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Abstract

Educational Data Mining and Learning Analytics are interdisciplinary fields that exploit

statistical, machine-learning, and data-mining algorithms over the different types of

educational data. The application of data mining techniques to these educational datasets

that come from educational environments allows researchers to address important

educational questions. Student learning data collected by online learning systems are

explored to develop predictive models in order to measure data about learners and their

contexts, for purposes of understanding and optimizing learning and the environments in

which it occurs. In this chapter, we focus on students that are studying foundations of

machine learning and in particular probabilistic models for classification. The idea is to

build an environment where students are given exercises that should be solved by

interacting directly with the mathematical model by means of visual features. Our main

goal is to build an interactive tool that addresses the following problems: teach

probabilities and the probabilistic classifier in an innovative way, by breaking down

learning into small components that can be analyzed and then adapted for each student;

use simple geometrical primitives that allow non-experts to understand intuitively how

probabilistic classifiers work; distribute the open source code of the application to make

this approach available to a wider audience.

Keywords: Naïve Bayes, Bayesian Classification, Bayesian Decision Theory, Visual

Data Analytics
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The “Geometry” of Naïve Bayes: Teaching Probabilities by “Drawing” Them

Introduction

Educational Data Mining (EDM) is an emerging discipline that studies methods for

exploring the data that come from educational settings, and uses those methods to better

understand students and the settings in which they learn, as discussed by R. S. Baker and

Yacef (2009, 1). A recent survey by the U.S. Department of Education (2012) gives a

detailed overview of how EDM is currently applied in institutions, what kinds of questions

it can answer, and the relationships with other research fields like Learning Analytics (LA).

In general, EDM is more focused on the process of breaking down learning into small

components that can be analyzed and then adapted into software designed for students

rather than understanding entire systems and supporting human decision making (Siemens

& Baker, 2012). Student learning data collected by online learning systems are then

explored to develop predictive models by applying educational data mining methods that

classify data or find relationships. Indeed, computer-supported interactive learning

methods and tools have opened up opportunities to collect and analyze student data, to

discover patterns and trends in those data, and to make new discoveries and test

hypotheses about how students learn. LA is a closely related field with more emphasis on

simultaneously investigating automatically collected data along with human observation of

the teaching and learning context (Duval & Verbert, 2012). As defined in the First

International Conference on Learning Analytics and Knowledge (LAK 2011): “Learning

analytics is the measurement, collection, analysis and reporting of data about learners and

their contexts, for purposes of understanding and optimizing learning and the environments

in which it occurs”. 1 In the context of Massive Online Open Courses (MOOCs), for

example like Khan Academy 2 or Coursera 3, the use of LA becomes crucial. Tools that

1https://tekri.athabascau.ca/
2https://www.khanacademy.org/
3https://www.coursera.org/
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provide insights about this learning process are required to analyze and to interpret

students’ learning processes on a large scale (Valiente, Merino, Leony, & Kloos, 2015).

EDM and LA are interdisciplinary fields that exploit statistical, machine-learning,

and data-mining (DM) algorithms over the different types of educational data. The

application of DM techniques to these educational datasets that come from educational

environments allows researchers to address important educational questions as suggested

by Romero and Ventura (2013). The application of traditional DM techniques to

educational data is not trivial and requires some thought (Romero & Ventura, 2010):

DM tools are normally designed more for power and flexibility than for

simplicity. Most of the current DM tools are too complex for educators to use

and their features go well beyond the scope of what an educator may want to

do. For example, on the one hand, users have to select the specific DM

method/algorithm they want to apply/use from the wide range of

methods/algorithms available on DM. On the other hand, most of the DM

algorithms need to be configured before they are executed. Users have to

provide appropriate values for the parameters in advance in order to obtain

good results/models, and therefore, the user must possess a certain amount of

expertise in order to find the right settings.

Romero and Ventura (2010) propose a solution to this problem which comprises the

development of wizard tools that use a default algorithm for each task and parameter-free

DM algorithms to simplify the configuration and execution for non-expert users. In this

respect, Visual Data Mining can help researchers to examine the streams of data at the

right level of abstraction through appropriate visual representations and to take effective

actions in real-time (Keim, Kohlhammer, Ellis, & Mansmann, 2010). Finally, EDM tools

should be open source and/or freely available in order for them to be used by a much wider

and broader population. An analysis made by Romero and Ventura (2013) shows that

most of the current specific EDM tools are not available for download.
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Main Contribution. In this chapter, we focus on students that are studying

foundations of machine learning and in particular probabilistic models for classification.

The idea is to build an environment in which students are given exercises that should be

solved by interacting directly with the mathematical model by means of visual features.

The interaction data can be used to study how many students struggled in that exercise,

who could not do the task, who did the task correctly at least once, and who obtained

proficiency in this exercise. In the same way that MOOCs capture student actions (i.e.

Khan Academy monitor each time a student attempted to answer an exercise or earned a

badge for completing a task), these data can be transformed into useful information that

can be exploited to improve the learning process (Valiente et al., 2015).

Our main goal is to build an interactive tool that addresses the following problems:

• Teach probabilities and the probabilistic classifier in an innovative way, by breaking

learning down into small components that can be analyzed and then adapted for each

student;

• Use simple geometrical primitives that allow non-experts to understand intuitively

how the probabilistic classifier work; therefore, tools are designed to be easier for

educators and students;

• Distribute open source code of the application to make this approach available to a

wider audience.

Based on the idea of Likelihood Spaces (Singh & Raj, 2004), we present a geometric

interpretation of one of the most used probabilistic classifiers in the literature: the Naïve

Bayes classifier. We introduce the properties of the two-dimensional representation of

probabilities proposed by Di Nunzio (2009, 2014) which allows us to provide an adequate

data visualization approach to understand, step by step, how to present complex concepts

like parameter optimization and cost sensitive learning in an easy and intuitive way. At

each step, we suggest exercises that can be monitored to track the learning curve of the
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student. We also apply this geometrical interpretation to a real case scenario of text

categorization (Sebastiani, 2002) to show how this intuitive visualization can be used

effectively not only for teaching probabilities but also for analyzing data.

Related Works

One of the key areas of applications of EDM is improvement of student models that

would predict student’s performances with high accuracy. Dangi and Srivastava (2014)

study the prediction of students performance, knowledge, and score by means of a Naïve

Bayes classifier. The accuracy of the prediction highly depends on the choice of the most

relevant variables that describe the data set. This can be achieved by means of feature

selection techniques (Ramaswami & Bhaskaran, 2009). As previously mentioned, LA

models the behavior and performance of students while they use learning systems;

nevertheless, students’ behavior outside of the system may also influence how well the

students learn. Xing and Goggins (2015) study off-task behavior in which students’

attention becomes lost and disengaged from the learning environment and activities by

means of Naïve Bayes classifiers, the type of classifiers that we are going to study in this

chapter.

Interactive Machine Learning (IML) is a relatively new area of Machine Learning

(ML) where interaction with users allows ML models to be updated fast and very

accurately. In IML, even non-expert users can solve machine learning problems with

minimum effort by means of intuitive visualization tools (Amershi, Cakmak, Knox, &

Kulesza, 2014). It has also been shown that cooperation between humans and machine

learning algorithms is a key point for building classification algorithms effectively (Ankerst,

Ester, & Kriegel, 2000; Ware, Frank, Holmes, Hall, & Witten, 2002). The Interactive and

Classification approach presented by Amershi et al. (2015) has been designed to enable lay

people to train interactively both classifiers and extractors (functions that map an input

item to a sequence of annotated segments) using large datasets containing 100 million
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examples or more. Exploratory learning environments are educational tools designed to

foster learning by supporting students in freely exploring relevant instructional material.

Amershi and Conati (2009) study, among other things, an Adaptive Coach for Exploration

(ACE) learning environment to test their user modelling framework. This tool allows

students to study quadratic equations by means of interactions that are very similar to the

ones presented in this work.

The Geometry of Naïve Bayes Classification

Naïve Bayes classifiers have been widely used in the literature of Data Mining (DM)

and Machine Learning (ML) since they are easy to train and reach satisfactory results

which often can be used both as a baseline for comparison purposes with and as an

assessment of how difficult the classification is (Han, Kamber, & Pei, 2011, Chapter 8).

Building these types of classifiers is easy, but their optimization is often lacking if not

missing all together. In this work, we propose a visualization approach that directly

involves users in the process of building the probabilistic classifier, as suggested by Ankerst

et al. (2000), in order to obtain a twofold result: first, the pattern recognition capabilities

of a human can be used to increase the effectiveness of the classifier; and second, a

visualization of the probabilistic model can be used to teach non-experts how these kinds

of models work.

Based on the idea of Likelihood Spaces (Di Nunzio, 2009; Singh & Raj, 2004) which

represent probabilities on a two-dimensional space, we have developed, designed and

implemented a Web application in R 4 using a package named Shiny (Chang, 2015) which

is a new package of the R programming language which allows for rapid prototyping of

interactive Web applications. 5 The source code of the application is available freely for

download. 6

4http://www.r-project.org/
5http://shiny.rstudio.com/
6https://github.com/gmdn/educational-data-mining
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In summary, the main steps of our approach are:

• A geometrical definition of the Bayes’ rule;

• A geometrical definition of NB classifiers;

• An interactive Web application to show how these concepts work in practice both on

a toy-problem and on a real case scenario.

In the remainder of this section, we introduce the basic mathematical notation and

definitions that will be used to build the visualization tool.

Mathematical Notation

In general, the problem of classification of objects requires a set of predefined classes

C = {c1, ..., ci, ..., cn} that are used to organize documents. A generic object o can belong

to one or more classes (or even none of them) and the act of classification is also called

‘labelling’. In this work, we deal with binary classification problems. A binary classification

problem is a special case of single-label classification in which the object o belongs to one

category, the “positive” class is indicated with ci (or c without subscript when there is no

risk of misinterpretation), or its complement, the “negative” class c̄i (or c̄). Binary

classification is actually a standard approach in ML and DM to break down multi-class

problems into several binary classification problems (Rocha & Goldenstein, 2014).

Deciding whether to label a document or not requires a careful evaluation of some

function which minimizes the classification error. Among the many possible choices

described in the literature, probabilistic classifiers have the nice property of computing the

uncertainty on such decisions; for example, calculating the probability that an object o

belongs to class c. We use the usual simplified notation for the probability of events, like

P (c) and P (o) for the probability of a class and the probability of an object, respectively;

the conditional probabilities are instead written in the usual way P (c|o). 7

7We use values and omit variables to simplify formulae. For example, P (c̄|o) instead of P (C = c̄|O = o).
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In its simplest form, a probabilistic classifier puts o into category c if the following

statement is true:

P (c|o) > P (c̄|o) (1)

that is, if the probability of the class c given o is greater than the probability of its

complement c̄ given o. In order to justify this statement, and develop the two-dimensional

representation of probabilities, we need to add one important building block: Bayesian

Decision Theory.

Bayesian Decision Theory

Bayesian Decision Theory is a statistical approach to the problem of classification of

objects. This approach is based on quantifying the tradeoffs between classification decisions

and the costs that accompany such decisions (Duda, Hart, & Stork, 2000, Chapter 2). For

example, let us suppose that we need to diagnose a rare disease; let us call c the category

of the people with this disease and c̄ the category of healthy people. We know from

experience and past tests that the probability of the disease is P (c) = 0.001, that is to say

one out of 1000 people has the disease; and therefore P (c̄) = 0.999 (this example was

inspired by Kruschke (2014, Chapter 5)). These two probabilities reflect our prior

knowledge of how likely the disease is distributed within the population. Suppose that we

are now forced to make a decision about the health of a patient without any information

about the patient. If a decision must be made, the most reasonable decision rule (and most

correct under some conditions) is: if P (c̄) > P (c) then the patient is healthy. In fact, with

this decision rule, we would be correct 999 times out of 1,000. However, in real situations:

• We usually do not make decisions with so little information. Objects (in the

examples patients) are, in general, described by features that can be measured; for

example, we may ask the patient to undergo some medical tests that measure the

level of white cells in his/her blood before making any decision.
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• The costs of decisions are rarely symmetric. For example, a patient with a disease

that is classified as healthy is a decision that may have deadly consequences (hence a

very high cost). The opposite situation may have negative consequences for the

patient (maybe psychological for resulting positive to the disease) but less costly.

Bayesian analysis allows us to infer the posterior belief we have on the patient based on

some evidence (e.g. the result of a blood test). For example, we can adjust our belief on

the probability of the category c by applying Bayes’rule:

P (c|o)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
P (o|c)

prior︷ ︸︸ ︷
P (c)

P (o)︸ ︷︷ ︸
data

(2)

Bayesian Decision Theory allows us to formally define the risk in taking a decision

(classify a patient as healthy), assign costs to these decisions, and find the decision that

minimizes the risks with that particular action. Suppose that we observe an object o, the

risk in classifying o in category c is defined as a weighted sum:

R(c|o) = λccP (c|o) + λcc̄P (c̄|o) (3)

where λcc̄ is the loss we incur when we predict c while the true category for the object o is

c̄. In the example of the patient and the disease, λcc̄ should be very high because we

classify a person with a disease as healthy, while λcc should be equal to zero because we

predict the correct case. The risk in assigning o to c̄ is defined accordingly:

R(c̄|o) = λc̄cP (c|o) + λc̄c̄P (c̄|o) (4)

The optimal classification choice is the one that minimizes the overall risk; for example, we

assign the object o to c when

R(c|o) < R(c̄|o) (5)
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that is,

λccP (c|o) + λcc̄P (c̄|o) < λc̄cP (c|o) + λc̄c̄P (c̄|o)

(λcc̄ − λc̄c̄)P (c̄|o) < (λc̄c − λcc)P (c|o)

P (c̄|o) <
(λc̄c − λcc)
(λcc̄ − λc̄c̄)

P (c|o) (6)

which, for λcc = λc̄c̄ = 0 and λc̄c = λcc̄ = 1 (also known as zero-one loss function), we obtain

the intuitive, but now mathematically sound, solution presented in Eq. 1, P (c|o) > P (c̄|o).

By substituting Eq. 2 into Eq. 6 we obtain:

P (o|c̄)P (c̄)
P (o) <

(λc̄c − λcc)
(λcc̄ − λc̄c̄)

P (o|c)P (c)
P (o) (7)

This last equation is the main building block we need to study the “geometry” of

probabilistic classifiers.

Two Dimensional Probabilities

The two dimensional definition of the NB classifier starts from Eq. 6. If we rewrite it

in the following way:

y < mx (8)

we can immediately make some considerations:

• x = P (c|o) and y = P (c̄|o) can be seen as two coordinates of a Cartesian space.

• Since P (c̄|o) = 1− P (c|o), i.e. y = 1− x, a point with coordinates (x, y) lies on the

segment with endpoints (0, 1)− (1, 0).

• The decision line y < mx splits the plane in two: all the points that are below the

line are assigned to c, all the points above the line to c̄.

In Figure 1, we show the first example of the interface to teach how classification works on

a two-dimensional space. On the left side of the figure, we have the sliders that control the

posterior probability of an object P (c|o) (and consequently the probability
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Figure 1 . Two-dimensional representation of probabilities. Coordinates are x = P (c|o) and

y = P (c̄|o).

P (c̄|o) = 1− P (c|o)) and the angular coefficient m of the decision line. Initially, the

probability that the object belongs to class c is P (c|o) = 0.7 and m = 1 which is the value

of m that corresponds to the standard zero-one loss function (Equation 7, λcc = λc̄c = 0,

λc̄c = λcc̄ = 1). With these settings, the object is classified under category c. What if the

true class of the object is not c? Is there anything we can do to classify that object into

class c̄? We cannot change the value of the posterior probability (because that number is

actually what we have computed), but we can adjust the slope of the decision line. By

decreasing m, we can reach the point where the decision line is ‘flat’ enough to put the
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Figure 2 . Two-dimensional representation of probabilities. Coordinates are x = P (c|o) and

y = P (c̄|o). A change in the slope m results in a different classification decision.

point in the space above the line. This limit can be computed by rearranging Eq. 8:

y

x
< m (9)

when m is greater than the ratio y/x the point is below the line (and classified under c),

while if m is less than that ratio, the point is above the line (and classified under c̄). In the

example, when m < 0.3/0.7 ' 0.43, the points are classified under c̄, as shown in Figure 2.

Exercise.

• Set a value for P (c|o) and compute the angular coefficient m needed to classify it

under c.
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• Compute the values of the coefficients λcc, λc̄c̄, λc̄c, λcc̄ that produce this solution.

Describe the two types of possible combinations of costs that are needed.

Working with Likelihoods and Priors Only

In the first example, we were able to input directly the value of the posterior

probability P (c|o). In real cases, we need Bayes’ rule to compute this probability.

Therefore, we need to rewrite coordinates in terms of the prior and the likelihood:

P (o|c̄)P (c̄)
P (o|c)P (c) + P (o|c̄)P (c̄) <

(λc̄c − λcc)
(λcc̄ − λc̄c̄)

P (o|c)P (c)
P (o|c)P (c) + P (o|c̄)P (c̄) (10)

where we substituted P (o) with the sum of the conditional probabilities. 8 In this case,

• Coordinates x and y are now computed via Bayes’ rule.

• Priors on the categories P (c) and P (c̄) must sum to one P (c) + P (c̄) = 1.

• Class conditional probabilities and likelihood functions can take any value between

zero and one and the sum of the two likelihoods does not have to sum to one (that is,

P (o|c) + P (o|c̄) 6= 1, in general).

In Figure 3, we show the interface with the new sliders that allow users to directly

interact with likelihood functions and priors. The first example shows a point that is below

the zero-one loss function (m = 1) with the same coordinates as in the previous example.

When a zero-one loss function is used, two situations are worth more thorough

investigation:

1. if P (c) = P (c̄), we assign the object to category c when P (o|c) > P (o|c̄).

2. If P (o|c) = P (o|c̄) then we assign o to category c when P (c) > P (c̄).

In both cases, whenever we have a complete uncertainty (equal probabilities) the best thing

to do in terms of minimizing the risk is to rely on the remaining information, either the
8This is the passage P (o) = P (c, o) + P (c̄, o) = P (o|c)P (c) + P (o|c̄)P (c̄)
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Figure 3 . We use Bayes’ rule to compute the posterior probability in terms of priors and

likelihood functions.

prior on a class or the likelihood of an object. Given some values of likelihoods and priors,

it is always possible to find a loss function (angular coefficient m) that changes the decision

of classification.

Exercise.

• Set the initial likelihood and priors. Find the value of m such that the object is

classified under c̄.

• Set the likelihoods, then describe what is the relation between the prior on class c

and the angular coefficient m.
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De-normalizing Probabilities

The posterior probabilities have a normalization factor given by the probability of the

object P (o) which is equal for both sides of the inequality. For this reason, it is very

common to cancel it from both sides of the decision function of Eq. 7 and obtain:

P (o|c̄)P (c̄) < (λc̄c − λcc)
(λcc̄ − λc̄c̄)

P (o|c)P (c) (11)

The new coordinates of the point are x′ = αx and y′ = αy where α = P (o). This new

interpretation of the probabilities is crucial for the effectiveness of the classification (it will

be clear in the next sections why this small detail dramatically changes the decision of

classification). We can describe some geometrical properties:

• The new coordinates x′ and y′ are the old ones multiplied by the same positive factor

α which happens to be between zero and one. This means that the new coordinates

lie on the segment with endpoints (0, 0) - (x, y).

• If the normalized point was below the decision line y = mx, the de-normalized point

will remain below the same decision line, that is if y < mx then y′ < mx′. 9

• Once the likelihoods are fixed, the first point moves along the line

y = −P (o|c̄)
P (o|c)x+ P (o|c̄). This means that if we want to study the new coordinates in

terms of the prior probability P (c), the abscissa is x = P (o|c)P (c) while the ordinate

is y = P (o|c̄)(1− P (c)).

In Fig. 4, we show an interface that allows users to de-normalize the posterior probability.

The segment along which the point can move is highlighted with dotted lines.

The formulation of the decision function shown in Eq. 11 can also be rewritten in the

following way:
P (o|c̄)
P (o|c) <

(λc̄c − λcc)
(λcc̄ − λc̄c̄)

P (c)
P (c̄) (12)

9This is true when we use a decision line that passes through the origin of the axis. As soon as we add

an intercept q, y = mx + q, then the same point may be classified differently from the initial coordinates.
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Figure 4 . The de-normalized coordinates lie on the segment with endpoints (0, 0) - (x, y).

Once the likelihoods are fixed, the de-normalized point moves along the line

y = −P (o|c̄)
P (o|c)x+ P (o|c̄).

where the term on the left is called likelihood ratio. This formulation is important for two

reasons:

• It is related to the formulation of classification in terms of the minimax criterion and

the Neyman-Pearson criterion (Duda et al., 2000, Chapter 2).

• It shows that the loss function coefficients can be used to balance the ratio P (c)/P (c̄)

which, in cases of unbalanced classes, can be extremely high (or low) (Mladenic &

Grobelnik, 1999).

Exercise.
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• Consider the decision function shown in Eq. 11 and suppose that P (c) = k with

k � 1. What is the value of m that balances the disproportion between P (c) and

P (c̄)?.

• Fix the value of the two likelihood probabilities P (o|c) and P (o|c̄) and the angular

coefficient m. Find the threshold of the probability P (c) that changes the

classification decision.

Naïve Bayes Approach

In real case scenarios, we estimate the likelihood function by means of the class

conditional probability of the features of the object o. For example, let us assume that the

objects we want to study are characterized by a set of three features F = {F1, F2, F3}. An

object o is therefore a particular realization of these three features, and its likelihood for

category c is:

P (o|c) = P ({f1, f2, f3}|c) (13)

The problem of computing this probability is that we need an amount of data that grows

exponentially with the number of features (e.g. if the variables in F are binary, the

probability table has 2|F | entries). This is also called the curse of dimensionality (Hastie,

Tibshirani, & Friedman, 2009). For this reason, it is very common to simplify the problem

by means of a very strong assumption named Naïve Bayes assumption: all the features are

conditionally independent given the class. In mathematical terms:

P ({f1, f2, f3}|c) =
3∏

i=1
P (fi|c) (14)

For three features, the decision rule becomes:

3∏
i=1

P (fi|c̄)P (c̄) < (λc̄c − λcc)
(λcc̄ − λc̄c̄)

3∏
i=1

P (fi|c)P (c) (15)

Bernoulli Naïve Bayes. If the features that represent the object are binary (that

is they can only assume a value equal to zero or one), the probability of each feature is
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described by a Bernoulli variable:

P (fi|c) =


θ if fi appears in the object

1− θ if fi does not appear in the object
(16)

where θ is the value of the probability of the feature being present or absent in the object.

In Fig. 5 we show an example of an object that is represented by three features, f1 and f3

are present, while f2 is absent.

In practice, there are at least two problems with this new assumption:

• When one of the features has probability equal to zero (or one), the whole likelihood

goes to zero if the feature is present (or absent) in the object. This situation is shown

in Fig. 5, where the coordinate x of the point is zero and feature f3 has P (f3|c) = 0.

• Since the likelihood of an object is the product of n conditional probabilities (where n

is the number of features), the value of the probability P (o|c) is very small. In

general, not only are the points very close to the origin of the axes, but they are also

equal to zero by approximation. 10

The first problem can be solved by means of a probability smoothing

approach (Hiemstra, 2009). The second problem requires the application of a monotonic

function which preserves classification (we describe this passage later in this work). Before

solving this last problem, we show an extension of the classic risk of Bayesian Decision

Theory that allows us to draw a decision line that will perform better.

Exercise.

• Suppose that one of the features that describes the object o has probability equal to

one. What happens if that feature is not present in the object?
10Suppose that, on average, the probability of a feature given a class is P (fj |c) ' 10−2 and all the features

have a probability greater than zero to avoid P (o|c) = 0. With 100 features, the likelihood of an object will

be, on average, P (o|c) ' 10−200 which is very close to the limit of the representation of a 64 bit floating

point number. In real situations, probabilities are much smaller than 10−2 and features can be easily tens

of thousands; hence, all the likelihood functions would be equal to zero by approximation.
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Figure 5 . When one of the features has probability equal to zero (or one), the whole

likelihood goes to zero if the feature is present (or absent) in the object.

• Suppose that one coordinate is equal to zero. Is there any value of m that can change

the classification decision?

A New Decision Line: Far From the Origin

So far, we have used a decision line that passes through the origin of the axes. This

solution is a consequence of a geometrical interpretation of the classical Bayesian Decision

Theory approach according to the definition of risk given by Equation 3. A more

sophisticated approach consists of assigning to each class a cost, independently of the

posterior probability of the object o we are about to classify. As suggested by Di Nunzio
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(2014), we can imagine a new risk that adds one element:

R(c|o) = λccP (c|o) + λcc̄P (c̄|o) + λc

P (o) (17)

where λc is constant for each object o and represents the cost of choosing c independently

of the posterior probability P (c|o) and P (c̄|o). With this new definition, we can rewrite the

decision function in the following way:

P (o|c̄)P (c̄)︸ ︷︷ ︸
y

<
(λc̄c − λcc)
(λcc̄ − λc̄c̄)︸ ︷︷ ︸

m

P (o|c)P (c)︸ ︷︷ ︸
x

+ λc̄ − λc

(λcc̄ − λc̄c̄)︸ ︷︷ ︸
q

(18)

The intercept q of the decision line is the new coefficient that we can use to optimize the

classification decision. In particular, when the two costs are equal λc̄ = λc, the coefficient is

zero and we return to a decision line that passes through the origin. When λc̄ > λc, the

cost of choosing c̄ is higher, and the decision line moves upwards reducing the area of

classification for c̄.

De-normalization Makes (Some) Problems Linearly Separable

By using the classic definition of risk, normalizing or de-normalizing coordinates does

not change the classification decision. With the new decision function, this is not true

anymore. The advantage of this new situation is evident when two non-linearly separable

classes become linearly separable in the de-normalized version of the problem. In Fig. 6a,

we show an example where three objects, one belonging to class c and the other two to

class c̄, cannot be separated by the classic linear decision. This is true also for the

de-normalized version of the same problem, as shown in Fig. 6b. Instead, when the decision

line of Eq. 18 is used, the intercept allows us to move from the origin and find the correct

separation between the two classes.

Exercise.

• Set the values of the probabilities of the features given the class. Compute the

de-normalized coordinates and find the parameters m and q of the decision line that

optimize classification (when possible).



THE “GEOMETRY” OF NAÏVE BAYES 22

• In some cases, it may be possible to find decision lines with a negative angular

coefficient. Find what are the costs of the loss function that produce these values and

discuss whether these values are sensible or not (Elkan, 2001).

Likelihood Spaces, when Logarithms Make a Difference (or a Sum)

In a NB classifier, the likelihood of an object is the product of the conditional

probabilities of the features that describe the object. This makes the value of the

probability P (o|c) so small that it is usually approximated with a value equal to zero. In

order to avoid this arithmetical anomaly, we apply the logarithm to Eq. 6, a monotonic

transformation of the probabilities, and we obtain:

log(P (c̄|o)) < log
(
λc̄c − λcc

λcc̄ − λc̄c̄

)
+ log(P (c|o)) (19)

log(y) < log (m) + log(x) (20)

yL < qL + xL (21)

where xL = log(P (c|o)) and yL = log(P (c̄|o)) are the coordinates in the logarithmic space.

Note that when the logarithm is applied to the classic decision line, the rotation of the

decision line in the data space corresponds to a shift in the logarithmic space. In Fig. 7, we

show the same point of Fig. 1 projected into the logarithmic space. Note that the segment

with endpoint (0,1)-(1,0) where normalized points lie becomes a sort of hyperbola in the

logarithmic space.

De-normalizing in Likelihood Spaces

When the normalization factor P (o) is canceled, we obtain the following coordinates

in the likelihood space:

log(P (o|c̄)P (c̄)) < log
(

(λc̄c − λcc)
(λcc̄ − λc̄c̄)

)
+ log(P (o|c)P (c)) (22)

log(P (o|c̄)) + log(P (c̄)) < log
(

(λc̄c − λcc)
(λcc̄ − λc̄c̄)

)
+ log(P (o|c)) + log(P (c)) (23)
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Therefore, while in the original data space we have x′ = αx where α = P (o), in the

logarithmic space we obtain:

xL = log(x′) = log(αx) = log(P (o|c)) + log(P (c))− log(P (o)) + log(P (o)) (24)

yL = log(y′) = log(αy) = log(P (o|c̄)) + log(P (c̄))− log(P (o)) + log(P (o)) (25)

This means that the de-normalized coordinates in the logarithmic space are shifted by the

same quantity log(P (o)) towards minus infinity and parallel to the bisecting line of the

third quadrant. In Fig. 8, we show an example of a de-normalized point in the likelihood

space.

A New Decision in Likelihood Spaces

When we work in likelihood spaces, the decision line presented in Eq. 18 takes a

particular form:

log(P (o|c̄)P (c̄)) < log
(

(λc̄c − λcc)
(λcc̄ − λc̄c̄)

P (o|c)P (c) + λc̄ − λc

(λcc̄ − λc̄c̄)

)
(26)

the logarithm on the right hand side of the inequality cannot be factorized into the sum of

logarithms. Therefore, we have this type of logarithmic curve

log(y′) < log(mx′ + q) (27)

that, given m > 0, for positive values of q is convex, while for q < 0 is concave. For q = 0

we obtain the classical decision line (log(y) = log(m) + log(x)). This curve allows us to

separate points that have been denormalized in the likelihood space. For example, in Fig. 9

we show three points that cannot be separated when normalized, but they can be

separated by the logarithmic curve in the likelihood space.

A Real Case Scenario: Text Categorization

In the previous sections, we presented the geometric interpretation of probabilistic

classifiers on a two-dimensional space, and we described a set of parameters that can be
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tuned to optimize classification. In a real machine-learning setting these parameters need

to be trained and validated using portions of the dataset available to train the classifier.

For example, a k-fold cross validation can be used to find the parameters that minimize the

error of the classifier (Duda et al., 2000, Chapter 9).

In Fig. 10, we show a real machine-learning scenario that uses a standard benchmark

for text classification: the Reuters-21578 dataset 11. The top 10 most frequent categories of

the corpus were chosen as a benchmark. This Web application applies all the concepts

presented in this paper. The idea is that even a non-expert can easily find a solution by

visual inspection. The only difference is that we have two more parameters α and β that

are used to change how probabilities are smoothed. 12 Moreover, the user has two windows:

one dedicated to the training phase on the left, and one to check the performance on the

validation set on the right. Performance measures are shown to give numerical feedback to

the user, in addition to the visual feedback.

Final Remarks

EDM exploits DM algorithms over the different types of educational data. The

application of DM techniques to these specific educational datasets that come from

educational environments allows researchers to address important educational questions.

However, most of the current DM tools are too complex for educators to use and their

features go well beyond the scope of what an educator may want to do. Moreover, EDM

tools should be open source and/or freely downloadable.

In this chapter, we have presented an approach to represent probabilities on a

two-dimensional space with two goals: i) to teach probabilities that makes use of visual

primitives that are very intuitive and exploit the capability of humans to find regular

patterns; ii) to build a visual tool that makes use of a standard classification algorithm

that can be used for real tasks. This algorithm can be optimized very efficiently even by
11http://www.daviddlewis.com/resources/testcollections/reuters21578/
12https://gmdn.shinyapps.io/shinyK/
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lay people by means of interactive tools.

The Web applications have been developed with a package of the R language that

allows for rapid prototyping and can be easily embedded in other larger projects. It is

completely open source and the aim is to embed this approach in frameworks like the

Interactive and Classification (ICE) approach presented by Amershi et al. (2015).

Ultimately, this approach can be adapted to more complex analysis like the work

by van de Sande (2013) where the Knowledge Tracing algorithm uses student performance

at each opportunity to apply a skill to update the conditional probability that the student

has learned that skill. In this case, the algorithm can be optimized by means of the

visualization tool on a two-dimensional space.
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(a) Normalized (b) De-normalized

(c) De-normalized and decision line y = mx + q

Figure 6 . The advantage of a de-normalization and decision line y = mx+ q is evident

when two non-linearly separable classes become linearly separable.
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Figure 7 . In this example, we show the logarithm coordinates of the likelihood space.
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Figure 8 . De-normalized point in the likelihood space.
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(a) Normalized points in the likelihood space. The two classes cannot be

separated.

(b) De-normalized point in the likelihood space. The two classes are now

separable with the decision function log(mx + q).

Figure 9 . Separating two classes in likelihood spaces.
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Figure 10 . Interactive Text categorization. Default values of a multivariate Bernoulli NB

classifier on the Reuters-21578 dataset.


