
PARALLEL TREE-SPH: A TOOL FOR GALAXY FORMATION

C. LIA
SISSA/ISAS, via Beirut 2, I-34013 Trieste, Italy; E-mail: liac@sissa.it

G. CARRARO
Department of Astronomy, Padova Univesity, Vicolo Osservatorio 5, I-35122, Padova, Italy

E-mail: carraro@pd.astro.it

Abstract. We describe a new implementation of a parallel Tree-SPH code with the aim of simulating
galaxy formation and evolution. The code has been parallelized using SHMEM, a Cray propri-
etary library to handle communications between the 256 processors of the Silicon Graphics T3E
massively parallel supercomputer hosted by the Cineca Super-computing Center (Bologna, Italy).
The code combines the smoothed particle hydrodynamics (SPH) method to solve hydrodynamical
equations with the popular Barnes and Hut (1986) tree-code to perform gravity calculation with a
N × log N scaling, and it is based on the scalar Tree-SPH code developed by Carraro et al. (1998).
Parallelization is achieved by distributing particles along processors according to a workload cri-
terion. Benchmarks of the code, in terms of load balance and scalability, are analysed and critically
discussed against the adiabatic collapse of an isothermal gas sphere test using 2 × 104 particles
on eight processors. The code turns out to be balanced at more than 95% level. If the number of
processors is increased, the load balance worsens slightly. The deviation from perfect scalability at
increasing number of processors is negligible up to 64 processors. Additionally we have incorporated
radiative cooling, star formation, feedback and an algorithm to follow the chemical enrichment of the
interstellar medium.

1. Introduction

Carraro, Lia and Chiosi (1998) developed a pure particle code, combining the
Barnes and Hut (1986) octo-tree with SPH and applying this code to the formation
of a spiral galaxy such as the Milky Way. The code is similar to the Hernquist and
Katz (1989) TreeSPH. It uses SPH to solve the hydrodynamical equations.

In SPH a fluid is sampled using particles; there is no resolution limitation due
to the absence of grids, but there is great flexibility due to the use of a time- and
space-dependent smoothing length. Shocks are included by adopting an artificial
viscosity tensor, and the neighbour search is performed using the octo-tree. The
octo-tree, combined with SPH, allows a time scaling of N × log N . A real ad-
vantage of such codes is that it is easy to introduce new physics, such as cooling
and radiative processes, magnetic fields, and so forth. Finally the kernel, which is
utilised to perform hydrodynamical quantity estimates, can be made adaptive by
using anisotropic smoothing lengths.

Astrophysics and Space Science 276: 1049–1056, 2001.
© 2001 Kluwer Academic Publishers. Printed in the Netherlands.



1050 C. LIA AND G. CARRARO

It is widely recognized that TreeSPH codes, although deficient in some aspects,
can give reasonable answers in many astrophysical situations, such as simulations
of fragmentation and star formation in giant molecular clouds (GMCs), supernrova
explosions, globular cluster formation, merging of galaxies, galaxy and cluster
formation and the Lyman alpha forest. Galaxy formation in particular requires
a huge dynamical range (Davé, Dubinski and Hernquist, 1997). In fact an ideal
galaxy formation simulation would start from a volume as large as the Universe to
follow the initial growth of the cosmic structures and at the same time would be
able to resolve regions as small as GMCs, where stars form and drive galaxy evol-
ution through their interaction with ISM. This ideal simulation would encompass a
dynamic range of 109 (from Gpc to parsec), 106 times smaller than that achievable
with present-day codes.

Huge efforts have been made in recent years to widen as much as possible the
dynamical range of numerical simulations, mainly using more and more powerful
supercomputers. Scalar and vector computers indeed cannot handle efficiently a
quantity of particles greater than half a million. Davé et al. (1997) developed for
the first time a parallel implementation of a TreeSPH code (PTreeSPH) which can
follow both collisionless and collisional matter. They report results of simulation
runs on a Cray T3D computer of the adiabatic collapse of an initially isothermal
gas sphere (using 4096 particles), of the collapse of a Zel’dovich pancake (32768
particles) and of cosmological simulation (32768 gas and 32768 dark particles).
Their result are quite encouraging, being similar to those obtained with the scalar
TreeSPH code (Hernquist and Katz, 1989).

Porting a scalar code to a parallel machine is far from being an easy task. A
massively parallel computer (such as the Silicon Graphics T3E) links together
hundreds or thousands of processors aiming at significantly increasing the compu-
tational power. For this reason they are very attractive, although several difficulties
can arise in adapting a code to these machines. Any processor possesses its own
memory and can assess other processors’ memories by means of communications
which are handled by a hardware network, and are slower than the computational
speed. Great attention must be paid to avoiding situations in which a small num-
ber of processors is working while the rest are standing idle. Usually one has to
invent a proper data distribution scheme allowing the subdivision of particles into
processors in such a way that each processor handles about the same number of
particles and does not need to make heavy communications. Moreover, the com-
putational load must be shared between processors, thus ensuring that processors
exchange information all together, in a synchronous way, or that each processor is
performing different kinds of work when it is waiting for information coming from
other processors, in an asynchronous fashion (Davé et al., 1997).

In this paper we present a parallel implementation of the TreeSPH code de-
scribed in Carraro et al. (1998). The numerical ingredients are the same as in
the scalar version of the code. However, the design of the parallel implementa-
tions required several changes to the original code. The key idea that guided us



PARALLEL TREE-SPH: A TOOL FOR GALAXY FORMATION 1051

Figure 1. Adiabatic collapse: snapshots of the density, radial velocity, pressure and internal energy
at the time of the maximum compression. The results of the test performed using 2 × 104 particles
with eight processors are shown by dashed lines. Solid lines show the results obtained with the same
number of particles, but using the scalar code, for comparison.

in building the parallel code was to avoid continuous communications, limiting the
information exchange at a precise moment in the code flow. This clearly reduces the
communications overhead. We have also decided to tailor the code to the machine,
improving its efficiency. Since we are using a T3E massively parallel computer, a
natural choice was to handle communications using the SHMEN libraries, which
permit asynchronous communications and are intrinsically very fast, being pro-
duced directly by Cray for the T3E supercomputer. At present the code is also
portable to other machines, such as the SGI Origin 2000, and will be portable to
any other machine with the advent of the second release of the Message Passing
Interface (MPI).



1052 C. LIA AND G. CARRARO

Figure 2. Overall code load balance, averaged over 50 time-steps (solid line). Dashed line indicates
ideal scalability.

2. A Test of the Code

We consider the adiabatic collapse of an initially non-rotating isothermal gas sphere.
This is a standard test for SPH codes (Hernquist and Katz, 1989). In particular, it
is an ideal test for a parallel code, due to the large dynamic range and high density
contrast. To facilitate the comparison of our results with those by the above authors,
we adopt the same initial model and the same units (M = R = G = 1). The system
consists of a γ = 5/3 gas sphere, with an initially isothermal density profile:

ρ(r) = M(R)

2πR2

1

r
, (1)

where M(R) is the total mass inside the sphere of radius R. The density profile is
obtained by stretching an initially regular cubic grid.

The total number of particles used in this simulation is 2×104. All the particles
have the same mass. The specific internal energy is set to u = 0.05GM/R. For
this test the viscosity parameters α and β adopted are 0.5, in agreement with Davé
et al. (1997). The gravitational softening parameter, ε, adopted for this simulation
is 5 × 10−3. The state of the system at the time of the maximum compression is
shown in the various panels of Figure 1, which displays the density, radial velocity,
pressure and specific internal energy profiles. Each panel shows the variation of
the physical quantity under consideration (in suitable units) as a function of the
normalized radial coordinate at time equal to 0.88. The initial low internal energy is



PARALLEL TREE-SPH: A TOOL FOR GALAXY FORMATION 1053

Figure 3. Overall code scalability, averaged over 50 time-steps (solid line). Dashed line indicates
ideal load balance.

not sufficient to support the gas cloud, which starts to collapse. Approximately after
one dynamical timescale, a bounce occurs. The system afterwards can be described
as an isothermal core plus an adiabatically expanding envelope pushed by the shock
wave generated at the stage of maximum compression. After about three dynamical
times the system reaches virial equilibrium with total energy equal to a half of the
gravitational potential energy (Hernquist and Katz, 1989). The present results agree
fairly well with the mean values of the Hernquist and Katz (1989) simulations,
which in turn agree with the 1D finite difference results.

We run the adiabatic collapse test up to the time of the maximum compression
(t � 1.1) using 2 × 104 particles on 1, 2, 4, 8, 16, 32 and 64 processors, and looked
at the performances in the following code sections (see also Table I):

• Total wall-clock time

• Data up-dating data

• Parallel computation, which consists of barriers, the construction of the
ghost-tree and the distribution of data among processors

• Search for neighbour particles

• Evaluation of the hydrodynamical quantities

• Evaluation of the gravitational forces



1054 C. LIA AND G. CARRARO

Figure 4. Code scalability in different code sections, averaged over 50 time-steps (solid line). Dashed
line indicates ideal load balance.

• Miscellaneous, which encompasses I/O and kernel computation

The results summarized in Table I present the total wall-clock time per time-step
per processor, averaged over 50 time-steps, together with the time spent in each of
the five subroutines (data updating, neighbour searching, SPH computation, grav-
itational interaction and parallel computation). The gravitation interaction takes
about one-third of the total time, while the search for neighbours takes a roughly
comparable time. The evaluation of hydrodynamical quantities takes about one-
fourth of the time, the remaining time being divided between I/O and data updating.
The parallel overhead does not appear to be a problem, being always less than 1%
of the total time. This timing refers, as indicated above, to simulations stopped
at roughly the time of maximum compression. A run with eight processors up to
t � 2.5, the time at which the system is almost completely virialized, took 3800 s.
One of the most stringent requirement for a parallel code is its capability to distrib-



PARALLEL TREE-SPH: A TOOL FOR GALAXY FORMATION 1055

TABLE I

The Adiabatic Collapse test. Benchmarks for a run with 2 × 104 particles. Time refers to 50
time-steps.

Ncpu Total Data Up-date Parallel Overhead Neighbours SPH Gravity Miscellaneous

(s) (s) (s) (s) (s) (s) (s)

1 120 0.47 0.00 40 36 40 3.53

2 69 0.22 0.60 23 19 25 1.18

4 42 0.27 1.70 14 9.5 15 1.53

8 23 0.13 3.20 5.5 5.4 5.3 3.47

16 17.3 0.13 3.40 3.4 3.0 3.8 3.60

32 11.5 0.09 3.00 2.6 1.3 3.2 1.31

64 7.5 0.05 2.90 0.33 1.1 1.9 1.23

ute the computational work equally among all the processors. This can be done by
defining a suitable workload criterion, as discussed in Section 3.2. This is far from
being an easy task (Davé et al., 1997), and in practice some processors stand idle
for some time waiting for those processors with the greatest computational load
to accomplish their task. This is also true when an asynchronous communication
scheme is adopted, as in our TreeSPH code. To evaluate the code load balance we
adopted the same strategy as Davé et al. (1997) of measuring the fractional amount
of time spent idle in a time-step while another processor performs computation:

L = 1

Nprocs

Nprocs∑

j=1

1 − (tmax−ti )

tmax
. (2)

Here tmax is the time spent by the slowest processor, while ti is the time taken by the
ith processors to perform computation. The results are shown in Figure 2, where we
plot the load balance for simulations for an increasing number of processors, from
1 to 64. The load balance is always maintained above 80%, being close to 1 for up
to eight processors. For the kind of simulation we are performing, the use of eight
processors is particularly advantageous for reasons of symmetry. For increasing
numbers of processors, a parallel code should ideally speed up linearly. In practice
the increase in the number of processors causes an increase in the communications
among processors and a degradation of the code performance. To test this, we used
the same simulations discussed above, running the adiabatic collapse test with 2 ×
104 particles for increasing processor numbers. We estimated how the code speed
scales computing the wall-clock time per processor spent in executing a single
time-step, averaged over 50 time-steps. In Figure 3 we plot the speed (in s−1 against
the number of processors.



1056 C. LIA AND G. CARRARO

The code scalability stays very close to the ideal scalability up to eight pro-
cessors, where it shows a minimum. This case is in fact the most symmetric one.
The scalability then deviates significantly only when using more that 16 processors.
Looking also at Figure 4, it is easy to recognize that the gravitational interaction
code is mainly responsible for this deviation.

In the near future we are going to investigate whether the code’s overall scalab-
ility might be improved by adding new physics (e.g. cooling and star formation),
which is necessary to describe the evolution of real systems such as galaxies.

References

Barnes, J.E. and Hut, P.: 1986, Nature 324, 446.
Carraro, G., Lia, C. and Chiosi, C.: 1998, Mon. Not. R. Astron. Soc. 297, 1029.
Davé, R., Dubinski, J. and Hernquist, L.: 1997, New Astron. 2, 277.
Hernquist, L. and Katz, N.: 1989, Astrophys. J. Suppl. 70, 419.


