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Abstract In this chapter we present a two-dimensional representation of probabil-
ities called Likelihood spaces. In particular, we show the geometrical properties of
Bayes’ rule when projected into this two-dimensional space and extend this con-
cept to Naı̈ve Bayes classifiers. We apply this geometrical interpretation to a real
machine learning problem of text categorisation and present a Web application that
implements all the concepts on a standard text categorisation benchmark.

1 Introduction

Classification is the task of learning a function that assigns a new unseen ob-
ject to one or more predefined classes based on the features of the object [Tan
et al(2005)Tan, Steinbach, and Kumar, Chapter 4]. Among the many different ap-
proaches presented in the literature, Naı̈ve Bayes (NB) classifiers have been widely
recognised as a good trade-off between efficiency and efficacy since they are easy to
train and achieve satisfactory results [Mitchell(1997)]. A NB classifier is a type of
probabilistic classifier that uses Bayes’ rule to predict the class of the unknown ob-
ject, and is based on the simplifying assumption that all the features of the object are
conditionally independent given the class. Despite being comparable to other learn-
ing methods, these classifiers are rarely among the top performers when trained with
default parameters [Caruana and Niculescu-Mizil(2006)]. Indeed, the optimisation
of the parameters of NB classifiers is often not adequate, if not missing at all. The
usual approach is to set default smoothing constants to avoid arithmetic anomalies
given by zero probabilities [Yuan et al(2012)Yuan, Cong, and Thalmann]. Moreover,
a probabilistic classifier could be greatly improved by taking into account misclas-
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sification costs [Elkan(2001)]. The choice of these costs is not trivial and, as for the
case of probability smoothing, default costs are used.

By involving users directly in the process of building a probabilistic model, as
suggested by [Ankerst et al(2000a)Ankerst, Ester, and Kriegel], one can obtain a
twofold result: first, the pattern recognition capabilities of the human can be used
to increase the effectiveness of the classifier construction and understand why some
parameters work better than others; second, visualisation of the model can be used to
teach non-experts how probabilistic models work and improve the overall effective-
ness of the classification task. Interactive machine learning is a relatively new area
of machine learning where model updates are faster and more focused with respect
to classical machine learning algorithms; moreover, the magnitude of the update is
small; hence, the model does not change drastically with a single update. As a result,
even non-expert users can solve machine learning problems through low-cost trial
and error or focused experimentation with inputs and outputs. In this respect, the
importance of the design of proper user interfaces for the interaction with machine
learning models is crucial. Recently, an approach named “Explanatory Debugging”
has been described and tested to help end users build useful mental models of a ma-
chine learning system while simultaneously allowing them to explain corrections
back to the system [Kulesza et al(2015)Kulesza, Burnett, Wong, and Stumpf] . The
authors found a significant correlation between how participants understood how
the learning system operated and the performance of participants’ classifiers.

Based on the idea of Likelihood Spaces [Singh and Raj(2004)], we present
the geometric properties of the two-dimensional representation of probabilities [Di
Nunzio(2009), Di Nunzio(2014a)] which allows us to provide an adequate data and
knowledge visualisation for understanding how parameter optimisation and cost
sensitive learning affect the performance of probabilistic classifiers in a real machine
learning setting. We apply this geometrical interpretation to the problem of text cat-
egorisation [Sebastiani(2002)], in particular to a standard collection of newswires,
the Reuters-21578 collection. 1

The main objectives of this chapter are:

• A geometrical definition of the Bayes’ rule and a discussion on the implications
of the normalisation of posterior probabilities;

• An alternative derivation of the likelihood space from the definition of the logit
function;

• A description of the link between Bayesian Decision Theory and Likelihood
spaces;

• A geometrical definition of NB classifiers;
• An interactive Web application to show how these concepts work in practice both

on a toy-problem and on a real case scenario.

This chapter is organized as follows: in Section 2, we describe the mathematical
background behind the idea of the two dimensional representation. In Section 3, we
present the details of the likelihood space applied to the NB classifier, in particular

1 http://www.daviddlewis.com/resources/testcollections/
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the multivariate Bernoulli model. Section 4 is dedicated to the interactive text cat-
egorization application on a real machine learning problem. In Section 5, we give
our final remarks and discuss future works and open research questions.

1.1 Related Works

The term “interactive machine learning” was probably coined around the very end
of the 1990s. A work that paved the way for this research area was a paper on in-
teractive decision tree construction by Ankerst et alii [Ankerst et al(1999)Ankerst,
Elsen, Ester, and Kriegel]. The same authors also redefined the paradigm that “the
user is the supervisor” in this cooperation between humans and machine learning
algorithms, that is the system supports the user and the user always has the final
decision [Ankerst et al(2000b)Ankerst, Ester, and Kriegel]. In the same years, Ware
et alii demonstrated that even users who are not domain experts can often construct
good classifiers using a simple two-dimensional visual interface, without any help
from a learning algorithm [Ware et al(2002)Ware, Frank, Holmes, Hall, and Witten].
Ben Shneiderman (author of the “eight golden rules for user interfaces” [Shneider-
man(1997)]) gives his impressions on the importance of the effective combination
of information visualisation approaches and data mining algorithms in [Shneider-
man(2002)]. The first paper that used “interactive machine learning” in the title
was by Fails and Olsen [Fails and Olsen(2003)] in which the authors describe the
difference between a classical and an interactive machine learning approach and
show an interactive feature selection tool for image recognition. From the point of
view of Machine Learning/Artificial Intelligence, an excellent survey on the meth-
ods and approaches used in the last fifteen years has been presented by Amershi et
alii [Amershi et al(2014)Amershi, Cakmak, Knox, and Kulesza].

Information Visualisation is an important part of the research area of interactive
machine learning, in particular for the parts relative to the design of appropriate user
interfaces and the possible visualisation choices for classification tasks. For exam-
ple, in [Behrisch et al(2014)Behrisch, Korkmaz, Shao, and Schreck], the authors
present a framework for a feedback-driven view exploration, inspired by relevance
feedback approaches used in Information Retrieval, that makes the exploration of
large multidimensional datasets possible by means of visual classifiers. Although
we focus less on this part in this paper, we suggest to refer to [Di Nunzio(2014b)]
for a survey on visual classification approaches and to [Kucher and Kerren(2014)]
for a survey on text visualisation techniques. 2

2 http://textvis.lnu.se
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2 Mathematical Background

We suppose to work with a set of n classes C = {c1, ...,ci, ...,cn}, and that an object
can be assigned to (and may actually have) more than one class; this is also known
as the problem of overlapping categories. Instead of building one single multi-class
classifier, we split this multi-class categorisation into n binary problems; therefore,
we have n binary classifiers [Sebastiani(2002)]. A binary classification problem is a
special case of single-labels classification task in which each object belongs to one
category or its complement. The usual notation to indicate these two classes is: ci
for the ‘positive’ class and c̄i for the ‘negative’ class (we drop the index i and use c
and c̄ as long as there is no risk of misinterpreting the meaning).

In this first part, we start building a probabilistic classifier which, given an object
o and a category c ∈C, classifies o in c if the following statement is true:

P(c|o)> P(c̄|o) (1)

that is, if the probability of the class c is greater than the probability of its comple-
ment c̄ given the object o.

2.1 The Geometry of Bayes’ Rule

Bayes’ rule gives a simple yet powerful link between prior and posterior probabili-
ties of events. For example, assume that we have two classes c and c̄ and we want
to classify objects according to some measurable features. The probability that an
object o belongs to c, P(c|o), can be computed in the following way: 3

posterior︷ ︸︸ ︷
P(c|o) =

likelihood︷ ︸︸ ︷
P(o|c)

prior︷︸︸︷
P(c)

P(o)︸︷︷︸
evidence

(2)

Bayes’ rule tells how, by starting from a prior probability on the category c, P(c),
we can update our belief on that category based on the likelihood of the object,
P(o|c), and obtain the so-called posterior probability P(c|o). P(o) is the probabil-
ity of the object o, also known as the evidence of the data. The probability of the
complementary category c̄ is computed accordingly:

P(c̄|o) = P(o|c̄)P(c̄)
P(o)

(3)

3 We are intentionally simplifying the notation in order to have a cleaner description. In particular,
when we write P(c|o), we actually mean P(C = c|O= o), where C and O are two random variables,
and c and o two possible values, respectively.
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Fig. 1 Bayes’ rule on a two-dimensional space. The probability of one class is complementary to
the other, P(c̄|o) = 1−P(c|o).

In the two-dimensional view of probabilities, we can imagine the posterior proba-
bilities as the two coordinates of the object o in a Cartesian space, where x = P(c|o)
and y = P(c̄|o) . Since the two classes are complementary, the two conditional prob-
abilities sum to one, therefore:

P(c̄|o) = 1−P(c|o) , or (4)
y = 1− x (5)

which means that the point with coordinates (x,y) lies on the segment with endpoints
(1,0),(0,1) in the two dimensional space, as shown in Figure 1. When we want to
classify the object, we compare the two probabilities as already shown in Equation 1.
When we use Bayes’ rule to calculate the posterior probabilities, we obtain:

P(o|c)P(c)
P(o)

>
P(o|c̄)P(c̄)

P(o)
(6)

It can be immediately seen that we assign o to class c when the probability P(c|o)
is greater than 0.5. Since P(o) appears in both sides of the inequality, we can cancel
it without changing the result of the classification:

P(o|c)P(c)> P(o|c̄)P(c̄) (7)
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remembering that P(o|c)P(c) 6= 1−P(o|c̄)P(c̄) since we removed the normalisation
factor. An alternative way to cancel P(o) is considering the problem of classification
in terms of the odds of the probability P(c|o):

P(c|o) > P(c̄|o) (8)
P(c|o)
P(c̄|o)

> 1 (9)

P(o|c)P(c)
P(o|c̄)P(c̄)

> 1 (10)

P(o|c)P(c) > P(o|c̄)P(c̄) (11)

In geometrical terms, the new coordinates x′ and y′ of the point of the object o are:

x′ = xP(o) = P(o|c)P(c) (12)
y′ = yP(o) = P(o|c̄)P(c̄) (13)

The new coordinates are the old ones multiplied by P(o) which means that we are
actually ‘pushing’ the points towards the origin of the axis along the segment with
endpoints (0,0),(P(c|o),P(c̄|o)) since both coordinates are multiplied by the same
positive number between 0 and 1, as shown in Figure 2.

Equation 11 can also be interpreted as a decision line with equation y′ = x′. A
more general classification line takes into account an angular coefficient m

mx′ > y′ (14)

This non-negative parameter m comes from the introduction of misclassification
costs of a Bayesian Decision Theory approach (see Section 2.3). Intuitively, when
m = 1 we count every misclassification (false positives or false negatives) equally.
If m > 1, we give more importance to the positive class and we are willing to accept
more objects in this class; if m < 1, we increase the possibility that a point is above
the line and classified under the negative category. An alternative, but equivalent,
way of looking at this problem is to compare the value of the odds with a threshold
k [Crestani et al(1998)Crestani, Lalmas, Van Rijsbergen, and Campbell]:

x′

y′
>

1
m

(15)

P(o|c)P(c)
P(o|c̄)P(c̄)

> k (16)

where k (inversely proportional to m in this formulation) can be set to optimise clas-
sification, and it is usually tuned to compensate for the unbalanced classes situation,
that is when one of the two classes is much more frequent than the other [Mladenic
and Grobelnik(1999)]. This is often the case for any multi-class problem, since the
complementary category c̄ is about n− 1 times bigger than c. This is also the case
for real two-class categorisation problems, like spam classification, where the dif-
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Fig. 2 Bayes’ rule without normalisation. The point moves from the segment with endpoints
(0,1),(1,0) towards the origin. In this example, P(o) = 0.3. The ratio of the coordinates remain
the same as well as the relative position with respect to the decision line with angular coefficient
m = 1 (bisecting line of the first quadrant).

ference in proportion of the number of objects in the two classes ‘spam’ and ‘ham’
is very large. We can incorporate this disproportion between the two classes in the
angular coefficient m of the two-dimensional space in the following way:

mx′ > y′ (17)
mP(o|c)P(c) > P(o|c̄)P(c̄) (18)

m
P(c)
P(c̄)

P(o|c) > P(o|c̄) (19)

m′x′′ > y′′ (20)

where m′ = m P(c)
P(c̄) is the new angular coefficient of the decision line y′′ = m′x′′,

and x′′ = P(o|c) and y′′ = P(o|c̄). At this point we have defined the coordinates of
an object in terms of the two likelihood functions P(o|c) and P(o|c̄) as shown in
Figure 3.

All the alternatives presented so far are equivalent in terms of classification de-
cisions. There are two connections with two relevant works in the literature that
we want to stress: one with the Neyman-Pearson approach [Neyman and Pear-
son(1933)], and the other with the work of Pazzani and colleagues on the opti-
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Fig. 3 Data space formed by the coordinates P(o|c) and P(o|c̄). This is an example of an unbal-
anced class situation where the prior P(c) = 0.7 is so high that the object is classified under c (in
accordance with the earlier examples) despite the likelihood of the object of the negative class is
almost three times the one of the positive class. In this example, m = 1 and m′ = P(c)

P(c̄) . If we set

m = P(c̄)
P(c) , we would get m′ = 1 and rebalance the proportion of classes (and change the classifica-

tion decision). The points of the previous figures are shown in light grey for comparison.

mality of NB classifiers [Domingos and Pazzani(1997), Webb and Pazzani(1998)].
The Neyman-Pearson lemma states that the likelihood ratio test defines the most
powerful region of acceptance, which is exactly what we have in Equation 20:

P(o|c)
P(o|c̄)

> M (21)

where M is a threshold that defines the region of acceptance. In the optimality of
NB classifiers, the authors find an adjustment of the probabilities of the classes P(c)
and P(c̄) which is again exactly the same idea since we are actually changing the
angular coefficient m′.
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2.2 Bayes’ Rule on Likelihood Space

So far, we have described the two-dimensional representation of the Bayes’ rule
in the so-called ‘data space’ which is the space in which the original data resides.
The likelihood space, however, is the space formed by the log-likelihood probabili-
ties [Singh and Raj(2004)]. The likelihood space can be derived directly by applying
the logs of Equation 20. In this section, we present an alternative way, which is dif-
ferent from the original paper, to obtain the likelihood space which starts from the
classification decision given by the log-odds, or logit function, compared to the log-
arithm of the threshold k:

log
(

P(c|o)
P(c̄|o)

)
> log(k) (22)

log
(

P(o|c)P(c)
P(o|c̄)P(c̄)

)
> log(k) (23)

log
(

P(o|c)
P(o|c̄)

)
+ log

(
P(c)
P(c̄)

)
> log(k) (24)

log(P(o|c))+ log
(

P(c)
P(c̄)

1
k

)
> log(P(o|c̄)) (25)

xL +qL > yL (26)

The likelihood space coordinates of an object o, xL = log(x′′) and yL = log(y′′), are
the logarithms of the coordinates of the data space. An interesting relation between
the data space and the likelihood space is that, while in the data space we ‘rotate’
the decision line around the origin of the axis (y′′ = m′x′′), the same decision line
in the likelihood space correspond to a parallel line to the bisecting line of the first
and third quadrant yL = xL + qL where qL = log(m′) is the intercept of this line.
In Figure 4, we show an example of the likelihood space relative to the point of
Figure 3.

2.3 Bayesian Decision Theory on Likelihood Spaces

In Bayesian decision theory, the objective is to quantify the trade-off between var-
ious classification decisions using probabilities and the costs that accompany such
decisions [Duda et al(2000)Duda, Hart, and Stork, Chapter 2]. Whenever we have
an object to classify, if we take the decision to classify it under c, we are actually
“taking a risk” because we may choose the wrong category. In this framework, the
classification of an object becomes the problem of choosing the ‘less risky’ cate-
gory; for a binary classification problem, the Bayes decision rule corresponds to
selecting the action for which the risk is minimum:

R(c|o)< R(c̄|o) (27)
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Fig. 4 Bayes’ rule on likelihood space. The red point corresponds to the one shown in Figure 3.
Note that the decision line (solid grey line) is above the red point as expected. The decision line
moves parallel to the bisecting line of the third quadrant. In light grey, the points relative to Fig-
ures 1 and 2. Non normalised points move parallel to the bisecting lines and towards minus infinity,
instead of going towards the origin. The segment with endpoints (0,1),(1,0) becomes a logarith-
mic curve in the likelihood space.

R(c|o) and R(c̄|o) are the conditional risks defined as:

R(c|o) = λ (c|c)P(c|o)+λ (c|c̄)P(c̄|o) (28)
R(c̄|o) = λ (c̄|c)P(c|o)+λ (c̄|c̄)P(c̄|o) (29)

where λ (·|·) is the loss function of an action given the true classification. For exam-
ple, λ (c|c̄) quantifies the loss in taking the decision c when the ‘true’ decision is c̄.
The new classification decision becomes:

λ (c|c)P(c|o)+λ (c|c̄)P(c̄|o)< λ (c̄|c)P(c|o)+λ (c̄|c̄)P(c̄|o) (30)

We can group common terms and obtain:
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[λ (c|c̄)−λ (c̄|c̄)]P(c̄|o) < [λ (c̄|c)−λ (c|c)]P(c|o) (31)

P(c̄|o) < [λ (c̄|c)−λ (c|c)]
[λ (c|c̄)−λ (c̄|c̄)]

P(c|o) (32)

P(o|c̄)P(c̄) < [λ (c̄|c)−λ (c|c)]
[λ (c|c̄)−λ (c̄|c̄)]

P(o|c)P(c) (33)

P(o|c̄) < [λ (c̄|c)−λ (c|c)]
[λ (c|c̄)−λ (c̄|c̄)]

P(c)
P(c̄)

P(o|c) (34)

y′′ < m′x′′ (35)

So the ratio of the costs can be interpreted as the angular coefficient m included in m′

of Equation 20. When a zero-one loss function is used, we have λ (c|c) = λ (c̄|c̄) = 0
which means that we have no loss when we give the correct answer, and λ (c|c̄) =
λ (c̄|c) = 1 which means that we have a cost equal to one every time we assign the
object to the wrong category.

3 Naı̈ve Bayes on Likelihood Space

In real case scenarios, projecting objects into likelihood spaces becomes a necessity
since the conditional probabilities P(o|c) and P(o|c̄) rapidly go to zero. This prob-
lem becomes evident when we use a Naı̈ve Bayes assumption. For example, if o is
represented by a set of k features F = { f1, . . . , f j, . . . , fk}, a Naı̈ve Bayes approach
allows us to factorize P(o|c) as:

P(o|c) =
k

∏
j=1

P( f j|c) (36)

where features are independent from each other given the class. Suppose that, on
average, the probability of a feature given a class is P( f j|c)' 10−2 and all the fea-
tures have a probability greater than zero to avoid P(o|c) = 0. With 100 features,
the likelihood of an object will be, on average, P(o|c)' 10−200 which is very close
to the limit of the representation of a 64 bit floating point number. In real situa-
tions, probabilities are much smaller than 10−2 and features can be easily tens of
thousands; hence, all the likelihood functions would be equal to zero by approxi-
mation. Instead, in likelihood spaces, the product becomes a sum of logarithms of
probabilities:

log(P(o|c)) = log

(
k

∏
j=1

P( f j|c)

)
=

k

∑
j=1

log(P( f j|c)) (37)

In the following section, we derive the mathematical formulation of a NB model
that represents features with binary variables, known as multivariate Bernoulli NB
model. In Figure 5, we show a screenshot of an interactive demo of this type of
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Fig. 5 An interactive demo to show how a multivariate Bernoulli NB model works on a two-
dimensional space.

NB classifier. 4 The aim of this toy example is to show the geometric interpretation
of this classifier rather than study the optimal parameters for classification. The
user can change the conditional probability of each single feature ( f1, f2, and f3)
and the prior probability of class c1 (the positive class). The points represent the
eight possible combinations (three binary features, hence 23 = 8 objects); when
the conditional probability of a feature given the positive class equals that of the
negative class, some points overlap in the data space (because we are not able to use
that feature to discriminate the objects of one class from the others). The selection
widgets allow for choosing normalised probabilities and working in the likelihood
space (‘log space’).

3.1 Multivariate Bernoulli NB model

In the multivariate Bernoulli NB model, an object is a binary vector over the space
of features. Given a set of features F , each object o of the class c is represented as a
vector of k Bernoulli random variables o≡ ( f1, ..., f j, ..., fk) such that:

f j ∼ Bern(θ f j |c) . (38)

4 http://gmdn.shinyapps.io/bayes2d/
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where θ f j |c is the parameter of the Bernoulli distribution for the j-th feature of class
c. We can re-write the probability of an object by using the NB conditional indepen-
dence assumption, this time by considering the parameter θ of the distribution:5

P(o|c;θ) =
k

∏
j=1

P( f j|c;θ) =
k

∏
j=1

θ
h j
f j |c(1−θ f j |c)

1−h j =
k

∏
j=1

(
θ f j |c

1−θ f j |c

)h j

(1−θ f j |c) ,

(39)
where h j is either 1 or 0 indicating whether feature f j is present or absent in object
o. When we project this probability into the likelihood space, we obtain:

log(P(o|c;θ)) =
k

∑
j=1

h j log

(
θ f j |c

1−θ f j |c

)
+

k

∑
j=1

log(1−θ f j |c) , (40)

In terms of the likelihood projections, each object of class c has a coordinate com-
posed by: i) a variable part, the first sum, that depends on the features that are present
in the object, and ii) a fixed part, the second sum, that considers all the features F
independently from the features that appear in the object. This second part is very
important because, in many works, it is ignored (actually canceled) with the jus-
tification that it is a constant independent from the object and, therefore, it does
not change the classification decision. This is true only if we do not fix qL in ad-
vance but, on the contrary, we find the optimal parameter qL of the decision line of
Equation 26. In fact, once qL is fixed, including or excluding the second sum in the
computation of the coordinates would result in a different decision since the points
would have different coordinates. The two solutions are equivalent ‘only’ when we
choose an appropriate threshold:

log
(
x′′
)
+ log

(
m′
)
> log(y′′) (41)

log(x′′1)+ log(x′′2)+ log
(
m′
)
> log(y′′1)+ log(y′′2) (42)

log(x′′1)+ log
(

m′x′′2
y′′2

)
> log(y′′1) (43)

where x′′1 =∑
k
j=1 h j log

(
θ f j |c

1−θ f j |c

)
and x′′2 =∑

k
j=1 log(1−θ f j |c) (y′′1 and y′′2 are defined

accordingly). For example if we set m′ = 1 in Equation 41, then we must set m′ =
y′′2/x′′2 to obtain the same classification in Equation 43.

3.2 Probability smoothing

The parameter θ f |c of each Bernoulli random variable can be estimated in different
ways. A common solution is a Maximum Likelihood approach:

5 We use the notation P(o|c;θ) to indicate the probability parametrised by θ .



Giorgio Maria Di Nunzio

θ f |c =
n f ,c

nc
(44)

where n f ,c is the number of objects of category c in which feature f appears, and nc
is the number of objects of category c. However, this approach generates arithmeti-
cal anomalies; in particular, a probability equal to zero when the feature is absent
in category c, n f ,c = 0 (or a probability equal to one when n f ,c = nc but it is less
frequent). A zero in one of the features of the objects corresponds to a likelihood
equal to zero (or a minus infinity in the log space). To avoid these arithmetical prob-
lems, smoothing is usually applied. For example, Laplacian smoothing or add-one
smoothing:

θ f |c =
n f ,c +1
nc +2

(45)

In this chapter, instead of a Maximum Likelihood approach, we estimate the pa-
rameter θ f |c by using a conjugate prior approach which, in this case, corresponds to
finding a beta function with parameters α and β [Di Nunzio and Sordoni(2012)]:

beta f |c = θ
α−1
f |c (1−θ f |c)

β−1 . (46)

The result of this choice is that the estimate θ f |c is now governed by the two hyper-
parameters α and β in the following way:

θ f |c =
n f ,c +α

nc +α +β
(47)

note that for α = β = 1 , we obtain the Laplacian smoothing. It is possible to opti-
mise α and β for each feature, but in this work we choose to use the same parameters
for all the features.

3.3 Decision Line in Likelihood Spaces

As suggested by the authors of the original paper of likelihood spaces [Singh and
Raj(2004)], one advantage with working in likelihood spaces is that we can de-
vise new strategies for classifying objects. In fact, if we do not limit ourselves to
the Bayesian Decision Theory, we can find other linear or non-linear solutions that
work much better in terms of classification. The first improvement would be to add
a ‘rotation’ to the decision line in the likelihood space. The authors of the seminal
paper discuss this problem and show that polynomial decision lines in the likeli-
hood space can obtain a significant improvement in terms of classification accuracy.
However, a polynomial line in the likelihood space corresponds to a complex curve
in the data space. Suppose that we find a decision function of this type

yL < mLxL +qL (48)
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where yL, xL, qL are the same as Equation 26 and mL is the angular coefficient of the
new decision line. This corresponds to:

eyL < emLxL+qL (49)
elog(P(o|c̄)) < emL log(P(o|c))+qL (50)

P(o|c̄) < P(o|c)mL eqL (51)

which is a sort of exponential curve in the data space. Alternatively, it is also possi-
bile to show that a rotation and a shift of the decision function in the data space cor-
responds to a non-linear curve in the likelihood space [Di Nunzio(2014a)]. However,
it is not our main objective to discuss the possible extension of Bayesian Decision
Theory in this chapter. However, we want to stress the fact that, for the interactive
text categorisation problem, we use a decision line in the likelihood space like the
one shown Equation 48 but this choice does not have an immediate interpretation in
the data space in terms of Bayesian Decision Theory.

4 An Example of Interactive Text Categorization

In the previous sections, we presented the geometric interpretation of probabilistic
classifiers on a two-dimensional space, and we described a set of parameters that
can be tuned to optimise classification. In particular:

• we can change the estimates of the probability of the features by modifying the
values α and β of the prior beta function.

• we can adjust the classification line by changing the intercept qL and the angular
coefficient mL in the likelihood space;

In a real machine learning setting these parameters need to be trained and validated
using portions of the dataset available to train the classifier. For example, a k-fold
cross validation can be used to find the parameters that minimise the error of the
classifier[Duda et al(2000)Duda, Hart, and Stork, Chapter 9]. For this reason, we
have developed an interactive application that allows users to see how the tuning of
these parameters affects classification on a real text classification problem. 6

The top 10 most frequent categories of the Reuters-21578 7 corpus were chosen
as a benchmark. In particular, we chose the 6,494 training documents. Table 1 shows
the number of training documents for each category. Some text preprocessing was
done: a first cleaning was done to remove all the punctuation marks and convert all
the letters to lowercase. A stoplist of 571 words and contractions (that is, ’re, don’t,
etc.) was used to remove the most frequent words of the English language. 8 Finally,

6 http://gmdn.shinyapps.io/shinyK
7 http://www.daviddlewis.com/resources/testcollections/
8 http://jmlr.org/papers/volume5/lewis04a/a11-smart-stop-list/
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Table 1 Number of training documents for each class of the Reuters-21578 collection

category training
acq 1,650
corn 182
crude 391
earn 2,877
grain 434
interest 347
money-fx 539
ship 198
trade 369
wheat 212
total 6,494

the English Porter stemmer 9 was used as the only method to reduce the space of
terms.

Standard classification measures are calculated for the k-fold cross validation and
shown real time as parameters are tuned [Sokolova and Lapalme(2009)].

4.1 Description of the Interface

The main window is split into two parts: the sidebar on the left and the main panel on
the right, as shown in Figure 6. On the left side, the user can interact with the classi-
fier and see the results on the right in terms of both the accuracy of the classification
and the visualisation.

4.1.1 Interaction

The user can interact with the classifier by adjusting and changing the values of the
following widgets (we describe them from top to bottom, but the user can interact
in any order):

1. The user chooses the category of documents to classify with a selection input
menu.

2. The number of k-folds, between 2 and 10, to train and validate on are selected by
a slider; the user can also switch from one k-fold to the other (for example, with
five folds, the first fold is used for validation while the other four folds are used
to train the classifier), or re-sample the folds (documents are randomly sampled
to create a new k-fold cross validation) by using the two buttons below the slider
of the number of folds.

9 http://www.tartarus.org/˜martin/PorterStemmer/
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3. The number of features (terms) can be selected with a slider from 5 up to 30,000
features.

4. The parameters of the beta prior can be adjusted by the two sliders Alpha, from
10−5 to 2, and Beta, from 0.5 to 300.

5. The decision line can be adjusted with the two sliders Angular coefficient, values
from 0.5 to 2, and Intercept, values in the range -300, 300.

6. The user can reset all the parameters to the default values, or go back to the best
settings found for the training set or the validation set by using one of the three
buttons.

4.1.2 Visualization

The main panel is divided into two columns: the first column shows the results on
the training set, the second column the results on the validation set. Both columns
contain the following information (from top to bottom):

1. The text box shows the total number of objects and the number of positive exam-
ples (red points, the documents of the chosen category). The box in the validation
column also tells the user on what fold we are validating.

2. The table shows performance measures in terms of Recall, Precision and F1. The
first row displays the performance of the classifier when only the parameter of
the priors are used, while the second row gives the results when both the prior
and the coefficient of the decision line are taken into account.

3. The two-dimensional plot shows in red the documents of the chosen class and in
black all the other documents of the collection. The blue line changes according
to the parameters Angular coefficient and Intercept, m and q respectively, while
the green line (visible only when the previous parameters are not the default ones)
remains fixed to the bisecting line of the third quadrant.

4.2 Example of usage

Figure 6 shows an example of one category ‘corn’ that is quite unbalanced, since
the number of positive examples of this category is around 180 and the total number
of training examples is about 6,400. In order to recover this disproportion, we can
change the value of the intercept of the decision line and increase it to 200. In this
way, we get an almost perfect recall but the precision is low, as shown in Figure 7.
This situation shows how the intervention of the loss function (which influences the
shift of the line in the likelihood space) is good but not optimal. A rotation of the
line can significantly improve the situation as shown in Figure 8.

This optimisation can continue iteratively by slightly changing the intercept and
the angular coefficient. Additionally (or alternatively), the user can change the
smoothing of the probabilities with the sliders alpha and beta. As surprising as it
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Fig. 6 Interactive Text Categorisation. Default values of a multivariate Bernoulli NB classifier on
the Reuters-21578 dataset.

may seem, for small values of alpha and high values of beta, the points in the likeli-
hood space change their distribution and ‘move’ around the zero-one loss decision
function (bisecting line third quadrant, green line). This particular behaviour can be
explained by the fact that for α = β = 1 we are actually giving as input a uniform
distributed prior which is very unlikely in real situations; in other words, we are
saying that any value for the parameter θ f |c is equally probable. Instead, it is much
more likely to observe a very small value close to zero. This is expressed by a beta
function whose parameters have the values suggested in the Figures.

This incremental process, as the interactive machine learning approach suggests,
can significantly improve the initial results of the classifier. With this interactive
application, we can also show how overfitting may generate very poor classifiers.
This situation is shown in Figure 10, where we set the alpha and beta values to their
extremes and slightly adjusted the intercept and the angular coefficient to obtain an
almost perfect score on the training data (F1 = 0.956). With these parameters, the
performance on the validation set is very low. Compared to Figure 9, the F1 score
decreased from 0.7 to 0.4.
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Fig. 7 Interactive Text Categorisation. Increase the value of intercept to recover the disproportion
of the two classes.

5 Final Remarks and Future Works

In this chapter we have presented a geometrical interpretation of likelihood spaces
and an interactive text categorisation problem that makes use of this interpretation.
We have explained the possible relations that exist between likelihood spaces and
Bayesian Decision Theory; moreover, we have derived the same interpretation of the
two-dimensional logarithmic space from the definition of classification in terms of
the logit function. The interactive application shows, in a real machine learning set-
ting, how human pattern recognition capabilities can immediately steer the learning
algorithm towards one possible solution.

The importance of the visualisation approach becomes more evident when the
result is used as input for the optimisation of a classifier. Theoretically, we could
find the solution found with the interactive approach (if not a better one) by means
of a classical full-automatic machine learning approach that searches for the best
combination of parameters. The problem is that the space of the vector of param-
eters is huge. Although a reduction of the space can be obtained with a correct
interpretation of the problem in geometrical terms [Di Nunzio(2009), Di Nunzio
and Micarelli(2004)], the interactive approach can be crucial in setting the initial
parameters of the function that optimises the automatic classifier.
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Fig. 8 Interactive Text Categorisation with R. Adjust angular coefficient to decrease the number
of false positives.

From a theoretical point of view, there are interesting open questions about the
meaning of the decision line found in the likelihood space. In particular, whether the
solution has an equivalent form in the data space and in Decision Theory in general,
or whether the new solution defines a completely new decision theory in the data
space. Another important aspect that was not discussed in this chapter is that the
smoothing parameters α and β should be optimised for each single feature instead
of being equal for all the features. This problem alone would require a completely
different user interface, or, in terms of classical machine learning, a study on how to
choose parameters individually in an efficient way.

References

[Amershi et al(2014)Amershi, Cakmak, Knox, and Kulesza] Amershi S, Cakmak M, Knox WB,
Kulesza T (2014) Power to the people: The role of humans in interactive machine
learning. AI Mag 35(4):105–120, URL http://www.aaai.org/ojs/index.php/
aimagazine/article/view/2513

[Ankerst et al(1999)Ankerst, Elsen, Ester, and Kriegel] Ankerst M, Elsen C, Ester M, Kriegel HP
(1999) Visual classification: An interactive approach to decision tree construction. In: Pro-
ceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, ACM, New York, NY, USA, KDD ’99, pp 392–396, DOI 10.1145/312129.



Interactive Text Categorisation: The Geometry of Likelihood Spaces

Fig. 9 Interactive Text Categorisation with R. Change the value of the smoothing parameters to
see how points move around the zero-one loss function.

312298, URL http://doi.acm.org/10.1145/312129.312298
[Ankerst et al(2000a)Ankerst, Ester, and Kriegel] Ankerst M, Ester M, Kriegel HP (2000a) To-

wards an effective cooperation of the user and the computer for classification. In: Proceedings
of the sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, Boston, MA, USA, August 20-23, 2000, pp 179–188

[Ankerst et al(2000b)Ankerst, Ester, and Kriegel] Ankerst M, Ester M, Kriegel HP (2000b) To-
wards an effective cooperation of the user and the computer for classification. In: Proceedings
of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, ACM, New York, NY, USA, KDD ’00, pp 179–188, DOI 10.1145/347090.347124, URL
http://doi.acm.org/10.1145/347090.347124

[Behrisch et al(2014)Behrisch, Korkmaz, Shao, and Schreck] Behrisch M, Korkmaz F, Shao L,
Schreck T (2014) Feedback-Driven Interactive Exploration of Large Multidimensional Data
Supported by Visual Classifier. In: Visual Analytics Science and Technology (VAST), 2014
IEEE Conference on, IEEE CS Press, pp 43–52, DOI 10.1109/VAST.2014.7042480

[Caruana and Niculescu-Mizil(2006)] Caruana R, Niculescu-Mizil A (2006) An empirical com-
parison of supervised learning algorithms. In: Proceedings of the 23rd International Con-
ference on Machine Learning, ACM, New York, NY, USA, ICML ’06, pp 161–168,
DOI 10.1145/1143844.1143865, URL http://doi.acm.org/10.1145/1143844.
1143865

[Crestani et al(1998)Crestani, Lalmas, Van Rijsbergen, and Campbell] Crestani F, Lalmas M,
Van Rijsbergen CJ, Campbell I (1998) Is this document relevant? probably. a survey of
probabilistic models in information retrieval. ACM Comput Surv 30(4):528–552, DOI
10.1145/299917.299920, URL http://doi.acm.org/10.1145/299917.299920

[Di Nunzio(2009)] Di Nunzio G (2009) Using scatterplots to understand and improve probabilis-
tic models for text categorization and retrieval. Int J Approx Reason 50(7):945–956



Giorgio Maria Di Nunzio

Fig. 10 Interactive Text Categorisation. Example of overfitting with an almost perfect score on the
training data.

[Di Nunzio(2014a)] Di Nunzio G (2014a) A new decision to take for cost-sensitive Naı̈ve
Bayes classifiers. Inf Proc & Manag 50(5):653 – 674, DOI http://dx.doi.org/10.1016/j.ipm.
2014.04.008, URL http://www.sciencedirect.com/science/article/pii/
S0306457314000363

[Di Nunzio(2014b)] Di Nunzio G (2014b) Visual classification. In: Aggarwal CC (ed) Data Clas-
sification: Algorithms and Applications, CRC Press, pp 607–632, URL http://www.
crcnetbase.com/doi/abs/10.1201/b17320-24

[Di Nunzio and Micarelli(2004)] Di Nunzio G, Micarelli A (2004) Pushing ”underfitting” to the
limit: Learning in bidimensional text categorization. In: Proceedings of the 16th European
Conference on Artificial Intelligence, ECAI’2004, including Prestigious Applicants of Intelli-
gent Systems, PAIS 2004, Valencia, Spain, August 22-27, 2004, pp 465–469

[Di Nunzio and Sordoni(2012)] Di Nunzio G, Sordoni A (2012) How well do we know Bernoulli?
In: Proceedings of the 3rd Italian Information Retrieval Workshop, Bari, Italy, January 26-27,
2012, pp 38–44, URL http://ceur-ws.org/Vol-835/paper5.pdf

[Domingos and Pazzani(1997)] Domingos P, Pazzani M (1997) On the optimality of the sim-
ple Bayesian classifier under zero-one loss. Mach Learn 29(2-3):103–130, DOI 10.1023/A:
1007413511361, URL http://dx.doi.org/10.1023/A:1007413511361

[Duda et al(2000)Duda, Hart, and Stork] Duda RO, Hart PE, Stork DG (2000) Pattern Classifica-
tion, 2nd edn. Wiley-Interscience

[Elkan(2001)] Elkan C (2001) The foundations of cost-sensitive learning. In: Proceedings of the
17th International Joint Conference on Artificial Intelligence - Volume 2, Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, IJCAI’01, pp 973–978, URL http://dl.acm.
org/citation.cfm?id=1642194.1642224

[Fails and Olsen(2003)] Fails JA, Olsen DR Jr (2003) Interactive machine learning. In: Proceed-
ings of the 8th International Conference on Intelligent User Interfaces, ACM, New York, NY,



Interactive Text Categorisation: The Geometry of Likelihood Spaces

USA, IUI ’03, pp 39–45, DOI 10.1145/604045.604056, URL http://doi.acm.org/
10.1145/604045.604056

[Kucher and Kerren(2014)] Kucher K, Kerren A (2014) Text visualization browser: A visual sur-
vey of text visualization techniques. In: IEEE Information Visualization (InfoVis’14), Paris, p
Poster Abstract

[Kulesza et al(2015)Kulesza, Burnett, Wong, and Stumpf] Kulesza T, Burnett M, Wong WK,
Stumpf S (2015) Principles of explanatory debugging to personalize interactive machine
learning. In: Proceedings of the 20th International Conference on Intelligent User Interfaces,
ACM, New York, NY, USA, IUI ’15, pp 126–137, DOI 10.1145/2678025.2701399, URL
http://doi.acm.org/10.1145/2678025.2701399

[Mitchell(1997)] Mitchell TM (1997) Machine Learning, 1st edn. McGraw-Hill, Inc., New York,
NY, USA

[Mladenic and Grobelnik(1999)] Mladenic D, Grobelnik M (1999) Feature selection for unbal-
anced class distribution and Naı̈ve Bayes. In: Proceedings of the Sixteenth International Con-
ference on Machine Learning, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA,
ICML ’99, pp 258–267, URL http://dl.acm.org/citation.cfm?id=645528.
657649

[Neyman and Pearson(1933)] Neyman J, Pearson ES (1933) On the problem of the most ef-
ficient tests of statistical hypotheses. Philosoph Trans of the R Soc of London Series A,
Containing Papers of a Mathematical or Physical Character 231:pp. 289–337, URL http:
//www.jstor.org/stable/91247

[Sebastiani(2002)] Sebastiani F (2002) Machine learning in automated text categorization. ACM
Comput Surv 34(1):1–47, DOI 10.1145/505282.505283, URL http://doi.acm.org/
10.1145/505282.505283

[Shneiderman(1997)] Shneiderman B (1997) Designing the User Interface: Strategies for Effec-
tive Human-Computer Interaction, 3rd edn. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA

[Shneiderman(2002)] Shneiderman B (2002) Inventing discovery tools: Combining information
visualization with data mining. Inf Vis 1(1):5–12, DOI 10.1057/palgrave/ivs/9500006, URL
http://dx.doi.org/10.1057/palgrave/ivs/9500006

[Singh and Raj(2004)] Singh R, Raj B (2004) Classification in likelihood spaces. Technometrics
46(3):318–329, DOI 10.1198/004017004000000347, URL http://www.tandfonline.
com/doi/abs/10.1198/004017004000000347, http://www.tandfonline.
com/doi/pdf/10.1198/004017004000000347

[Sokolova and Lapalme(2009)] Sokolova M, Lapalme G (2009) A systematic analysis of perfor-
mance measures for classification tasks. Inf Process & Manag 45(4):427–437, DOI 10.1016/
j.ipm.2009.03.002, URL http://dx.doi.org/10.1016/j.ipm.2009.03.002

[Tan et al(2005)Tan, Steinbach, and Kumar] Tan PN, Steinbach M, Kumar V (2005) Introduction
to Data Mining, first edition edn. Addison-Wesley, Boston, MA, USA

[Ware et al(2002)Ware, Frank, Holmes, Hall, and Witten] Ware M, Frank E, Holmes G, Hall
M, Witten IH (2002) Interactive machine learning: Letting users build classifiers. Int J
Hum-Comput Stud 56(3):281–292, URL http://dl.acm.org/citation.cfm?id=
514412.514417

[Webb and Pazzani(1998)] Webb GI, Pazzani MJ (1998) Adjusted probability Naı̈ve Bayesian in-
duction. In: Advanced Topics in Artificial Intelligence, 11th Australian Joint Conference on
Artificial Intelligence, AI ’98, Brisbane, Australia, July 13-17, 1998, Selected Papers, pp 285–
295, DOI 10.1007/BFb0095060, URL http://dx.doi.org/10.1007/BFb0095060

[Yuan et al(2012)Yuan, Cong, and Thalmann] Yuan Q, Cong G, Thalmann NM (2012) Enhancing
Naı̈ve Bayes with various smoothing methods for short text classification. In: Proceedings of
the 21st International Conference Companion on World Wide Web, ACM, New York, NY,
USA, WWW ’12 Companion, pp 645–646, DOI 10.1145/2187980.2188169, URL http:
//doi.acm.org/10.1145/2187980.2188169


