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Abstract. We examine (finitely generated) profinite groups in which two

formal Dirichlet series, the normal subgroup zeta function and the normal
probabilistic zeta function, coincide; we call these groups normally ζ-reversible.

We conjecture that these groups are pronilpotent and we prove this conjecture

if G is a normally ζ-reversible satisfying one of the following properties: G
is prosoluble, G is perfect, all the nonabelian composition factors of G are

alternating groups.

Assume that G is a profinite group with the property that for each positive
integer n, G contains only finitely many open subgroups of index n. We denote by
ζG(s) the Dirichlet generating function associated with the sequence counting the
number of open subgroups of index n in G: so

ζG(s) =
∑
n∈N

an(G)

ns

where an(G) is the number of open subgroups of G of index n and s is a com-
plex variable. Another sequence of nonnegative integers can be associated to G
by setting bn(G) =

∑
|G:H|=n, H≤oG

µ(H,G), where the Möbius function µ of

the lattice of open subgroups of G is defined recursively by µ(G,G) = 1 and∑
H≤K≤oG

µ(K,G) = 0 for any proper open subgroup H <o G. Again we can
consider the corresponding Dirichlet generating function

pG(s) =
∑
n∈N

bn(G)

ns
.

The study of the subgroup sequence {an(G)}n and the corresponding zeta func-
tion ζG(s) started with [5]; since then there has been an intense research activity
aiming at understanding analytical properties of subgroup zeta functions and their
local factors for finitely generated nilpotent groups.

The formal inverse of pG(s) is the probabilistic zeta function which was first
introduced and studied by A. Mann in [15] for finitely generated profinite groups
and by N. Boston in [1] in the case of finite groups. A central role in the investigation
of the properties of the probabilistic zeta function was played by the probabilistic
meaning of pG(t) when G is a finite group and t is a positive integer: Hall in
[9] showed that pG(t) is equal to the probability that t random elements of G
generate G. In [15] Mann made a conjecture which implies that pG(s) has a similar
probabilistic meaning for a wide class of profinite groups. More precisely, define
ProbG(t) = µ(ΩG(t)), where µ is the normalised Haar measure uniquely defined
on the profinite group Gt and ΩG(t) is the set of generating t-tuples in G (in the
topological sense). We say that G is positively finitely generated if there exists a
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positive integer t such that ProbG(t) > 0. Mann considered the infinite sum∑
H≤G

µ(H,G)

|G : H|s
.

As it stands, this is not well defined, but he conjectured that this sum is absolutely
convergent if G is positively finitely generated. The Dirichlet series pG(s) can
be obtained from this infinite sum, grouping together all terms with the same
denominator so in particular Mann’s conjecture implies that ifG is positively finitely
generated, then pG(s) converges in some right half-plane and pG(t) = ProbG(t),
when t ∈ N is large enough. The second author proved in [13] that this is true
if G is a profinite group with polynomial subgroup growth. But even when the
convergence is not ensured, the formal Dirichlet series pG(s) encodes information
about the lattice generated by the maximal subgroups of G and combinatorial
properties of the probabilistic sequence {bn(G)} reflect on the structure of G. For
example in [6] it is proved that a finitely generated profinite group G is prosoluble
if and only if the sequence {bn(G)} is multiplicative.

One can ask whether and how the two formal Dirichlet series ζG(s) and pG(s)

are related. The first example that it is usually presented is when G = Ẑ, the
profinite completion of an infinite cyclic group. In this case ζẐ(s) =

∑
n 1/ns is the

Riemann zeta function, while pẐ(s) =
∑
n µ(n)/ns and an easy application of the

Möbius Inversion Formula shows that pẐ(s) and ζẐ(s) are one the multiplicative
inverse of the other. A natural question is whether this is a particular coincidence
or a more general phenomenon. Motivated by this question, in [4] it was intro-
duced the notion of ζ-reversible profinite groups: a profinite group G is said to
be ζ-reversible if and only if the formal identity pG(s)ζG(s) = 1 is satisfied. This
definition can be introduced and studied independently of the convergence and pos-
sible analytic properties of pG(s) and ζG(s). Hence ζ-reversible only means that∑
rs=n ar(G)bs(G) = 0 for each n > 1 while a1(G)b1(G) = 1. In [4] it is proved

that, even when the convergence of the two series involved is not ensured, the infor-
mation that G is ζ-reversible can have useful consequences. The results obtained
in [4] indicate that ζ-reversibility is a strong property: a ζ-reversible group must
have a sort of uniform subgroup structure, in the sense that the open subgroups,
even when they are not all isomorphic, must have a comparable structure.

In this paper, our aim is to study a corresponding property, obtained by re-
stricting the attention to the open normal subgroups of a profinite group G. We
assume that G is a profinite group with the property that for each positive integer
n, G contains only finitely many open normal subgroups of index n (a sufficient,
but not necessary, condition for satisfying this property is that G is topologically
finitely generated). For any n ∈ N, let a/n(G) be the number of the open normal
subgroups of G and let b/n(G) =

∑
|G:H|=n,H�oG

µ/(H,G), where µ/ is the Möbius

function in the lattice of the open normal subgroups of G. Again the properties of
the sequences {a/n(G)}n∈N and {b/n(G)}n∈N can be encoded by the corresponding
Dirichlet generating function

ζ/G(s) =
∑
n∈N

a/n(G)

ns
and p/G(s) =

∑
n∈N

b/n(G)

ns

called, respectively, the normal subgroup zeta function and the normal probabilistic
zeta function of G. Again p/G(s) has a probabilistic meaning: if G is a finite group
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and t ∈ N, then p/G(t) is the probability that t randomly chosen elements of G
generate a subgroup whose normal closure is G (see [7, Section 3]). We will say
that a profinite group G is normally ζ-reversible if ζ/G(s)p/G(s) = 1. We conjecture
that a normally ζ-reversible profinite group is pronilpotent. An evidence for this
conjecture will be given by the following theorem, which implies in particular that
a prosoluble normally ζ-reversible profinite group is pronilpotent.

Theorem 1. Assume that G is a normally ζ-reversible profinite group. If there is
no open normal subgroup N /G such that G/N is a nonabellian simple group, then
G is pronilpotent.

Our main results are the following:

Theorem 2. A non trivial normally ζ-reversible profinite group cannot be perfect.

Theorem 3. Let G be a normally ζ-reversible profinite group. If G is not pronilpo-
tent, then G has as a composition factor a nonabelian simple group which is not an
alternating group.

The proofs of the previous two theorems rely on the following result (see Theorem
22): suppose that a normally ζ-reversible profinite groupG admits a finite nonabelin
simple group as an epimorphic image; then there exists a pair (H,T ), where H is
a finite epimorphic image of G and T is a finite nonabelin simple group, with the
following properties:

(1) |H| = |T |2.
(2) H contains a unique minimal normal sugroup N.
(3) Either H/N is nilpotent, or there exists a finite nilpotent group X and a

nonabelian simple group S such that H/N ∼= X × S. In the latter case
|T | ≤ |S| and π(S) = π(T ).

With the help of the classification of the finite simple groups, we prove that there
are no pairs (H,T ) with these properties, under the additional assumption that
either H is perfect or all the nonabelian composition factors of H are alternating
groups.

1. Notations and general auxiliary results

Given an integer k and a set π of primes, kπ will be the greatest divisors of k
whose prime divisors belong to π. In particular, with a little abuse of notation, if p
is a prime we will call kp the greatest power of p dividing k. Moreover we will say
that k is a π-number if kπ = k.

Let R be the ring of formal Dirichlet series with integer coefficients. For every
set π of prime number, we consider the ring endomorphism of R defined by:

F (s) =
∑
n∈N

an
ns
7→ Fπ(s) =

∑
n∈N

a∗n
ns

where a∗n = an if n is a π-number, a∗n = 0 otherwise.

An element F (s) =
∑
n an/n

s ∈ R is said to be multiplicative if ars = aras
whenever (r, s) = 1 (equivalently F (s) coincides with the infinite formal product∏
p Fp(s)of its p-local factors). It can be easily proved that if F (s) is multiplicative,

then also the formal inverse F (s)−1 is multiplicative.
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During our proofs we will need information about the “prime gap”. For our
purpose the following result will suffice.

Lemma 4. For every integer n ≥ 5, n /∈ {6, 10}, there exist two primes p, q such
that n

2 < p < q ≤ n.

This lemma is in fact a corollary of a more complete result, proved by Nagura
in [14], stating that, if n ≥ 25, then there is a prime p such that n ≤ p ≤ 6n/5.

We conclude this section by recalling some results concerning the finite non-
abelian simple groups.

A crucial role in our proof will be played by the following result:

Theorem 5. [11, Theorem 6.1] Let S and T be non-isomorphic finite simple groups.
If |Sa| = |T b| for some natural numbers a and b, then a = b and S and T either
are A2(4) and A3(2) or are Bn(q) and Cn(q) for some n ≥ 3 and some odd q.

This result is a consequence of a collection of more general results obtained in
[11] and leading to the conclusion that a finite simple group is in general uniquely
determined by some partial information on its order encoded by some arithmetical
invariants (called Artin invariants). We will make a large use of these results, so
we recall here some related definitions.

Definition 6. Let n be a natural number and r one of its prime divisors. The
greatest power of r dividing n is called the contribution of r to n and is denoted by
nr. Moreover, r is called the dominant prime if nr > nq for every other prime q.
Given a finite group G, we will call the dominant prime of G the dominant prime
of its order. We will use the symbol p(G) to denote the dominant prime of G.

Proposition 7. [11, Theorem 3.3] The dominant prime of a simple group of Lie
type coincides with its characteristic, apart from the following cases:

(1) A1(q), where q is a Mersenne prime;
(2) A1(q − 1), where q is a Fermat prime;
(3) A1(8), 2A2(3), 2A3(2).

Definition 8. Let G be a finite group and p = p(G) its dominant prime, then

λ(G) =
log(|G|p)
log(|G|)

is called the logarithmic proportion of G.

Proposition 9. [11, Theorems 3.5, 3.6] Let x = pu be the contribution of the
dominant prime of a finite simple group S of Lie type, then x2 < |G| < x3, that is

1

3
< λ(G) <

1

2
.

Definition 10. Let n be an integer which is not a prime power, let p = p(n) be
its dominant prime and pl its contribution to n, then we define ω(n) as the largest
order of p modulo a prime divisor p1 of n/pl. We will call such a p1 a prominent
prime in n.
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Lemma 11. [11, Lemma 4.2] Given n and α ∈ N, then ω(nα) = ω(n). Further-

more, if p1 is prominent in n with contribution pl11 , then it is also prominent in nα

with contribution pl1α1 .

Remark 12. Notice that, if a and b have the same prime divisors and the same
dominant prime, then they have also the same prominent prime and ω(a) = ω(b).

Let S = L(q) be a finite simple group of Lie type, defined over a field of cardi-
nality q = pr, where p is a prime (which we will call the characteristic of S). We
will factorize the order of a simple group S = L(q) of Lie type in the form

|L(q)| = 1

d
qhP (q),

where d, h and P (q) are given in [11, Table L1]. In particular this order has the
cyclotomic factorization in terms of p:

|L(q)| = 1

d
pl
∏
m

Φm(p)em ,

where Φm(x) is the m-th cyclotomic polynomial. Summing up [11, Proposition 4.5]
and [11, Lemma 4.6], we obtain:

Theorem 13. Let S = L(q) be a simple group of Lie type with characteristic p and
q = pr. Then the cyclotomic factorization

|S| = 1

d
prhΦα1

(p)Φα2
(p)Φα3

(p) · · ·Φαu
(p)

satisfies the following properties:

(1) α1 > α2;
(2) d divides Φα3

(p) · · ·Φαu
(p) unless S = A1(q) and r = 1;

(3) ω(|S|) = α1 unless p = 2 and α1 = 6.

Definition 14. Let G be a group with dominant prime p1, let pn1
1 be its contribution

to the order of G. Suppose that pi is a prime dividing the order of G and that
pni
i is the contribution to the order. Then pi is called a good contributor to G if
ni log(pi) log(3) > n1 log(p1) log(2).

The good contributors of the finite simple groups are classified in [2].

For later use we need to recall some definitions and results concerning Zsigmondy
primes.

Definition 15. A prime number p is called a primitive prime divisor of an − 1 if
it divides an − 1 but it does not divide ae − 1 for any integer 1 ≤ e ≤ n− 1.

The following theorem is due to K. Zsigmondy [21]:

Theorem 16 (Zsigmondy’s Theorem). Let a and n be integers greater than 1.
There exists a primitive prime divisor of an − 1 except exactly in the following
cases:

(1) n = 2, a = 2s − 1 (i.e. a is a Mersenne prime), where s ≥ 2.
(2) n = 6, a = 2.

Primitive prime divisors have a close relation with the cyclotomic factorization
described in Theorem 13: if r is a primitive prime divisor of pn − 1, then n is the
smallest positive integer with the property that r divides Φn(p).
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2. A reduction to a question on finite groups

Assume that G is a profinite group and let S be the set of the open normal
subgroups N of G with the property that SN := G/N is a nonabelian simple
group. Let

AG(s) = PG/G′(s) and BG(s) =
∏
N∈S

(
1− 1

|SN |s

)
.

We know from [7, Section 5] that

(2.1) p/G(s) = AG(s)BG(s).

Now consider the two series

(2.2) ΓG(s) := (AG(s))−1 =
∑
n

γn(G)

ns
and ∆G(s) := (BG(s))−1 =

∑
n

δn(G)

ns
.

Lemma 17. If G is a normally zeta-reversible profinite group, then

ΓG(s) =
∏
p

ΓG,p(s) =
∏
p

ζ/G,p(s).

Proof. Since G is normally ζ-reversible, we have

1 = (ζ/G(s)p/G(s))p = ζ/G,p(s)p
/
G,p(s) = ζ/G,p(s)AG,p(s)BG,p(s).

Since AG(s) and ΓG(s) are multiplicative series, we deduce

ΓG(s) =
∏
p

ΓG,p(s) =
∏
p

AG,p(s)
−1 =

∏
p

ζ/G,p(s)BG,p(s),

but there are no nonabelian simple groups whose order is a prime power, thus
BG,p(s) = 1 for every prime p and we get ΓG(s) =

∏
p ζ

/
G,p(s). �

Lemma 18. If G is a normally zeta-reversible profinite group, then for every
n ∈ N, γn(G) coincides with the number of open normal subgroups N of G with the
property that G/N is a nilpotent group of order n.

Proof. For every m ∈ N, let Nm be the set of the open normal subgroups N of
G with the property that G/N is nilpotent of order m. Let n ∈ N and write
n = q1 · · · qr as a product of powers of different primes. If Ni ∈ Nqi for every
1 ≤ i ≤ r, then N = N1∩ · · ·∩Nr ∈ Nn. Conversely every N ∈ Nn can be uniquely
expressed in the form N = N1 ∩ · · · ∩Nr, with Ni ∈ Nqi for every 1 ≤ i ≤ r. This
implies that |N | = |Nq1 | · · · |Nqr |. On the other hand if q is a prime power and N is
an open normal subgroup of G of index q, then G/N, being a p-group, is nilpotent,
hence |Nq| = a/q(G); moreover a/q(G) = γq(G) by Lemma 17. Hence

γn(G) = γq1(G) · · · γqr (G) = a/q1(G) · · · a/qr (G) = |Nq1 | · · · |Nqr | = |N |. �

Proof of Theorem 1. If there is no open normal subgroup N of G such that G/N
is a nonabelian simple group, then BG(s) = 1, hence, by (2.1), we have ΓG(s) =
AG(s)−1 = p/G(s)−1 = ζ/G(s), i.e. γn(G) = a/n(G) for every n ∈ N. We conclude
from Lemma 18 that G/N is nilpotent for every open normal subgroup N of G. �

Conjecture 1. If G is a normally ζ-reversible profinite group, then there is no
open normal subgroup N / G such that G/N is a nonabelian simple group (and
consequently G is pronilpotent).
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For the remaining part of this section we will assume that G is a counterexample
to the previous conjecture. We will denote with ΣG the set of the finite nonabelian
simple groups which are continuous epimorphic images of G. Take T ∈ ΣG with
the property that the set π = π(T ) of the prime divisors of |T | is minimal and
let M = Oπ(G) be the intersection of the open normal subgroups N of G with
the property that G/N is a π-group. It can be easily checked that G/M is a
pro-π-group. Moreover ζ/G/M (s) = ζ/G,π(s) and p/G/M (s) = p/G,π(s). But then

ζ/G/M (s)p/G/M (s) = ζ/G,π(s)p/G,π(s) = (ζ/G(s)p/G(s))π = 1, hence G/M is still a

normally ζ-reversible profinite group and represents a counterexample to Conjecture
1. So we may assume that M = 1. With this assumption, if S ∈ ΣG, then S is
a π-group and, by the minimality property of T, π ≤ π(S). Hence π(S) = π for
every S ∈ ΣG. There are only finitely many nonabelian simple groups S with
π(S) = π, hence ΣG is finite. Let m = |T | = m1 < m2 < · · · < mu be the orders
of the nonabelian simple in ΣG and for i ∈ {1, . . . , u} let ti (with t = t1) be the
cardinality of the set of the open normal subgroups N of G such that G/N is a
nonabelian simple group of order mi. We must have:

∆G(s) =

(∏
i

(
1− 1

ms
i

)ti)−1
=
∏
i

 ∞∑
j=0

1

ms·j
i

ti

and

ζ/G(s) = ΓG(s)∆G(s) = ΓG(s)
∏
i

(
1 +

1

ms
i

+
1

m2s
i

+ · · ·
)ti

.

We now want to collect information about the open normal subgroups N of G with
|G/N | ≤ m2. Consider the series∑

n

a∗n
ns

:= ΓG(s)

(
1 +

1

ms
+

1

m2s

)t u∏
i=2

(
1 +

1

ms
i

)ti
.

If n ≤ m2, then, as n < m2
i for i 6= 1, we have a/n(G) = a∗n.

Lemma 19. Let N be an open normal subgroup of G. If |G/N | < m2 then either
G/N is nilpotent or G/N ∼= X1×X2 where X1 is nilpotent and X2 is a nonabelian
simple group.

Proof. If n < m2, then

(2.3) a/n(G) = a∗n = γn(G) +
∑

mir=n

tiγr(G).

Let Nr be the set of the open normal subgroups N of G with the property that
G/N is nilpotent of order r and let Si be be the set of the open normal subgroups
M of G with the property that G/M is a nonabelian simple group of order mi.
Suppose mir = n. If N ∈ Nr and M ∈ Si, then G/(N ∩M) ∼= G/N ×G/M (since
the nilpotent group G/N and the simple group G/M have no common composition
factor) and this is the unique way to obtain N ∩M as intersection of two subgroups
in Nr∗ and Si∗ , for some r∗ ≤ n and i∗ ≤ u. Hence there are at least a∗n open
normal subgroups N of G of index n and with the property that G/N is either
nilpotent or is the direct product of a nilpotent subgroup with a finite nonabelian
simple group. Since, by (2.3), a/n(G) = a∗n all the open normal subgroups of G of
index n have this property. �
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Let us consider now the set of open normal subgroups of index m2 in G: in this
case we have

(2.4) a/m2(G) = a∗m2 = γm2(G) +
∑

mir=m2

tiγr(G) +

(
t

2

)
+ t.

With the same arguments used in the proof of the previous lemma, it can be easily
noticed that:

Lemma 20. The first three summands in the previous expression of a/m2(G) = a∗m2

have the following meaning:

(1) γm2(G) is the number of the open normal subgroups N of index m2 such
that G/N is nilpotent;

(2)
∑
mir=m2 tiγr is the number of the open normal subgroups N of index m2

such that G/N is a direct product of a nilpotent group and a nonabelian
simple group.

(3)
(
t
2

)
is the number of the open normal subgroups N of index m2 such that

G/N is the direct product of two nonabelian simple groups of order m.

Notice that the last summand in equation (2.4) consists of t open normal sub-
groups of index m2 that does not fill in any of the three classes described in Lemma
20: let M be one of these normal subgroups and let H = G/M .

Lemma 21. H has a unique minimal normal subgroup.

Proof. Suppose by contradiction that H has two different minimal normal sub-
groups N1, N2. By Lemma 19, there exists two finite nilpotent groups X1, X2 and
two finite groups Y1 and Y2 that are either trivial or nonabelian and simple such
that G/N1

∼= X1 × Y1 and G/N2
∼= X2 ∩ Y2. Since N1 ∩ N2 = 1, H is a subdi-

rect product of X1 × X2 × Y1 × Y2, However this implies that H is nilpotent, or
it is the direct product of two nonabelian simple groups of order m, or it is the
direct product of a simple nonabelian group with a nilpotent group; but then M
fills in one of the three family of open normal subgroups described in Lemma 20, a
contradiction. �

We may summarize the conclusions of this section in the following statement.

Theorem 22. If Conjecture 1 is false, then there exists a finite nonabelian simple
group T and a finite group H with the following properties:

(1) |H| = |T |2.
(2) H contains a unique minimal normal sugroup N.
(3) Either H/N is nilpotent, or there exists a finite nilpotent group X and a

nonabelian simple group S such that H/N ∼= X × S. In the latter case
|T | ≤ |S| and π(S) = π(T ).

3. Perfect profinite groups

In this section we concentrate our attention on the case of perfect profinite
groups. Our aim is to prove that a perfect profinite group cannot be normally
ζ-reversible.

It follows immediately from Theorem 22 that:
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Proposition 23. If there exists a perfect normally ζ-reversible profinite group,
then exist there a finite nonabelian simple group T and a finite group H with the
following properties:

(1) |H| = |T |2.
(2) H contains a unique minimal normal sugroup N.
(3) There exists a finite a nonabelian simple group S such that H/N ∼= S.

Moreover |T | ≤ |S| and π(S) = π(T ).

Lemma 24. If H is a finite group satisfying the statement of Proposition 23, then
N = socH is abelian.

Proof. Suppose by contradition that N is nonabelian: there exist a nonabelian
simple group L and a positive integer u such that N = L1 × · · · ×Lu, with Li ∼= L
for all i. It must be u 6= 1 (otherwise, by the Schreier conjecture, H/N would
be soluble). The conjugation action on {L1, · · · , Lu} induces a homomorphism
ψ : H → Sym(u) and ψ(H) is a transitive subgroup of Sym(u). The kernel of this
action coincides with N so S ∼= H/N ∼= ψ(H). In particolar S contains a subgroup
of index u. We have two cases:

(1) S ∼= Alt(n) for some n. We must have n ≤ u. Moreover, by Lemma 4, there
exists a prime number r such that n/2 < r ≤ n, in particular r divides
|S| with multiplicity 1. On the other hand |H| = |T |2 = |S||N | = |S||L|u,
hence r| |L|. Since finite nonabelian simple groups have even order, we
deduce that 2r divides |L| and (2r)u divides |N |, thus

|T |2

|S|
= |N | ≥ (2r)u ≥ nu ≥ nn > n!

2
=

∣∣∣∣HN
∣∣∣∣ = |S|,

but then |T | > |S|, against Proposition 23.
(2) S is not an alternating group and has a (faithful) transitive action of degree

u. In particular S has a primitive action of degree v ≤ u, hence, by [16],
|S| ≤ 4v ≤ 4u. By Proposition 23, |T | ≤ |S|, hence

|L|u = |N | = |T |
2

|S|
≤ |S| ≤ 4u,

but then |L| ≤ 4, contradiction. �

Corollary 25. If there exists a perfect normally ζ-reversible profinite group, then
there exists a triples (S, T, V ) with the following properties:

(1) T and S are finite nonabelian simple groups;
(2) V is an irreducible S-module of dimension a over the field with p elements;

(3) |T |2 = |S| |V | = |S|pa;
(4) |V | < |T | < |S|;
(5) p ∈ π(T ) = π(S);
(6) if a = 1, then p divides the order of the Schur multiplier M(S) of S and

divides |S| with multiplicity at least 3.

Proof. The first five statements follow immediately from Proposition 23, taking
V = soc(H) (we cannot have |S| = |T |, since this would implies |T | = pa). We
have only to prove (6). A faithful irreducible representation of a nonabelian simple
group cannot have degree 1; thus, if a = 1, then V is a central S-module: in
particular H = V.S is a central perfect extension of S and, consequently, |V | =
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p divides |M(S)|. Moreover, if a = 1 then, by (3), p must divide |S| with odd
multiplicity. Now suppose that a = 1 and p divides |S| with multiplicity 1: then a
Sylow p subgroup of H, having order p2, is abelian. We apply [10, Proposition 5.6]
stating that, if a group J has an abelian Sylow p-subgroup, then p does not divide
|J ′ ∩ Z(J)|: since H ′ = H and Z(H) = socH ∼= V, we would have that p does not
divide |V | = p, a contradiction. �

In the remaining part of this section, we will prove that there is no triple (S, T, V )
satisfying the properties listed in the previous corollary. Suppose by contradiction
that such a triple (S, T, V ) exists.

Remark 26. Since |S|pa = |T |2, every prime divisor of |S| different from p divides
|S| with even multiplicity.

Proposition 27. S is a simple group of Lie type.

Proof. By Remark 26, it suffices to prove that, if S is alternating or sporadic, then
there are at least two primes dividing |S| with odd multiplicity. This can be directly
verified for the sporadic groups and for the alternating groups Alt(n) when n ≤ 10.
For the remaining alternating groups, we deduce from Lemma 4 that there are at
least two primes p, q dividing Alt(n) = n!/2 with multiplicity exactly one. �

Proposition 28. If a 6= 1, then p is the characteristic of S.

Proof. If a 6= 1, then a is the degree of a faithful irreducible representation of S
over the field of order p. Assume, by contradiction, that p does not coincide with
the characteristic of S. We must have a ≥ δ(S), denoting by δ(S) the smallest
degree of a nontrivial irreducible representation of S in cross characteristic. Lower
bounds for the degree of irreducible representations of finite groups of Lie type in
cross characteristic were found by Landazuri and Seitz [12] and improved later by
Seitz and Zalesskii [17] and Tiep [18]. It turns out that δ(S) is quite large, and,
apart from finitely many exceptions, we have pδ(S) > |S|, in contradiction with
|S| > pa ≥ pδ(S). The few exceptions can be easily excluded, proving directly that,
for these particular choices of S, there are no T and V with |T 2| = |S||V |. For

example, if S = An(q) with n ≥ 2, then |S| < qn
2+2n and, except in the exceptional

cases (n, q) = (2, 2), (2, 4), (3, 2), (3, 3), we have δ(S) ≥ qn+1−q
q−1 − 1 [18, Table II],

which implies that either pδ(S) > |S| or (n, q) = (2, 3). On the other hand, if
(n, q) = (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), then there are at least two primes dividing
|S| = |An(q)| with odd multiplicites, so these cases must be excluded by Remark
26. The other families of finite simple groups of Lie type can be discussed with
similar arguments. �

Proposition 29. The dominant prime of S coincides with the characteristic of S.

Proof. By Proposition 7, if the dominant prime of S does not coincide with the
characteristic of S, then one of the following three cases occurs.

(1) S = A1(q), with q = 2t − 1 a Mersenne prime. We must have that t is an
odd prime but then 2 and q divide |S| = (q − 1) · q · (q + 1)/2 with odd
multiplicity, against Remark 26.

(2) S = A1(q − 1) with q = 22
k

+ 1 a Fermat prime. Since

|T |2 = (q − 2) · (q − 1) · q · pa
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we have that p = q, a is odd and |T |2 =
(

22
k

+ 1
)a+1

22
k
(

22
k − 1

)
: this

would imply that 22
k − 1 is a square too, which is impossible.

(3) S ∈ {A1(8), 2A2(3), 2A3(2)}. The orders |A1(8)| and |2A2(3)| are divisible
by at least two different primes with odd multiplicity, so these two cases
must be excluded. If S = 2A3(2), then |T |2 = |S|pa = 26 · 34 · 5 · pa, hence
p = 5, a is odd and the condition |T | < |S| implies a = 1, 3, 5; however it
cannot be a = 1 since 5 does not divide the order of the Schur multiplies
of 2A3(2), and it cannot be a = 3, 5 since there exists no simple group of
order 23 · 32 · 52 or 23 · 32 · 53. �

Corollary 30. If a 6= 1, then p is the dominant prime of S and T.

Proof. Suppose a 6= 1. By Propositions 28 and 29, p is the characteristic and the
dominant prime of S. Since |T |2 = |S|pa, p is also the dominant prime of T. �

Proposition 31. T is not an alternating group.

Proof. Let T = Alt(m), m ≥ 5. First assume m ≤ 9. We use [3, p. 239–242] to
check that if |S| is a finite simple group with π(S) = π(T ) and |T |2 = |S|pa for
some prime power pa, then m = 6, p = 5, a = 1 and S = 2A3(2); however we must
exclude this possibility, since 5 does not divide the order of the Schur multiplier of
2A3(2).

So from now on we will assume m ≥ 10. This implies that 2 is the dominant
prime of T [11, Table L.4]. We will prove that the dominant prime of S is 2 too.
Suppose, by contradiction, that the dominant prime q of S is not 2. Then, being
|T |2 = |S|pa, we must have p = 2 and, by Corollary 30, a = 1, so

(3.1) |T |2 = 2 |S| .

Let |T |2 = 2t, |T |q = qh, then 2t > qh (as 2 is the dominant prime of T ) and, by

(3.1), q2h > 22t−1 (as q is the dominant prime of S). Joining these inequalities we

get qh < 2t < qh+1/2, whence h log(q) < t log(2) <

(
h+

1

2

)
log(q), and so

(3.2) 1 <
t log(2)

h log(q)
< 1 +

1

2h
≤ 3

2
<

log(3)

log(2)
.

By Equation (3.2), q is a good contributor to T , but [2, Theorem 3.8] enlists all
good contributors to alternating groups, and for m ≥ 10, it must be{

q = 3 or

q = 5 and m ∈ {10, 11, 15, 25, 26, 30}.

Moreover [2, 3.2] gives some useful lower and upper bounds for t, h as linear func-
tions on m. Using these bounds and some direction computations for the small
values of m, it can be easily proved that the only case in which we really have
q2h > 22t−1 is when q = 3 and m = 15; however, we can again use [3, p. 239–242]
to see that there is no simple group S with 2|S| = |Alt(15)|2, against (3.1).

Now we claim that p 6= 2. Indeed, assume by contradiction, p = 2. By Corollary
30, it must be a = 1. If m = 10, then we would have λ(S) < 1/3, in contradiction
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with Proposition 9. For m ≥ 11 we have λ(Alt(m)) < 1/3 (see [11, Table L.4]),
hence

1

3
>

log(|T |22)

log(|T |2)
=

log(|S|2) + log(2)

log(|S|) + log(2)
>

log(|S|2)

log(|S|)
contradicting again Proposition 9.

Thus S and T both have dominant prime 2 and p is odd. By Proposition 9

(3.3)
(m
e

)m
<
m!

2
= |T | < |S| ≤ |S|32 ≤ |T |

6
2 .

Let |T |2 = 2l, then we can extimate l by

l =

∞∑
i=1

[m
2i

]
− 1 <

∞∑
i=1

m

2i
− 1 = m− 1.

This result, joined with (3.3), gives m < e · 26−12/m; in particular m ≤ 165.

Since p 6= 2, we have |S|2 = |T |22 and, by Proposition 9,

(3.4)
1

3
≤

log(|S|2)

log(|S|)
=

log(|T |22)

log(|T |)2 − a log(p)
.

Moreover 3 is dominant prime of |Alt(m)|2′ for every m ≥ 10 (see [2, Theorem
3.7 (b)]), so

(3.5) pa ≤
|T |23

3
.

From Equations (3.4) and (3.5) we finally get

(3.6)
1

3
≤

log(|T |22)

log(|T |)2 − log(|T |23) + log(3)
=

log(|T |2)

log(|T |3′) + log(3)/2

and it is easy to verify that, in the given range 10 ≤ m ≤ 165, (3.6) is true only for
10 ≤ m ≤ 14 or 16 ≤ m ≤ 21 or m = 24. In all these cases, S should be a simple
group of Lie type of characteristic 2 with the property that |S| = |Alt(m)|2pa for
some odd prime prime p ≤ m and some positive integer a. A boring but elementary
check shows that there is no simple group S with these properties. �

Proposition 32. T is not a sporadic simple group.

Proof. At first, we will prove that S and T have the same dominant prime. Suppose
by contradiction that the dominant primes do not coincide: then, since |T |2 = |S|pa,
p coincides with the dominant prime of T and, by Corollary 30, a = 1. So we have

(3.7) |T |2 = p |S| .
Let q be the dominant prime of |T |p′ , necessarily it is the dominant prime of S.

Let |T |p = pt, |T |q = qh, then pt > qh and, by (3.7), q2h > p2t−1, so we get

qh < pt < qht/(t−1/2).

By Corollary 25 (6), it must be t > 1 so

(3.8) 1 <
t log(p)

h log(q)
<

t

t− 1/2
<

log(3)

log(2)
.

This implies that q is a good contributor to T . The good contributors to sporadic
simple groups are listed in [2, Theorem 1]: it is easy to verify that these good



NORMALLY ζ-REVERSIBLE PROFINITE GROUPS 13

contributors does not satisfy (3.8), apart from the cases T = F5 and T = J1.
However {

T = F5 ⇒ |S| = |F5|2 /2⇒ λ(S) < 1/3

T = J1 ⇒ |S| = |J1|2 /19⇒ λ(S) < 1/3.

contradicting Proposition 9.
Thus, we know that S and T have the same dominant prime p(S)
Now suppose a 6= 1. Then p = p(S) by Corollary 30 and λ(S) > 1/3 by

Proposition 9, so

1

3
<

2 log(|T |p)− a log(p)

2 log(|T |)− a log(p)

whence

(3.9) 2 ≤ a ≤
[

3 log(|T |p)− log(|T |)
log(p)

]
= a∗(T ).

It can be easily checked that Equation (3.9) is satisfied only if

T ∈ {B,F i22, Co2, Ru,M24,M22,
2F4(2)′}.

All these groups have dominant prime 2, so p = p(S) = p(T ) = 2 and S should be a
simple group of Lie type of characteristic 2 with |T |2 = |S| · 2a and 2 ≤ a ≤ a∗(T ).
It can be checked that no simple group S satisfies these conditions.

Thus, a = 1. In particular, |S| = |T |2 /p. A direct computation shows that
that, for every possible choice of a sporadic simple group T and every prime di-
visor p of its order, there is no simple group of Lie type satisfying this condition
(many possibilities can be excluded since they are not compatible with the condition
λ(S) > 1/3). �

So from now on we may assume that both S and T are simple groups of Lie
type.

Lemma 33. If p is the dominant prime of S, then p coincides with the characteristic
of T.

Proof. Suppose that p is the dominant prime of S. Since |T |2 = |S|pa, p is also the
dominant prime of T . By Proposition 7, if p does not coincide with the characteristic
of T , then one of the following cases occurs.

(1) T = A1(q), where q = 2k − 1 is a Mersenne prime (so in particular k is
prime). The dominant prime of T is 2. So p = 2 and, by Proposition 29, it
also coincides with the characteristic of S. The order of |S| has a cyclotomic
factorization in term of 2 as it is described in the statement of Theorem 13.
We have

|S| = |T |
2

2a
= 22k−a · (2k − 1)2 · (2k−1 − 1)2 =

2b · Φα1(2) · · ·Φαu(2)

d
.

We must have α1 = k. Moreover Φk(2) = 2k − 1 = q, as k is a prime,
and the multiplicity of Φk(2) in the factorization of |S| is 2, so α2 = α1,
contradicting Theorem 13 (1).

(2) T = A1(q−1), where q = 22
k

+1 is a Fermat prime. Then q is the dominant
prime of T , whence q = p and (q · (q − 1) · (q − 2))2 = |S| · qa, in particular
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q2 = qa · |S|q. As |S| and |T | have the same prime divisors, q must divide

|S|, so a = 1, but then |S| = q · (q − 1)2 · (q − 2)2 and

|S|2 = (q − 1)2 = 22
k+1

> 22
k

+ 1 = q = |S|q ,
thus q cannot be the dominant prime for S, a contradiction.

(3) T = A1(8). Then |T | = 23 · 32 · 7, p = 3 and 26 · 34 · 72 = |S| · 3a for a ≥ 1,
whence |S|3 ≤ 33 < 26 = |S|2, a contradiction.

(4) T = 2A2(3). Then |T | = 25 · 33 · 7, p = 2 and 210 · 36 · 72 = |S| · 2a for a ≥ 1,
whence |S|2 ≤ 29 < 36 = |S|3, a contradiction.

(5) T = 2A3(2). Then |T | = 26 · 34 · 5, p = 3 and 212 · 38 · 52 = |S| · 3a for a ≥ 1,
whence |S|3 ≤ 37 < 212 = |S|2, a contradiction. �

From Lemma 33, Proposition 28 and Proposition 29, it follows:

Corollary 34. If a 6= 1, then p coincides with the characteristic and dominant
primes of S and T .

Lemma 35. Let α1(T ), α1(S) be the greatest indexes in the cyclotomic decomposi-
tions of |T | and |S| described in Theorem 13. Then α1(T ), α1(S) ≥ 2 and, denoting
by pT and pS the characteristics of S and T, we have (pT , α1(T )), (pS , α1(S)) /∈
{(2, 6), (2k − 1, 2)|k ∈ N}.

Proof. First notice that α1(T ), α1(S) ≥ 2 from Theorem 13.
If R is a simple group of Lie type with pR = 2k − 1 and α1(R) = 2, then

R = A1(2k − 1). We can exclude (pS , α1(S)) = (2k − 1, 2) by Proposition 29 and
(pT , α1(T )) = (2k − 1, 2) by Lemma 33. Suppose now (pS , α1(S)) = (2, 6). Then
S ∈ Σ = {A5(2), A2(22), A1(23), B3(2), D4(2)}, but in these cases |S| is divisible
with odd multiplicity by at least two primes, contradicting Remark 26. Finally
assume (pT , α1(T )) = (2, 6). Then T ∈ Σ. We may exclude T = A1(23), since there
is no simple group S with |S|pa = |T |2 for some prime power pa. In the remaining
cases, 2 is the dominant prime of |T | and also of |T |/2 and this implies that 2 is also
the dominant prime of S (if a 6= 1 this follows from Corollary 30, while if a = 1 it
suffices to recall that |S| = |T |2/p). Hence the characteristic of S is 2 too, moreover
α1(S) ≤ 6, as |S| cannot have primitive prime divisors not dividing |T |. We have
already proved that α1(S) 6= 6. It is easy to verify that if S is a simple group of Lie
type with characteristic 2 and satisfying α1(S) ≤ 5 then the condition |T |2 = |S|pa
cannot be verified. �

Lemma 36. The characteristic pS of S does not coincide with the prime p.

Proof. Suppose p = pS . By Propostion 29, p coincides with the dominant prime
of S, and consequently, since |S| = |T |2pa, with the dominant prime of T ; but
then, by Lemma 33, p coincides also with the characteristic of T. By Lemma 35
and Theorem 13 (3), we get that α1(T ) = ω(|T |) and α1(S) = ω(|S|). By Remark
12, ω(|S|) = ω(|T |), so we conclude that α1(T ) = α1(S). Again by Lemma 35, we
can use Zsigmondy’s Theorem to find a primitive prime divisor t of pα1(T )−1. The
multiplicity of t in |T | coincides with the multiplicity of t in ΦαT

(pT ) = ΦαS
(pS),

which is equal to the multiplicity of t in |S|, thus contradicting |T |2 = |S|pa. �

Proposition 37. a = 1.

Proof. Suppose a 6= 1: then, by Corollary 34, p is the characteristic and dominant
prime of both S and T , contradicting Lemma 36. �
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We remain with the possibility that a = 1 and consequently |T |2 = |S| p where
p divides the order of the Schur multiplier M(S). Moreover, the Schur multiplier
can be decomposed as M(S) = R × P , where P is a pS-group and R a p′S-group
whose order coincides with the denominator dS of the cyclotomic factorization of
the order of S (see [8, Table 4.1]). By Lemma 36, p 6= pS , thus p divides dS .

Lemma 38. If S, T have the same dominant prime u and u 6= p, then u coincides
with the characteristic of T .

Proof. By Proposition 7, if u does not coincide with the characteristic of T , then
one of the following cases occurs.

(1) T = A1(q), where q = 2k − 1 is a Mersenne prime. Then u = 2 and

((2k − 1) · 2k · (2k−1 − 1))2 = |S| · p.

By Proposition 29, the characteristic of S coincides with u = 2, hence,
considering the cyclotomic factorization of |S| described in Theorem 13, we
have α1(S) = k and Φk(2) = 2k − 1 = q. By Theorem 13 (1), Φk(2) divides
|S| with multiplicity 1, so necessarily p = q by Remark 26. On the other
hand, p divides dS and, by Theorem 13 (2), dS divides Φα3

(2) · · ·Φαu
(2) =

(2k−1 − 1)2/Φα2
(2), thus p divides (2k−1 − 1), whence p ≤ 2k−1 − 1 <

2k − 1 = q = p, a contradiction.

(2) T = A1(q − 1), where q = 22
k

+ 1 is a Fermat prime. Then u = q and

q2 · (q − 1)2 · (q − 2)2 = |S| · p.

By Proposition 29, the characteristic of S coincides with u = q, in particular
the characteristic of S divides |S| with multiplicity 2 and it is easy to check
that the only group satisfying this condition is S = A1(q2), but then dS = 2
whence p = 2. Hence

q2 · (q − 1)2 · (q − 2)2 = |A1(q2)| · 2 = q2 · (q2 − 1) · (q2 + 1),

whence (q − 1) · (q − 2)2 = (q + 1) · (q2 + 1), but this is false.
(3) T = A1(23). Then |T | = 23 · 32 · 7, u = 3, p = 2 and |S| = 25 · 34 · 72,

however there is no simple group of Lie type S with this order.
(4) T = 2A2(3). Then |T | = 25 · 33 · 7, u = 2, p = 3 and |S| = 210 · 35 · 72,

however there is no simple group of Lie type S with this order.
(5) T = 2A3(2). Then |T | = 26 · 34 · 5, u = 3, p = 2 and |S| = 211 · 38 · 52,

however there is no simple group of Lie type S with this order. �

Lemma 39. S and T have different dominant primes.

Proof. Suppose that r is the dominant prime of S and T. Then, by Lemma 36,
r 6= p and therefore |T |2r = |S|r and, by Remark 12, ω(S) = ω(T ). Moreover,
by Lemma 35 and Theorem 13 (3), α1(S) = ω(S) and α1(T ) = ω(T ), whence
α1(S) = α1(T ) = α. By Proposition 29 and Lemma 38, r is also the characteristic
of both S and T . Again by Lemma 35, we can apply Zsigmondy’s Theorem and
consider a primitive prime divisor u dividing of rα − 1. This prime u divides |S|
and |T | with the same multiplicity (coinciding with the multiplicity of u in Φα(r)).
On the other hand |S| · p = |T |2, so we must have that r = p and that p divides |S|
with multiplicity 1, in contradiction with Corollary 25 (6). �
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Now we are ready to conclude our proof. We have reduced to the case |T |2 = p ·
|S|, where the dominant prime of T and S (which coincide with their characteristic)
are different, and consequently p is the dominant prime of T. Let r be the dominant
prime of S and let pt, rh be the contributions of p and r to |S|. We have

(3.10) pt < rh < pt+1,

and consequently, since t > 1 by Corollary 25 (6),

1 <
h log(r)

t log(p)
< 1 +

1

t
<

log(3)

log(2)
.

thus p is a good contributor of S. By [2, Theorem 4.1] S is one of following groups:

(1) A3(3), 2A3(3), 2A3(7), 2A4(3), B2(3), B2(5), B2(7), B2(9), B3(3), C3(3), D4(3),
G2(3) (and p = 2);

(2) 2A3(2),2A4(2), 2A5(2), B3(2), D4(2) (and p = 3);
(3) A1(r), A2(r), 2A2(r).

The possibilities listed in (1) and (2) can be immediately excluded noticing that
either p does not divide |M(S)|, or there exists a prime different from p dividing
|S| with odd multiplicity, or |S|p is not a square.

The only cases that remain to be discussed are thus A1(r), A2(r), 2A2(r): we
have |S| = rε · u where ε is odd and (u, r) = 1, so, by Remark 26, r = v2 for some
integer v. If S = 2A2(v2), then M(S) = (3, v2 + 1) = 1, a contradiction. Suppose
S = A1(v2). We have already excluded the possibilities S ∼= A1(4) ∼= Alt(5) and
S ∼= A1(9) ∼= Alt(6), so we have M(S) = (2, v2 − 1) and consequently p = 2 and v
is odd. In particular

|S|2 =
(v4 − 1)2

2
=

(v2 − 1)2(v2 + 1)2
2

= (v2 − 1)2

and from (3.10) we deduce (v2 − 1)2 < v2 < 2(v2 − 1)2: the only possibility is
v = 3, but we have already excluded this case. Finally, suppose S = A2(v2). We
may exclude S = A2(4) since in this case 5 and 7 divide |S| with multiplicity 1. In
the remaining case M(S) = (3, v2 − 1), so it must v2 − 1 = 0 mod 3 and p = 3.
But then v4 + v2 + 1 = (v2 − 1)2 + 3v2 ∼= 3v2 ∼= 3 mod 9, thus

|S|3 =
(v2 + 1)3(v2 − 1)23(v4 + v2 + 1)3

3
= (v2 − 1)23

and by (3.10) we have (v2 − 1)23 < v6 < 3(v2 − 1)23, whence v6 < 3(v2 − 1)2, a
contradiction.

4. Proof of Theorem 3

It follows immediately from Theorem 22 that:

Proposition 40. If there exists a non-pronilpotent normally ζ-reversible profinite
group all of whose composition factors are of alternating type, then there exist a
positive integer m and a finite group H with the following properties:

(1) |H| = |Alt(m)|2.
(2) H contains a unique minimal normal sugroup N.
(3) Either H/N is nilpotent or there exist a nilpotent group X and a positive

integer n ≥ m such that H/N ∼= X×Alt(n); in the latter case π(m!) = π(n!)
i.e. there is no prime p with m < q ≤ n.

(4) Either N is abelian or N ∼= Alt(u)t for some u and t ∈ N.
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In this section we will prove that there is no pair (m,H) satisfying the condition
requested by the previous proposition. We will assume, by contradiction, that
(m,H) is one of these pairs and we will prove a series of restrictions that will lead
to a finale contradiction.

Lemma 41. H is not soluble.

Proof. If H is soluble, then H is a finite soluble group which is not nilpotent but
all of whose proper quotients are nilpotent. This implies that H = N o A, where
N is an elementary abelian p-group and A is a nilpotent p′-subgroup of AutN. By
[20, Theorem 1.6], |A| ≤ |N |β/2 with β = log(32)/log(9) so

(4.1)
log(|H|)
log(|N |)

<
log(288)

log(9)
.

On the other hand, since |H| = |Alt(m)|2, we have

log(|H|)/ log(|N |) ≥
(
λ(Alt(m))

)−1
.

The values of the logarithmic proportion of alternating groups are listed in [11,
Tables L.3 and L.4] and it can be easily seen that

log(|H|)
log(|N |)

≥
(
λ(Alt(m))

)−1
>

log(288)

log(9)
for m /∈ {5, 8}

contradicting (4.1). Direct computations shows that (4.1) is false also when m ∈
{5, 8}. �

Lemma 42. N = socH is abelian.

Proof. Suppose by contradiction that N is nonabelian: then there exist positive
integers u ≥ 5 and t such that N = L1 × · · · × Lt, with Li ∼= L = Alt(u) for all i.
In particular

Lt ∼= N �H ≤ Aut(N) ∼= Aut(L) o Sym(t).

If t = 1, then |Alt(m)|2 = |H| = 2j · u! for some j ∈ Z, however by Lemma 4
there exists an odd prime dividing u! with multiplicity 1, a contradiction. If t = 2,
then from |Alt(m)|2 = H, we would deduce (m!)2 = (u!)22j for some positive
integer j ∈ {1, 2, 3, 4, 5}, but this is impossible. So we can assume t ≥ 3. By
Proposition 40 we can write H/N = X1/N ×X2/N , where X1/N is nilpotent and
either X2/N = 1 or X2/N ∼= Alt(n) for some n ≥ m. First suppose that either
X2/N = 1 and m /∈ {6, 10}, or X2/N ∼= Alt(n) with n /∈ {6, 10}. Then, by Lemma
4, we can find two primes p, q as follows:{

n
2 < p < q ≤ n if X2/N ∼= Alt(n),
m
2 < p < q ≤ m if X2/N = 1.

We claim that p, q both divide the order of Alt(m) with multiplicity 1: this is clear
if X2/N is trivial, while if X2/N ∼= Alt(n) it follows from the fact that m/2 ≤
n/2 < p < q ≤ m. So p and q divide |H| = (m!/2)2 with multiplicity exactly 2: as
Lt ≤ H and l > 2, they cannot divide |L|, so they divide |H/N | = |X1/N ||X2/N |
with multiplicity 2. On the other hand, by the way in which they have been defined,
they divide |X2/N | with multiplicity at most 1, so p · q must divide order of the
nilpotent group X1/N . This implies that the transitive permutation group induce
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by the conjugacy action of H on the t direct factors L1, . . . , Lt contains a central
element of order p · q. In particular t ≥ p · q and consequently,

60
m2

4 ≤ 60p·q ≤ |L|t ≤ |H| = (m!)2 ≤ m2m

but this is false for all m ≥ 5. We have still to consider the two cases X2/N = 1 and
m ∈ {6, 10} or X2

∼= Alt(n) with n ∈ {6, 10}. If m = 6 or n = 6 (and consequently
m ≤ 6), then |Alt(u)|3 divides |Alt(6)|2, hence 53 divides (6!)2, a contradiction. If
m = 10 or n = 10, then 7 divides |H| with multiplicity at most 2; as a consequence
|H/N | is divisible by 7 and t ≥ 7; but then

7 · 607 ≤ |H/N | · |N | = |H| ≤ (10!)2

which leads again to a contradiction. �

Combining Proposition 40 with Lemma 41 and Lemma 42, we can conclude that
there exists two subgroups X1 and X2 of H such that

(1) H/N = X1/N ×X2/N ;
(2) X1/N is nilpotent;
(3) X2/N ∼= Alt(n).
(4) N is an elementary abelian p-group.

Lemma 43. N is not central in X2.

Proof. Assume, by contradiction, N ≤ Z(X2). Notice that Frat(X2) is a nilpotent
normal subgroup of H, so either Frat(X2) = 1 or Frat(X2) = N. In the first case, we
would have X2 = N×S, with S ∼= Alt(n). But then S would be normal in H, against
the fact that N is the unique minimal normal subgroup of G. If Frat(X2) = N, then
X2 is a perfect central extension of N , so in particular |N | divides the order of the
Schur multiplier of Alt(n), hence |N | ∈ {2, 3}. This implies that X1 is a {2, 3}-
group (if a prime q > 3 would divide |X1|, then a Sylow q-subgroup of X1 would
coincide with Oq(CX1(N)) and would be normal in H). From |H| = |X1/N | · |X2|,
we deduce

(m!)2 = n! · 2α · 3β

for some positive integers α, β, in contradiction with the fact that, by Lemma 4,
there exists a prime dividing n! with multiplicity 1. �

The previous result, combined with Clifford’s theory, implies that N contains a
nontrivial irreducible Alt(n)-modulo, say M.

Lemma 44. n ≤ 8.

Proof. Suppose n ≥ 9. By [19, Theorem 1.1], the dimension of a nontrivial irre-
ducible Alt(n)-module is at least n − 2, so |N | ≥ |M | ≥ pn−2. But then, from
|Alt(m)|2 = |H| ≥ |N | · |Alt(n)|, we get

((m!/2))2p ≥ pn−2 · (n!/2)p.

Let now a = m − n ≥ 0 and ηp = 0 is p is odd, η2 = 1 if p = 2; since (m!)p <

pm/(p−1), we have

pm/(p−1)−ηp > (m!/2)p ≥ (m+ 1)p · · · (m+ a)p · pm+a−2 ≥ pm+a−2.

This implies

p = 2, n = m, |N | = |M | = 2n−2 = (n!/2)2.
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Since

|H| =
(
n!

2

)2

=
|X1||X2|
|N |

=
n!|X1|

2
and 2n−2 = (n!/2)2,

we must have that X1 = N oK, where N is an elementary abelian 2-group and K
is a nilpotent group of odd order; more precisely |K| = (n!)2′ . Moreover, the fact
that N is the unique minimal normal subgroup of H implies CK(N) = 1, hence K
is a completely reducible subgroup of AutN. In particular

|K| ≤ |N |
β

2
= 2β(n−2)−1 with β =

log(32)

log(9)

whence

n! = (n!)2′ · (n!)2 = |K| · (n!)2 ≤ 2β(n−2)−1 · 2n−1 = 2n(β+1)−2β−2

which is false for n ≥ 9. �

We remain with the the cases 5 ≤ m ≤ n ≤ 8. Recall that π(n!) = π(m!) and

that |N | · |Alt(n)| divides |H| =

(
m!

2

)2

(i.e. 2|N |n! divides (m!)2). This means

that N is a completely reducible Alt(n)-module of relatively small order. Looking
to the irreducible representations of small degree of Alt(n) over the field with p
elements when 5 ≤ n ≤ 8 and p ≤ n, we easily conclude that the only possibilities
are: m = n = 8 and N is an irreducible Alt(8)-module with |N | ∈ {24, 26}. In both
these cases, a 2′-Hall subgroup K of X1 would be nilpotent and of order 32 · 5 · 7.
Moreover CK(N) = 1 (otherwise we would have N 6= socH) and Aut(N) would
contain an element of order 32 · 5 · 7, which is false.
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