{p^{d-\alpha_{p}(G)}(p-1)} \sum_{u \geq 2} \frac{1}{p^{u}} \leq \frac{1}{p^{d-\alpha_{p}(G)}} \frac{1}{(p-1)^{2}} .
\end{aligned}
$$

Notice that, for $k>d \geq d_{2}(G) \geq \alpha_{2, t}(G)$, we have

$$
\frac{m_{2^{t}}^{A}(G)}{2^{t k}} \leq \frac{2^{t \alpha_{2, t}(G)+1}}{2^{t k}} \leq \frac{2^{\alpha_{2, t}(G)}}{2^{k}} \quad \text { if } \quad t>1
$$

On the other hand,

$$
m_{2}^{A}(G)=2^{\alpha_{2,1}(G)}-1 \leq 2^{\alpha_{2,1}(G)}
$$

Hence

$$
\begin{aligned}
\sum_{k \geq d+2} & \left(\sum_{t \geq 1} \frac{m_{2^{t}}^{A}(G)}{2^{t k}}\right) \leq \sum_{k \geq d+2}\left(\sum_{t \geq 1} \frac{2^{\alpha_{2, t}(G)} \theta_{2, t}}{2^{k}}\right) \leq \sum_{k \geq d+2}\left(\frac{2^{\sum_{t \geq 1} \alpha_{2, t}(G)}}{2^{k}}\right) \\
& \leq \sum_{k \geq d+2} \frac{2^{\alpha_{2}(G)}}{2^{k}} \leq \sum_{k \geq d+2} \frac{2^{d}}{2^{k} 2^{d-\alpha_{2}(G)}} \leq \frac{1}{2^{d-\alpha_{2}(G)}} \sum_{u \geq 2} \frac{1}{2^{u}} \leq \frac{1}{2^{d-\alpha_{p}(G)}} \frac{1}{2}
\end{aligned}
$$

Lemma 8. Let $d=\max _{p} d_{p}(G)$ and let

$$
\mu^{*}(G)=\sum_{k \geq d+2}\left(\sum_{n \geq 5} \frac{m_{n}^{B}(G)}{n^{k}}\right) .
$$

If $\beta(G)=0$, then $\mu^{*}(G)=0$. Otherwise

$$
\mu^{*}(G) \leq \frac{1}{4 \cdot 5^{d-(\beta(G)+1)}} \leq \frac{1}{4}
$$

Proof. Notice that, by Lemma 4] if $\beta(G) \neq 0$, then $d \geq d_{2}(G) \geq \beta(G)+1 \geq 2$. We deduce from Lemma 6 that

$$
\begin{aligned}
\sum_{k \geq d+2} & \left(\sum_{n \geq 5} \frac{m_{n}^{B}(G)}{n^{k}}\right) \leq \sum_{k \geq d+2}\left(\sum_{n \geq 5} \frac{\beta(G)(\beta(G)+1) n^{2}}{2 n^{k}}\right) \\
& \leq \frac{\beta(G)(\beta(G)+1)}{2} \sum_{u \geq 2}\left(\sum_{n \geq 5} \frac{n^{2}}{n^{d+u}}\right) \leq \frac{\beta(G)(\beta(G)+1)}{2 \cdot 5^{d-2}} \sum_{u \geq 2}\left(\sum_{n \geq 5} \frac{1}{n^{u}}\right) \\
& \leq \frac{\beta(G)(\beta(G)+1)}{2 \cdot 5^{d-2}} \sum_{n \geq 5}\left(\sum_{u \geq 2} \frac{1}{n^{u}}\right) \leq \frac{\beta(G)(\beta(G)+1)}{2 \cdot 5^{d-2}} \sum_{n \geq 5} \frac{1}{n^{2}} \frac{n}{n-1} \\
& =\frac{\beta(G)(\beta(G)+1)}{2 \cdot 5^{d-2}} \sum_{n \geq 4} \frac{1}{n(n+1)}=\frac{\beta(G)(\beta(G)+1)}{2 \cdot 5^{\beta(G)-1} \cdot 5^{d-(\beta(G)+1)}} \cdot \frac{1}{4} \\
& \leq \frac{1}{4 \cdot 5^{d-(\beta(G)+1)}} .
\end{aligned}
$$

Lemma 9. We have $\mu_{2}(G)+\mu^{*}(G) \leq 1 / 2$.
Proof. By Lemma 4 $\alpha_{2}(G)+\beta(G) \leq d_{2}(G) \leq d$. If $d=\alpha_{2}(G)$ then $\beta(G)=0$, and consequently

$$
\mu_{2}(G)+\mu^{*}(G)=\mu_{2}(G) \leq \frac{1}{2}
$$

In the remain cases, we have

$$
\mu_{2}(G)+\mu^{*}(G) \leq \frac{1}{2 \cdot 2^{d-\alpha_{p}(G)}}+\frac{1}{4 \cdot 5^{d-(\beta(G)+1)}} \leq \frac{1}{4}+\frac{1}{4}=\frac{1}{2}
$$

Proof of Theorem (2, From (2.1), (2.2) and the last three lemmas, we deduce

$$
\begin{aligned}
e(G) & =\sum_{k \geq 0}\left(1-P_{G}(k)\right) \leq d+2+\sum_{k \geq d+2}\left(1-P_{G}(k)\right) \\
& \leq d+2+\sum_{p}\left(\sum_{k \geq d+2}\left(\sum_{t \geq 1} \frac{m_{p^{t}}^{A}(G)}{p^{t k}}\right)\right)+\sum_{k \geq d+2}\left(\sum_{n \geq 5} \frac{m_{n}^{B}(G)}{n^{k}}\right) \\
& =d+2+\sum_{p} \mu_{p}(G)+\mu^{*}(G) \leq d+\frac{5}{2}+\sum_{p>2} \frac{1}{(p-1)^{2}} .
\end{aligned}
$$

References

1. H. Cohen, High precision computation of Hardy-Littlewood constants, preprint available on the author's web page.
2. E. Detomi and A. Lucchini, Crowns in profinite groups and applications, Noncommutative algebra and geometry, 47-62, Lect. Notes Pure Appl. Math., 243, Chapman Hall/CRC, Boca Raton, FL, 2006.
3. B. Huppert, Endliche Gruppen, Die Grundlehren der Mathematischen Wissenschaften, Band 134 Springer-Verlag, Berlin-New York 1967
4. W. Gaschütz, Die Eulersche Funktion endlicher auflösbarer Gruppen, Illinois J. Math. 3 (1959), 469-476.
5. R. Guralnick, On the number of generators of a finite group, Arch. Math. 53 (1989), no. 6, 521-523.
6. R. Guralnick and C. Hoffman, The first cohomology group and generation of simple groups, in: Proc. Conf. Groups and Geometries, Sienna, 1996, in: Trends Math., Birkhuser, Basel, 1998, pp. 81-89.
7. W. M. Kantor and A. Lubotzky, The probability of generating a finite classical group, Geom. Ded. 36, (1990) 67-87.
8. L. G. Kovács and C. E Praeger, Finite permutation groups with large abelian quotients, Pacific J. Math. 136 (1989), no. 2, 283-292.
9. A. Lubotzky, The expected number of random elements to generate a finite group, J. Algebra 257, (2002) 452-495.
10. A. Lubotzky and D. Segal, Subgroup growth, Progress in Mathematics, 212. Birkhäuser Verlag, Basel (2003)
11. A. Lucchini, A bound on the number of generators of a finite group, Arch. Math. 53 (1989), no. 4, 313-317.
12. A. Lucchini, The expected number of random elements to generate a finite group, Monatsh. Math. DOI 10.1007/s00605-015-0789-5
13. C. Pomerance, The expected number of random elements to generate a finite abelian group, Period. Math. Hungar. 43, 191-19 (2001)
14. U. Stammbach, Cohomological characterisations of finite solvable and nilpotent groups, J. Pure Appl. Algebra 11 (1977/78), no. 1-3, 293-301.

Andrea Lucchini, Università degli Studi di Padova, Dipartimento di Matematica, Via Trieste 63, 35121 Padova, Italy, email: Lucchini@math.unipd.it

[^0]: 1991 Mathematics Subject Classification. 20P05.
 Key words and phrases. groups generation; waiting time; Sylow subgroups; permutations groups.

 Partially supported by Università di Padova (Progetto di Ricerca di Ateneo: "Invariable generation of groups").

