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Abstract

The generating functional for scalar theories admits a representation which is dual with respect to the 
one introduced by Schwinger, interchanging the role of the free and interacting terms. It maps 

∫
V (δJ ) and 

J�J to δφc
�δφc

and 
∫

V (φc), respectively, with φc = ∫
J� and � the Feynman propagator. Comparing 

the Schwinger representation with its dual version one gets a little known relation that we prove to be a 
particular case of a more general operatorial relation. We then derive a new representation of the generating 
functional T [φc] = W [J ] expressed in terms of covariant derivatives acting on 1

T [φc] = N

N0
exp(−U0[φc]) exp

(
−

∫
V (D−

φc
)
)

· 1

where D±
φ (x) = ∓� δ

δφ (x) +φ(x). The dual representation, which is deeply related to the Hermite polyno-
mials, is the key to express the generating functional associated to a sum of potentials in terms of factorized 
generating functionals. This is applied to renormalization, leading to a factorization of the counterterms of 
the interaction. We investigate the structure of the functional generator for normal ordered potentials and 
derive an infinite set of relations in the case of the potential λ

n! : φn : . Such relations are explicitly derived 
by using the Faà di Bruno formula. This also yields the explicit expression of the generating functional of 
connected Green’s functions.
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1. Introduction and summary

The path-integral is a basic tool in several research fields, quantum mechanics, quantum field 
theory, statistical mechanics etc. The original idea is due to Dirac who observed a deep anal-
ogy between the Hamilton–Jacobi theory and the quantum transition amplitudes, proposing the 
relation [1]

〈q, t |Q,T 〉 ∼ e
− i

h̄

∫ t
T dtL

. (1.1)

Subsequently, Feynman developed Dirac’s idea, starting from an infinitesimal version of (1.1), 
another key step toward the path-integral formulation [2].

A relevant progress in the path-integral approach is due to Schwinger who expressed the 
generating functional in the form

W [J ] = N

N0
exp

(
−

∫
V

( δ

δJ

))
exp(−Z0[J ]) , (1.2)

where V is the potential, J the external source and exp(−Z0[J ]) the generating functional of the 
free theory. It turns out that the Schwinger representation admits the dual representation

W [J ] = N

N0
exp(−Z0[J ]) exp

(1

2

δ

δJ
�−1 δ

δJ

)
exp

[
−

∫
dDxV

(∫
dDzJ (z)�(z−x)

)]
,

(1.3)

with �(y − x) the Feynman propagator. Such a dual representation leads to consider the field

φc(x) =
∫

dDyJ (y)�(y − x) , (1.4)

rather than J and then defining T [φc] = W [J ].
As we will see, this leads to represent the path-integral operator as an operator acting by 

functional derivatives. Namely, for any functional F [φ], it holds

N0

∫
Dφ exp

(
− 1

2
φ�φ

)
F [φ] = exp

(1

2

δ

δχ
�

δ

δχ

)
F [χ]|χ=0 . (1.5)

This is a consequence of the general relation

〈0|T F [φ̂ + g]|0〉 = exp
(1

2

δ

δg
�

δ

δg

)
F [g] , (1.6)

derived in Sec. 2. We then will derive a new representation of the generating functional that sim-
plifies considerably the computations. Namely, in Sec. 6, we will see that T [φc] can be expressed 
in terms of covariant derivatives acting on 1, that is

T [φc] = N

N0
exp(−U0[φc]) exp

(
−

∫
V (D−

φc
)
)

· 1 , (1.7)

where

D±
φ (x) = ∓�

δ

δφ
(x) + φ(x) . (1.8)

We will derive the little-known representation (1.3), reported in Fried’s book [3], in two different 
ways. In Sec. 2 Eq. (1.3) is derived using the path-integral and the operator formalism. Then, in 
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Sec. 4, we will derive a more general operatorial relation, Eq. (4.3), that, in turn, is the functional 
analog of an operatorial relation satisfied by the Hermite polynomials. In particular, Eq. (4.3)
implies the operatorial identity

exp
(

−
∫

V (δJ )
)

exp
(1

2
J�J

)

= exp
(

− 1

2
φc�

−1φc

)[
exp

(1

2
δφc�δφc

)
exp

(
−

∫
V (φc)

)]
[�δφc ] exp

(
χ�−1φc

)
|χ=φc ,

(1.9)

that, applied to a constant, reproduces the relation implied by the identification of (1.2) with 
(1.3).

We note that the operator exp( 1
2δJ �−1δJ ) appears also in the context of renormalization, see 

e.g. [4,5] and references therein.
As we will be clear from the investigation, the dual representation is deeply related to the 

Hermite polynomials which appear in several contexts. For example, in Sec. 2, it is shown that 
the dual representation is the functional generalization of the Weierstrass representation of the 
Hermite polynomials. Furthermore, in subsec. 2.4, it is shown how the Hermite polynomials arise 
in the Schwinger–Dyson equation expressed in terms of the dual representation of the generating 
functional. Another result concerns the following expression of the Schwinger–Dyson equation 
for the normal ordered potential : V :

[ δ

δφc(x)
+ e2U0[φc]

∫
δV

δφ(x)

(
�

δ

δφc

)
eχ�−1φc |χ=φc

]
e

1
2

δ
δφc

� δ
δφc e− ∫ :V :(φc) = 0 . (1.10)

Even such an equation, anticipated in subsec. 2.4, follows by the operatorial relation (4.3). In 
Sec. 2 we will also show that the dual representation is naturally related to the S-operator. In 
particular, it turns out that such an operator is proportional to the normal ordered version of the 
dual generating functional with φc replaced by the operator φ̂, that is

S[φ̂] = N−1 : T [φ̂] : . (1.11)

The functional structure of T [φc] suggests considering the following problem investigated in 
Sec. 3. Given a potential corresponding to a summation of potentials,

V (φ) =
n∑

k=1

Vk(φ) , (1.12)

express the full generating functional T [φc] associated to V in terms of the generating functionals 
Tk[φc] associated to the potential Vk , k = 1, . . . , n. It turns out that, for n = 2,

T [φc] = exp(δφc1
�δφc2

) exp θ(1,2)T1[φc1 ]T2[φc2 ]|φc1 =φc2=φc , (1.13)

where

θ(1,2) = −U0[φc] + U0[φc1] + U0[φc2] , (1.14)

with U0[φc] = Z0[J ], and the normalization constants absorbed in T [φc] and Tk[φc]. Such an 
investigation, that can be extended to the case of fermions and gauge fields, has several applica-
tions. Here we consider the case in which the potential is given by the summation of the original 
one and the one coming from the counterterms. The outcome is the following relation (see Sec. 3
for the notation)
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Tren[φc] = exp(δφc1
�̂δφc2

) exp θ̂ (1,2)T̂ [φc1 ]T̂ct [φc2 ]|φc1 =φc2 =φc . (1.15)

We also show that imposing the associativity condition in the case n = 3 one gets the relation

exp(δφcA
�δφcB

) exp θ(A,B)
(
T12[φcA

]T3[φcB
] − T1[φcA

]T23[φcB
]
)
|φcA

=φcB
=φc = 0 ,

(1.16)

where Tjk denotes the generating functional associated to the potential Vj + Vk .
Sec. 4 is devoted to the derivation of the operatorial relation from which follows, as a particular 

case, Eq. (1.9), which, in turn, implies the identification of (1.2) with (1.3). We then derive, by a 
different method, the analogous relation in the case of the Hermite polynomials.

In Sec. 5 we consider the functional generator in the case of normal ordered potentials. There 
is a considerable simplification of the general expression since the normal ordering precisely 
cancels the action of the operator exp( 1

2δφc�δφc ) acting on each single potential coming from 
the expansion. In particular, the functional generator of the connected Green’s functions U [φc] =
− lnT [φc] turns out to be

U [φc] = ln
N0

N
+ U0[φc] +

∞∑
p=1

(−1)p+1

p!
p∏

j>k

eDjk

p∏
i=1

∫
V (φci

)|c,φc1 ,...,φcp =φc , (1.17)

where

Djk = δ

δφcj

�
δ

δφck

, (1.18)

j, k ∈ N+. Comparing the expression Eq. (1.17) with the explicit expression of the generating 
functional for the potentials λ

n! : φn : , obtained in [6], leads to an identity that implies an infinite 
set of relations. Such relations are explicitly derived by using the Faà di Bruno formula giving 
the chain rules for higher order derivatives. In particular, we will derive the following explicit 
expression for the action of the operators expDjk

p∏
j>k

eDjk

p∏
i=1

∫
dDzlφ

n
ci(zl)|c,φc1 ,...,φcp =φc = (n!)pp!

p∑
l=1

(−1)l+1
∑

j1+···+jl=p

hn,j1

j1! · · · hn,jl

jl ! ,

(1.19)

where the hn,k are multinomials of integrated powers of φc. By (1.17) this also yields the explicit 
expression of U [φc]. In subsec. 5.4 we show a duality between the field φ and the source φc. This 
suggests promoting φc to a dynamical field, leading to a potential V (φ + φc). It turns out that 
the model is equivalent to the one of a single field φc with U [φc] playing the role of potential. 
Iterating the construction leads to a rescaling of the kinetic term. This seems a possible alternative 
with respect to the renormalization procedure where the rescaling of the kinetic term is obtained 
by rescaling the field itself.

In Sec. 6 we derive the new representation (1.7) of the generating functional. We also show 
how such a representation simplifies the calculations. In particular, the action of the normal 
ordering operator on a product of functionals simplifies considerable, namely

exp
( − 1

2
δφ�δφ

)
F [φ]G[φ] = F [D+

φ ]G[D+
φ ] · 1 . (1.20)
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2. Dual representation of the generating functional

For any even function or distribution h, and any functions or operators f and g, set

f hg =
∫

dDx

∫
dDyf (x)h(x − y)g(y) , (2.1)

and

δ

δf
h

δ

δg
=

∫
dDx

∫
dDy

δ

δf (x)
h(x − y)

δ

δg(y)
. (2.2)

We will also use the notation

hg(x) =
∫

dDyh(x − y)g(y) , (2.3)

and

h
δ

δg
(x) =

∫
dDyh(x − y)

δ

δg(y)
. (2.4)

Consider the Feynman propagator

�(x − y) =
∫

dDp

(2π)D

eip(x−y)

p2 + m2
, (2.5)

and its inverse

�−1(y − x) = (−∂2 + m2)δ(y − x) =
∫

dDp

(2π)D
(p2 + m2)eip(y−x) . (2.6)

Denote by Z0[J ] the functional generator of the free connected Green’s function, that is

Z0[J ] = −1

2
J�J . (2.7)

We will focus our investigation on a scalar field in the D-dimensional Euclidean space. The 
corresponding generating functional is

W [J ] = N

∫
Dφ exp

(
− S[φ] +

∫
Jφ

)
, (2.8)

where J is the external source,

S[φ] =
∫

dDx
(1

2
∂μφ∂μφ + 1

2
m2φ2 + V (φ)

)
, (2.9)

is the scalar action with potential V (φ), and N = 1/ 
∫

Dφ exp(−S) the normalization constant. 
We denote by S0[φ] the free action.

To fix the normalization constant in (1.2), note that

exp
(

−
∫

V
( δ

δJ

))
exp(−Z0[J ]) =

∫
Dφ exp(−S[φ] + ∫

Jφ)∫
Dφ exp(−S0[φ]) , (2.10)

has the correct normalization. This follows by two checks. The first is to shift V by a L1(RD)

function. The other one is to set V = 0 and J = 0, giving 1 in both sides. It follows that the 
normalization of the Schwinger representation is the one in (1.2) with N0 = 1/ 

∫
Dφ exp(−S0). 
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Such a normalization is usually omitted in extracting the term exp(− 
∫

V (δJ )) from the path 
integral, identifying 

∫
Dφ exp(−S0[φ] + ∫

Jφ), rather than N0
∫

Dφ exp(−S0[φ] + ∫
Jφ), with 

exp(−Z0[J ]).
The correspondence between the Schwinger representation and the operator formalism fol-

lows by

W [J ] = 〈
|
〉J
〈
|
〉 , (2.11)

where |
〉 is the vacuum of the interacting theory and 〈
|
〉J denotes the vacuum–vacuum 
amplitude in the presence of the external source J . In particular, denoting by |0〉 the free vacuum, 
normalized by 〈0|0〉 = 1, we have 〈0|0〉J = 〈0|T exp(

∫
J φ̂)|0〉. Therefore,

W [J ] = exp(−Z[J ]) = N〈0|T exp
[∫

(−V (φ̂) + J φ̂)
]
|0〉 , (2.12)

Eq. (1.3) has been observed in the case of the exponential interaction, considered as master 
potential, in [6]. We will prove (1.3) using the Euclidean time-ordering, defined by the analytic 
continuation from the one in Minkowski space. Excellent references for the analytic continuation 
and related issues in the axiomatic approach include [7–10].

Consider the field

φc(x) =
∫

dDyJ (y)�(y − x) , (2.13)

satisfying the classical equation of motion with V = 0 and external source J

(−∂2 + m2)φc = J . (2.14)

To prove (1.3), we first consider the shift

φ = φ′ + φc , (2.15)

in the generating functional of the interacting theory (2.12), rather than, as usual, on the free one. 
Dropping the prime in φ′, yields

W [J ] = N exp(−Z0[J ])〈0|T exp
(

−
∫

V (φ̂ + φc)
)
|0〉 , (2.16)

which is equivalent to

W [J ] = N exp(−Z0[J ])
∫

Dφ exp
(

− 1

2
φ�−1φ −

∫
V (φ + φc)

)
. (2.17)

Let F [φ̂] be a functional of the field operator φ̂. According to Wick’s theorem

T F [φ̂] = exp
(1

2

δ

δφ̂
�

δ

δφ̂

)
: F [φ̂] : . (2.18)

Next, note that for any function g(x)

〈0|T F [φ̂ + g]|0〉 = 〈0| exp
(1

2

δ

δg
�

δ

δg

)
: F [φ̂ + g] : |0〉

= exp
(1

2

δ

δg
�

δ

δg

)
〈0|F [g]|0〉

= exp
(1

2

δ

δg
�

δ

δg

)
F [g] , (2.19)
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where we used 〈0| : G[φ̂] : |0〉 = G[0], holding for any functional G of φ̂. Eq. (1.3) then follows 
by applying (2.19) to the vev in (2.16).

The relation (2.19) is quite general and can be used to evaluate any correlator. In particular, 
note that

〈0|T F [φ̂]|0〉 = 〈0|T F [φ̂ + χ]|0〉χ=0 = exp
(1

2

δ

δχ
�

δ

δχ

)
F [χ]|χ=0 . (2.20)

This implies that the path-integral operator is equivalent to the action of a functional derivative. 
This is Eq. (1.5), namely∫

Dφ exp
( − 1

2φ�φ
)
F [φ]∫

Dφ exp
( − 1

2φ�φ
) = exp

(1

2

δ

δχ
�

δ

δχ

)
F [χ]|χ=0 . (2.21)

Applying (2.20) to (2.12), yields

W [J ] = N

N0
exp

(1

2

δ

δχ
�

δ

δχ

)
exp

[∫
(−V (χ) + Jχ)

]
|χ=0 . (2.22)

Taking the multiple derivative of W [J ] with respect to J or, equivalently, choosing

F [φ̂] = φ̂(x1) . . . φ̂(xN) exp
(

−
∫

V (φ̂)
)

, (2.23)

yields

〈
|T φ̂(x1) . . . φ̂(xN)|
〉
〈
|
〉 = N

N0
exp

(1

2

δ

δχ
�

δ

δχ

)
χ(x1) · · ·χ(xN) exp

(
−

∫
V (χ)

)
|χ=0 .

(2.24)

We note that if T F [φ̂] = F [φ̂], then exp(− 1
2δ

φ̂
�δ

φ̂
) is the normal ordering operator. When the 

argument of F is not an operator, then T F [φ] = F [φ], and the map

F [φ] −→ exp
(

− 1

2

δ

δφ
�

δ

δφ

)
F [φ] , (2.25)

is sometimes called Wick transform of F [φ]. Nevertheless, in the following we will call 
exp(− 1

2δφ�δφ) normal ordering operator even in this case, and will also interchange the no-
tation on the right hand side of (2.25) with : F [φ] : .

2.1. T [φc] = W [J ]

The structure of Eq. (1.3) suggests considering the generating functional

T [φc] = W [J ] , (2.26)

so that by (1.2)

T [φc] = N

N0
exp

(1

2
φc�

−1φc

)
exp

(1

2

δ

δφc

�
δ

δφc

)
exp

(
−

∫
V (φc)

)
. (2.27)

In the following we will set U0[φc] = Z0[J ], that is

U0[φc] = −1
φc�

−1φc . (2.28)

2
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Eq. (2.26) is just the dual relation

exp
(
− 1

2
J�J

)
exp

(
−

∫
V

( δ

δJ

))
exp

(1

2
J�J

)
= exp

(1

2

δ

δφc

�
δ

δφc

)
exp

(
−

∫
V (φc)

)
.

(2.29)

As shown in Sec. 4, such an identity also follows by an operatorial identity once it acts on a 
constant. Furthermore, by (2.17) and (2.27), we have

exp
(1

2
δφc�δφc

)
exp

(
−

∫
V (φc)

)
=

∫
Dφ exp

( − 1
2φ�−1φ − ∫

V (φ + φc)
)

∫
Dφ exp

( − 1
2φ�−1φ

) . (2.30)

We will see that this is the functional generalization of the Weierstrass transform.
Another property of T [φc] concerns its relation with the effective action

�[φcl] = Z[J ] −
∫

dDxJ (x)
δZ[J ]
δJ (x)

, (2.31)

where

φcl(x) = −δZ[J ]
δJ (x)

. (2.32)

Since the map J → φc is linear, it follows that the Legendre transform of Z[J ] is the same of the 
one of

U [φc] = Z[J ] , (2.33)

that is

�[φ̄] = U [φc] −
∫

dDxφc(x)
δU [φc]
δφc(x)

= �[φcl] , (2.34)

where

φ̄(x) = −δU [φc]
δφc(x)

= �−1φcl(x) . (2.35)

2.2. S[φ̂] = N−1 : T [φ̂] :

Let us start by showing that the S-operator has a simple expression in terms of T [φ̂]. To 
this end note that while the functional derivatives of T [φc] with respect to J yield the Green 
functions, deriving with respect to φc gives

F (k)(x1, . . . , xk) := δkT [φc]
δφc(x1) . . . δφc(xk)

∣∣
φc=0

=
∫

dDy1 . . .

∫
dDyk�

−1(x1 − y1) . . .�−1(xk − yk)
〈
|T φ(y1) . . . φ(yk)|
〉

〈
|
〉 . (2.36)

Comparing this with the expansion of the S[φ̂] operator

S[φ̂] = N−1
∞∑

k=0

1

k!
∫

dDx1 . . .

∫
dDxkF

(k)(x1, . . . , xk) : φ̂(y1) . . . φ̂(yk) : , (2.37)

yields
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S[φ̂] = N−1 : T [φ̂] : . (2.38)

On the other hand, using exp(φ̂δχ ) that acts by translating χ by φ̂, we have

: T [φ̂] :=: exp
(
φ̂

δ

δχ

)
: T [χ]|χ=0 . (2.39)

Replacing T [χ] by the right hand side of (2.27), we get

S[φ̂] = 1

N0
: exp

(
φ̂

δ

δχ

)
: exp

(1

2
χ�−1χ

)
exp

(1

2

δ

δχ
�

δ

δχ

)
exp

(
−

∫
V (χ)

)
|χ=0

= 1

N0
: exp

(1

2
φ̂�−1φ̂

)
exp

(1

2

δ

δχ
�

δ

δχ

)
exp

(
−

∫
V (φ̂ + χ)

)
: |χ=0 , (2.40)

that is

S[φ̂] = 1

N0
exp

(1

2

δ

δχ
�

δ

δχ

)
: exp

(1

2
φ̂�−1φ̂ −

∫
V (φ̂ + χ)

)
: |χ=0 . (2.41)

Using the path-integral representation of T [φ̂], it follows by (2.38) that such an expression is 
equivalent to

S[φ̂] =
∫

Dφ exp(−S[φ]) : exp(φ�−1φ̂) : . (2.42)

Then, the representation (2.21) of the path-integral yields

S[φ̂] = 1

N0
exp

(1

2

δ

δχ
�

δ

δχ

)
exp

(
−

∫
V (χ)

)
: exp(χ�−1φ̂) : |χ=0 . (2.43)

2.3. Relation with the Weierstrass transform and the Hermite polynomials

The Weierstrass transform can be seen as a particular case of (2.30). This arises by first con-
sidering the Laplace transform of the Gaussian

e
t2
2 = 1√

2π

∫
R

dye− y2

2 e−ty , (2.44)

and then using e−yDf (x) = f (x − y), where D = d/dx. This gives the Weierstrass transform 
of f

e
D2
2 f (x) = 1√

2π

∫
R

dye− y2

2 f (x − y) . (2.45)

Noticing that this expression is invariant if f (x − y) is replaced by f (x + y), one recognizes it 
as a particular case of (2.30).

The relation (2.29) can be seen as an extension of the relation between the Hermite polyno-
mials and their Weierstrass representation

(−1)nex2/2Dne−x2/2 = e−D2/2xn . (2.46)

The left hand side is the standard representation of the so-called probabilistic Hermite polyno-
mial Hen, related to the physicist Hermite polynomial by Hn(x) = 2

n
2 Hen(

√
2x). Eq. (2.46) is 

equivalent to
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e−x2/2Dnex2/2 = eD2/2xn , (2.47)

obtained by replacing x by ix in (2.46). Given the MacLaurin series

f (x) =
∞∑

n=0

cnx
n , (2.48)

one gets

e−x2/2f (D)ex2/2 = eD2/2f (x) . (2.49)

Note that this also provides the following suggestive “perturbative expansion”

e−x2/2f (D)ex2/2 = eD2/2f (x) =
∞∑

n=0

(−i)ncnHen(ix) . (2.50)

In this respect, we recall that the Hermite polynomials can be written explicitly

Hen(x) = n!
[n2 ]∑
k=0

(−1)k

k!(n − 2k)!
xn−2k

2k
. (2.51)

Eq. (2.50) can be in fact used in quantum field theory. An obvious reason is that the dual ex-
pression of the generating functional involves exp( 1

2δφc�δφc) acting on a functional of φc. This 
means that in a perturbative expansion there appear terms such as

exp
(1

2
δφc�δφc

)
φn

c . (2.52)

On the other hand,

δφc�δφcφ
n
c (x) = n(n − 1)�(0)φn−2

c (x) , (2.53)

is the functional version of

�(0)∂2
φc

φn
c = n(n − 1)�(0)φn−2

c , (2.54)

so that, by (2.50),

exp
(1

2
δφc�δφc

)
φn

c (x) = (−i)n�
n
2 (0)Hen

( iφc(x)

�
1
2 (0)

)
. (2.55)

2.4. Schwinger–Dyson equation in the dual representation

Here we consider the Schwinger–Dyson equation using the dual representation of the gener-
ating functional. In particular, here we consider the case of the potential λ

n

n! : φn : . This suggests 
an operatorial relation that will be derived in Sec. 4. As we will see, such a relation implies that 
for arbitrary normal ordered potentials, the Schwinger–Dyson equation reduces to

[ δ

δφc(x)
+ e2U0[φc]

∫
δV

δφ(x)

(
�

δ

δφc

)
eχ�−1φc |χ=φc

]
e

1
2

δ
δφc

� δ
δφc e− ∫ :V :(φc) = 0 . (2.56)

Note that here we used the symbol : V : to denote the normal ordered potential, to distin-
guish it from the non-normal ordered potential in the square bracket. The standard form of the 
Schwinger–Dyson equation
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[
�−1 δ

δJ
(x) +

∫
δV

δφ(x)

( δ

δJ

)
− J (x)

]
W [J ] = 0 , (2.57)

expressed in terms of the generating functional T [φc], corresponds to

[ δ

δφc(x)
+ eU0[φc]

∫
δV

δφ(x)

(
�

δ

δφc

)
e−U0[φc]

]
e

1
2

δ
δφc

� δ
δφc e− ∫

V (φc) = 0 . (2.58)

We now show the connection of the Schwinger–Dyson equation with Hermite polynomials. First 
note that Eq. (2.29) admits a generalization. Even if it has been derived by quantum field theoret-
ical methods, it actually depends on quantum objects only through �(x − y). This indicates that 
Eq. (2.29) is a particular case of a more general relation. Namely, given a function I , a functional 
F and an even function or distribution M , we have the functional generalization of (2.49)

exp
(

− 1

2
IMI

)
F [δI ] exp

(1

2
IMI

)
= exp

(1

2
δIM

−1δI

)
[FMI ] . (2.59)

As we said, later we will prove a more general formula, corresponding to the operatorial exten-
sion of (2.59).

The connection with the Hermite polynomials is a consequence of (2.55) and (2.59). To see 
this, note that Eq. (2.59) implies

eU0[φc] δn

δφn
c (x)

e−U0[φc] =
[
eU0[φc]

n∑
k=0

(
n

k

)
δn−k

δφn−k
c (x)

e−U0[φc]
] δk

δφk
c (x)

=
[

exp
(1

2
δφc�δφc

) n∑
k=0

(
n

k

)
(�−1φc)

n−k(x)
] δk

δφk
c (x)

, (2.60)

so that, by (2.55), the Schwinger–Dyson equation for V = λ
n!φ

n is

[ δ

δφc(x)
+

n−1∑
k=0

λ(−i)k�
k
2 (0)

(n − k − 1)!k!Hek

( iφc(x)

�
1
2 (0)

)(
�

δ

δφc

)n−k−1
(x)

]
e

1
2

δ
δφc

� δ
δφc e− ∫

V (φc) = 0 .

(2.61)

Let us now consider the potential

: V (φ) := λ

n! : φn := λ

n! exp
(

− 1

2

δ

δφ
�

δ

δφ

)
φn , (2.62)

where we used (2.18) and T V (φ) = V (φ). According to (2.56), we have

[ δ

δφc(x)
+ λ

(n − 1)!
n−1∑
k=0

(
n − 1

k

)
φk

c (x)
(
�

δ

δφc

)n−k−1
(x)

]
e

1
2

δ
δφc

� δ
δφc e− ∫ :V (φc): = 0 ,

(2.63)

that should be compared with (2.61). Therefore the terms eU0[φc] and e−U0[φc] in the dual repre-
sentation of the Schwinger–Dyson equation (2.58), compensate the contributions coming from 
the normal ordering regularization of the potential.
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3. Factorization problem

In this section we show that the dual representation is the natural one to investigate the fol-
lowing decomposition problem. Namely, given the summation of potentials

V (φ) =
n∑

k=1

Vk(φ) , (3.1)

find how the generating functional associated to V decomposes in terms of the generating func-
tionals associated to the potentials Vk’s. Such an investigation, that may be extended to the case 
of higher spin fields, may have several applications, for example in considering perturbations 
with respect to a given background. Other applications concern the analysis of possible symme-
tries related to a subset of the Vk’s. Here we introduce the method and consider the application to 
the case of renormalization of scalar theories. Other applications will be investigated in a future 
work.

Let us consider the simplest case

V (φ) = V1(φ) + V2(φ) . (3.2)

In the Schwinger representation we have

W [J ] = N

N0
exp

(
−

∫
V1

( δ

δJ

))
exp

(∫
V2

( δ

δJ

))
exp(−Z0[J ]) , (3.3)

and there is no an obvious way to understand the structure of the decomposition. In the dual 
representation of the generating functional, we have

T [φc] = N

N0
exp(−U0[φc]) exp

(1

2

δ

δφc

�
δ

δφc

)
exp

(
−

∫
V1(φc)

)
exp

(
−

∫
V2(φc)

)
,

(3.4)

so that, in this case, we can use a key relation satisfied by exp
( 1

2δφc�δφc

)
. Namely, given the 

functionals F and G we have [3]

exp
(1

2
δφc�δφc

)
F [φc]G[φc]

= exp
(
δφc1

�δφc2

)(
exp

(1

2
δφc1

�δφc1

)
F [φc1 ] exp

(1

2
δφc2

�δφc2

)
G[φc2 ]

)
|φc1 =φc2=φc .

(3.5)

To derive such a relation, first note the identity

exp
(1

2
δφc�δφc

)
F [φc]G[φc]

= F [δμ]G[δν] exp
(1

2
δφc�δφc

)
exp

[∫
(μ + ν)φc

]
|μ=ν=0

= F [δμ]G[δν] exp
[1

2
μ�μ + 1

2
ν�ν + μ�ν +

∫
(μ + ν)φc

]
|μ=ν=0 . (3.6)

On the other hand, (3.5) can be expressed in the form
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exp
(1

2
δφc�δφc

)
F [φc]G[φc]

= exp
(
δφc1

�δφc2

)

×
[
F [δμ]G[δν] exp

(1

2
μ�μ + 1

2
ν�ν +

∫
(μφc1 + νφc2)

)|μ=ν=0

]
|φc1 =φc2=φc . (3.7)

Next observe that, since exp
(
μ�δφc

)
translates a functional of φc by μ�, we have

exp
(
δφc1

�δφc2

)
exp

[∫
(μφc1 + νφc2)

]

= exp
(∫

μφc1

)
exp

(
μ�δφc2

)
exp

(∫
νφc2

)

= exp
[∫

(μφc1 + νφc2 + μ�ν)
]

, (3.8)

that applied to (3.7) reproduces (3.6). Observe that (3.5) implies the following recursive rule, 
useful in several computations, e.g. in evaluating the Green’s functions

exp
(1

2
δφc�δφc

)
φc(x1) · · ·φc(xk)|φc=0

=
k∑

j=2

�(x1 − xj ) exp
(1

2
δφc�δφc

)
φc(x2) · · · φ̌c(xj ) · · ·φc(xk)|φc=0 . (3.9)

Set

x
x F [MI ] x

x = exp
(1

2
δIM

−1δI

)
F [MI ] . (3.10)

In this notation, equation (3.5) reads

x
x F [φc]G[φc] x

x = exp(δφc1
�δφc22)

x
x F [φc1 ] x

x
x
x G[φc2 ] x

x |φc1 =φc2 =φc . (3.11)

Denote by Tk[φc] the generating functional associated to Vk(φ). For notational reasons we use 
the same symbol Tk[φc] to denote Tk[φc] divided by the normalization factor Nk/N0, Nk =
1/ 

∫
Dφ exp(−S0 − ∫

Vk(φ)), so that

Tk[φc] = exp(−U0[φc]) exp(δφc�δφc ) exp
(

−
∫

Vk(φc)
)

. (3.12)

Similarly, we absorb N/N0 in T [φc]. We then have that the factorization of the generating func-
tional (3.4) reads

T [φc] = exp(−U0[φc]) exp(δφc1
�δφc2

) x
x exp

(
−

∫
V1(φc1)

)
x
x

× x
x exp

(
−

∫
V2(φc2)

)
x
x |φc1 =φc2 =φc , (3.13)

that is

T [φc] = exp(δφc1
�δφc2

) exp θ(1,2)T1[φc1 ]T2[φc2 ]|φc1 =φc2=φc , (3.14)

where

θ(1,2) = −U0[φc] + U0[φc ] + U0[φc ] . (3.15)
1 2
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Let us apply Eq. (3.14) to renormalization. Consider the renormalized action

Sren =
∫ (1

2
φ�̂−1φ + V (φ) + Vct (φ)

)
, (3.16)

where Vct is the counterterm potential and �̂ is the Feynman propagator associated to the full 
kinetic part of the Lagrangian density

1

2
(1 + A)∂μφ∂μφ + 1

2
(1 + B)m2φ2 . (3.17)

It is understood that now the field φc satisfies the equation of motion

[−(1 + A)∂2 + (1 + B)m2]φc = J . (3.18)

We denote by Tren[φc] the generating functional associated to Sren, by T̂ [φc] the one associated 
to Sren − ∫

Vct and by T̂ct [φc] the one associated to Sren − ∫
V . By (3.14), the decomposition of 

the renormalized generating functional is

Tren[φc] = exp(δφc1
�̂δφc2

) exp θ̂ (1,2)T̂ [φc1 ]T̂ct [φc2 ]|φc1 =φc2 =φc , (3.19)

where θ̂ (1, 2) is given by (3.15) with � replaced by �̂. Note that Eq. (3.19) is non-perturbative, 
and can be iterated order by order in the loop expansion.

We now show that associativity applied to Eq. (3.14) leads to a relation reminiscent of a 
cocycle condition. Consider the case of the sum of three potentials

V (φ) = V1(φ) + V2(φ) + V3(φ) , (3.20)

and denote by Tjk[φc] the generating functional associated to the potential Vj(φ) +Vk(φ), j, k =
1, 2, 3. The full generating functional T [φc] can be derived in the same way of (3.14). One just 
imposes the associativity condition by identifying (3.14), where V1 is replaced by V1 + V2 and 
V2 by V3, with the expression obtained replacing V2 by V2 + V3. This gives

exp(δφc12
�δφc3

) exp θ(12,3)T12[φc12 ]T3[φc3 ]|φc12 =φc3 =φc

= exp(δφc1
�δφc23

) exp θ(1,23)T1[φc1]T23[φc23 ]|φc1 =φc23 =φc , (3.21)

that, after a change of notation, reads

exp(δφcA
�δφcB

) exp θ(A,B)
(
T12[φcA

]T3[φcB
] − T1[φcA

]T23[φcB
]
)
|φcA

=φcB
=φc = 0 .

(3.22)

4. Dual representation and normal ordering

A feature of the dual representation is that it provides the explicit factorization of the free part 
e−U0[φc]. The remanent part is the inverse of the normal ordering operator acting on e− ∫

V (φc). 
On the other hand, the Schwinger–Dyson equation in the dual representation led us to consider 
the relation (2.60), making clear how eU0[φc] and its inverse are related to normal ordering. In 
this respect, note that, how (2.60) shows, Eq. (2.59) does not hold as an operator relation. In the 
following, we will prove that the operatorial version of Eq. (2.59) is

exp
(

− 1
IMI

)
F [δI ] exp

(1
IMI

)
= exp

(
− IMI

)
x
x F [δI ] x

x exp
(
LMI

)
|L=I , (4.1)
2 2
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where x
x · x

x is defined in (3.10) and x
x F [δI ] xx denotes x

x F [MI ] xx with MI replaced by δI . This 
relation implies also (1.9). Eq. (2.59) is reproduced by acting with (4.1) on a constant and then 
noticing that in this case the role of the term exp

(
LMI

)|L=I is to replace xx F [δI ] xx by xx F [MI ] xx. 
Note that replacing F in (4.1) by its normal ordered version

: F [MI ] := exp
( − 1

2
δIM

−1δI

)
F [MI ] , (4.2)

yields

exp
(

− 1

2
IMI

)
: F [δI ] : exp

(1

2
IMI

)
= exp

( − IMI
)
F [δI ] exp

(
LMI

)
|L=I . (4.3)

It is immediate to check that (4.3) applied to (2.58), with V replaced by its normal ordered 
version, leads to (2.56).

In this section, we first prove (4.3), that implies also (4.1), then we show that this is the 
functional analog of a relation satisfied by the Hermite polynomials.

4.1. Proof of (4.3)

To prove (4.3) we first express : F [MI ] : in terms of e− 1
2 δI M−1δI acting on the Laplace trans-

form of F [MI ]

: F [MI ] := e− 1
2 δI M−1δI

∫
DJeIMJ F̂ [MJ ] =

∫
DJe− 1

2 JMJ+IMJ F̂ [MJ ] , (4.4)

so that

: F [δI ] :=
∫

DJe− 1
2 JMJ+JδI F̂ [MJ ] . (4.5)

Then, we act with (4.3) on a functional G[MI ]. Since

: F [δI ] : e 1
2 IMIG[MI ] =

∫
DJe− 1

2 JMJ+JδI F̂ [MJ ]e 1
2 IMIG[MI ]

=
∫

DJe− 1
2 JMJ F̂ [MJ ]e 1

2 (I+J )M(I+J )G[M(I + J )] , (4.6)

it follows that

e− 1
2 IMI : F [δI ] : e 1

2 IMIG[MI ] =
∫

DJeIMJ F̂ [MJ ]G[M(I + J )]

= e−IMI

∫
DJF̂ [MJ ]eLM(I+J )|L=IG[M(I + J )]

= e−IMI

∫
DJeJδI F̂ [MJ ]eLMI |L=IG[MI ]

= e−IMIF [δI ]eLMI |L=IG[MI ] , (4.7)

which is (4.3) acting on G[MI ].
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4.2. Operatorial extension of the Weierstrass representation of the Hermite polynomials

Eq. (4.3) is the functional generalization of the identity

e−x2/2
(
e−D2/2f (x)

)
(D)ex2/2 = e−x2

f (D)eyx |y=x , (4.8)

D = d/dx. Replacing f (x) by eD2/2f (x), Eq. (4.8) reads

e−x2/2f (D)ex2/2 = e−x2
(
eD2/2f (x)

)
(D)eyx |y=x . (4.9)

Acting with (4.9) on a constant yields

e−x2/2f (D)ex2/2 = eD2/2f (x) . (4.10)

In the case f (x) = xn, Eq. (4.9) provides the operatorial extension of the Weierstrass represen-
tation of the Hermite polynomials.

The proof of (4.8) can be done by expressing f in terms of its Laplace transform as done for 
(4.3). Nevertheless, it is of interest to stress its connection with the Hermite polynomials. We 
then consider the case f (x) = xn, with n a non-negative integer. We do this using the induction 
method. Since (4.8) holds for f (x) = x and

e−D2/2xk = Hk(x) , (4.11)

we should prove the operatorial relation

e−x2/2Hk(D)ex2/2 = e−x2
Dkeyx |y=x , (4.12)

for k = n + 1, assuming that it holds for k = n. On the other hand,

e−x2
Dn+1eyx |y=x = e−x2

yDneyx |y=x + e−x2
Dneyx |y=xD

= e−x2
xDneyx |y=x + e−x2

Dneyx |y=xD . (4.13)

Therefore, since

Hn+1(x) = xHn(x) − nHn−1(x) , (4.14)

it remains to prove that

e−x2/2(Hn(D)D − nHn−1(D))ex2/2 = e−x2
xDneyx |y=x + e−x2

Dneyx |y=xD . (4.15)

To this end, note that

e−x2/2Hn(D)Dex2/2 = e−x2/2Hn(D)xex2/2 + e−x2/2Hn(D)ex2/2D

= e−x2/2(xHn(D) + nHn−1(D))ex2/2 + e−x2/2Hn(D)ex2/2D ,

(4.16)

where in the last equality we used

[Hn(D), x] = nHn−1(D) . (4.17)

By (4.15) and (4.16) we get

e−x2/2xHn(D)ex2/2 + e−x2/2Hn(D)ex2/2D = e−x2
xDneyx |y=x + e−x2

Dneyx |y=xD ,

(4.18)

which is the assumption.
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5. T [φc] and normal ordered potentials

Here we first investigate the structure of the generating functional U [φc] = − lnT [φc] in the 
case of normal ordered potentials. This is done by specializing the construction in [3]. In particu-
lar, the action of the inverse of the Wick operator on each potential, contributing to the expansion, 
precisely cancels the normal ordering, so that leading to a considerable simplification of the full 
series of U [φc] = − lnT [φc]. Comparing the result with the explicit expression of W [J ] in the 
case of the potential λ

n! : φn : , recently derived in [6], yields an identity that implies an infinite 
set of relations. We then derive such relations using the Faà di Bruno formula, concerning the 
chain rules for higher order derivatives. This provides, for all n, the Feynman combinatorics and 
the explicit form of the full loop expansion of U [φc]. We conclude the section by showing a 
duality between the field φ and the external source φc. Promoting φc to a dynamical field leads 
to a scalar theory with potential V (φ + φc), which is described by the theory of a single field φc

with the generating functional U [φc] playing the role of potential.

5.1. The general case

In the following we consider normal ordered potentials that, for notational reasons, we denote 
by : V : . Let us set

D = 1

2

δ

δφc

�
δ

δφc

, (5.1)

so that

T [φc] = N

N0
exp(−U0[φc]) exp(D) exp

(
−

∫
: V (φc) :

)
. (5.2)

We also define

Dj = 1

2

δ

δφcj

�
δ

δφcj

, Djk = δ

δφcj

�
δ

δφck

, (5.3)

j, k ∈ N+. Let us rewrite (3.5) in this notation

eDF [φc]G[φc] = eD12
(
eD1F [φc1 ]eD2G[φc2]

)
|φc1 =φc2 =φc . (5.4)

We set U [φc] = Z[J ], and write

T [φc] = exp(−U [φc]) = N

N0
exp

(
− U0[φc] +

∞∑
k=1

Qk[φc]
k!

)
. (5.5)

Rescaling the potential by a constant μ, and then expanding exp(− ∫ : V :) in (5.2), gives by 
(5.5)

exp(D) exp
(

− μ

∫
: V (φc) :

)
= exp

( ∞∑
k=1

μk

k! Qk[φc]
)

, (5.6)

so that

Qk[φc] = ∂k
μ ln

[
exp(D) exp

(
− μ

∫
: V (φc) :

)]
|μ=0 . (5.7)
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There is a considerable simplification since the normal ordering cancels all the eDks. The first 
two cases are

Q1 = −eD
∫

: V := −
∫

V , (5.8)

and

Q2 =
[
eD12 − 1

][(
eD1

∫
: V (φc1) :

)(
eD2

∫
: V (φc2) :

)]
|φc1 =φc2 =φc

=
[
eD12 − 1

][∫
V (φc1)

∫
V (φc2)

]
|φc1 =φc2=φc . (5.9)

Note that, as seen by expanding eD12 , the effect of the −1 in eD12 − 1 is to eliminate Feynman 
diagrams which are not connected by at least one propagator.

As in the case of Q1 and Q2, all the operators eDk , k = 1, . . . , n, disappear from the expression 
of the Qns and their expression simplify to

Qn[φc] = (−1)n
n∏

j>k

eDjk

n∏
i=1

∫
V (φci)|c,φc1 ,...,φcn=φc , (5.10)

where the subscript c means that terms non-connected by at least one Feynman propagator should 
be discarded.

It then follows by (5.5) and (5.10) that the generating functionals of connected Green’s func-
tions associated to a normal ordered potential is

U [φc] = ln
N0

N
+ U0[φc] +

∞∑
p=1

(−1)p+1

p!
p∏

j>k

eDjk

p∏
i=1

∫
V (φci

)|c,φc1 ,...,φcp =φc . (5.11)

5.2. A combinatorial identity for λ
n! : φn :

In [6] it has been introduced a method to derive the generating functional of scalar potentials 
starting from the one associated to the exponential potential μD exp(αφ), seen as a master poten-
tial. In particular, it has been shown how this leads to derive the generating functional for normal 
ordered potentials, absorbing at once all the �(0) terms, by using

: exp(αφ) := exp
(

− α2

2
�(0)

)
exp(αφ) . (5.12)

It turns out that in the case of : V (φ) := λ
n! : φn : , the generating functional T (n)[φc], and there-

fore all the Green’s functions, can be easily expressed in the explicit form. Let us introduce the 
symbol

n,k∑
p,q

≡
[ kn

2 ]∑
p=0

∑
∑k

i=1 qi=kn−2p

∑
p1=...=pk=n

, (5.13)

where [a] denotes the integer part of a and 0 ≤ qi ≤ kn − 2p. We have [6]
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T (n)[φc] = N

N0
e−U0[φc]

∞∑
k=0

(−λ)k

k!
n,k∑
p,q

[k|m,q]
k∏

i=1

∫
dDziφ

qi
c (zi)

k∏
l>j

�(zj − zl)
mjl ,

(5.14)

where

[k|m,q] = 1∏k
i=1 qi !∏k

l>j mlj !
, (5.15)

with the mlj ’s taking all the values satisfying the conditions 0 ≤ mlj ≤ p and 
∑k

l>j=1 mlj = p. 
Furthermore,

pl =
l−1∑
i=1

mil +
k∑

j=l+1

mlj + ql , (5.16)

l = 1, . . . , n.
By (5.5), (5.11) and (5.14), we get the non-trivial identity

exp
[ ∞∑

p=1

(−λ)p

p!(n!)p
p∏

j>k

eDjk

p∏
i=1

∫
dDzlφ

n
ci(zl)|c,φc1 ,...,φcp =φc

]

=
∞∑

k=0

(−λ)k

k!
n,k∑
p,q

[k|m,q]
k∏

i=1

∫
dDziφ

qi
c (zi)

k∏
l>j

�(zj − zl)
mjl . (5.17)

Comparing the coefficients of all powers of λ we will derive the explicit expressions of the action 
of the product of the eDjk s operators.

U [φc] generates the connected N -point functions, without the free external legs, of φ. There-
fore,

− δNU [φc]
δφc(x1) . . . δφc(xN)

|φc=0 =
∫ ( N∏

k=1

dDyk�
−1(xk − yk)

)〈0|T φ(y1) . . . φ(yN)|0〉c .

(5.18)

In the case of n odd one has, perturbatively, 〈φ(x)〉 �= 0. We recall that for N ≥ 2 such correlators 
coincide with the ones of η(x) = φ(x) − 〈φ(x)〉 (see, for example, [6])

〈0|T φ(y1) . . . φ(yN)|0〉c = 〈0|T η(y1) . . . η(yN)|0〉c . (5.19)

5.3. Feynman combinatorics and Faà di Bruno formula

We now derive the infinitely many relations implied by (5.17), giving the explicit form of the 
action of the operators eDjk . As we will see, this also implies the following explicit expression 
for the generating functional U [φc], in the case of the potential V = λ

n! : φn : , for all n

U [φc] = ln
N0

N
+ U0[φc] +

∞∑
p=1

(−λ)p
p∑

l=1

(−1)l
∑

j1+···+jl=p

hn,j1

j1! · · · hn,jl

jl ! , (5.20)

where j1, . . . , jl ≥ 1, and
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hn,k =
n,k∑
p,q

[k|m,q]
k∏

i=1

∫
dDziφ

qi
c (zi)

k∏
l>j

�(zj − zl)
mjl . (5.21)

Note that in this notation

T (n)[φc] = N

N0
exp(−U0[φc])

(
1 +

∞∑
k=1

(−λ)k

k! hn,k

)
. (5.22)

The derivation follows by the Faà di Bruno formula for the chain rules in the case of higher 
derivatives. There are several versions of such a formula. The original one is

dm

dxm
f (g(x)) =

∑
k1,...,km

m!
k1! · · ·km!f

(k)(g(x))
(g(1)(x)

1!
)k1 · · ·

(g(m)(x)

m!
)km

, (5.23)

where the sum is over all the nonnegative integer solutions of the Diophantine equation

m∑
j=1

jkj = m , (5.24)

and k := ∑m
j=1 kj . Here we use the equivalent expression

dm

dxm
f (g(x)) = m!

m∑
l=1

f (l)(g(x))

l!
∑

j1+···+jl=m

g(j1)(x)

j1! · · · g(jl)(x)

jl ! , (5.25)

with j1, . . . , jk ≥ 1. Eq. (5.17) implies that for all positive integers p

1

(−n!)p
p∏

j>k

eDjk

p∏
i=1

∫
dDzlφ

n
ci(zl)|c,φc1 ,...,φcp =φc = dp

dλp
ln

(
1 +

∞∑
k=1

(−λ)k

k! hn,k

)
|λ=0 .

(5.26)

Applying the Faà di Bruno formula (5.25), yields

p∏
j>k

eDjk

p∏
i=1

∫
dDzlφ

n
ci(zl)|c,φc1 ,...,φcp =φc = (n!)pp!

p∑
l=1

(−1)l+1
∑

j1+···+jl=p

hn,j1

j1! · · · hn,jl

jl ! ,

(5.27)

and Eq. (5.20) immediately follows by (5.11).
Let us compute, for each l, the total exponent El of φc in the term

∑
j1+···+jl=p

hn,j1

j1! · · · hn,jl

jl ! , (5.28)

of Eq. (5.20). By (5.13) and (5.21) it follows that the total exponent of φc in hn,k is

k∑
i=1

qi = kn − 2s , (5.29)

with s ranging between 0 and [kn/2]. It follows that
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El =
l∑

i=1

(jin − 2si) , (5.30)

with si ranging between 0 and [ji/2]. On the other hand, since 
∑l

i=1 ji = p, we get

El = np − 2
l∑

i=1

si . (5.31)

It follows that the only terms in (5.28) contributing to the connected N -point function at p-loops, 
p ≥ 1, are the ones satisfying

l∑
i=1

si = 1

2
(np − N) , (5.32)

which implies

p ≥ N

n
. (5.33)

Note that Eq. (5.32) also reproduces the well known fact that, in the case of n even, there are 
contributions at any loop to the N -point function with N even. Furthermore, for n odd, non-
vanishing contributions may arise only if N and p have the same parity. Further constraints may 
be derived by considering the structure of (5.20). For example, one may check that there are no 
contributions of order p = 1 to the 2-point function, unless in the trivial case n = 2. This is just 
a property of the normal ordered potential λ

n! : φn : .

5.4. φ–φc duality and U [φc] as an effective potential

We now show a duality between the field φ and the source φc. This naturally leads to promote 
φc to a dynamical field, with potential U [φc], that is with the action

SD[φc] = 1

2
φc�

−1φc + U [φc] . (5.34)

Consider the functional

H [φ,φc] = exp
(

− 1

2
φ�−1φ + 1

2
φc�

−1φc −
∫

V (φ + φc)
)

. (5.35)

According to (2.17) we have

T [φc] = N

∫
DφH [φ,φc] . (5.36)

Define

O[φ] = Nc

∫
DφcH [φ,φc] , (5.37)

with

N−1
c =

∫
Dφc exp

(1

2
φc�

−1φc −
∫

V (φc)
)

. (5.38)

In spite of the opposite sign of the kinetic term for φc, it is worth noticing the exchange of roles 
between the external source φc and the scalar field φ in (5.36) and (5.37).
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Let us consider a slightly modified version of (5.35). Namely, define

K[φ,φc] = exp
(−φc�

−1φc

)
H [φ,φc] = exp

(
− 1

2
φ�−1φ− 1

2
φc�

−1φc −
∫

V (φ+φc)
)
.

(5.39)

Note that by (5.5), (5.34) and (5.39), we have

exp(−SD[φc]) = N

∫
DφK[φ,φc] = exp

( − φc�
−1φc

)
T [φc] , (5.40)

and

SD[φc] = ln
N0

N
+ 1

2
φc�

−1φc −
∞∑

k=1

Qk[φc]
k! . (5.41)

Consider the dual generating functional

TD[ϕc] = NDN

∫
Dφc

∫
DφK[φ,φc] exp(ϕc�

−1φc)

= ND

∫
Dφc exp(−SD[φc] + ϕc�

−1φc) , (5.42)

where ND = 1/ 
∫

Dφc exp(−SD[φc]). TD[ϕc] is the generating functional for two scalar fields, 
φ and φc, symmetrically coupled by the potential V (φ+φc), with one of the two external currents 
set to zero. That is

TD[ϕc] = W [0, ϕc�
−1] , (5.43)

where

W [I,K] = NDN

∫
DφcDφ exp

[
− 1

2
φ�−1φ− 1

2
φc�

−1φc −
∫

(V (φ+φc)−Iφ−Kφc)
]
,

(5.44)

which is symmetric, that is W [I, K] = W [K, I ].
Let us consider, for arbitrary I and K = ϕc�

−1, the path integral over φ and φc in (5.44). 
This also gives the expression of the path integration over φc in (5.42). To this end, we set

φ = φ′ + �I , φc = φ′
c + �K , (5.45)

in (5.44), and then drop the prime from φ′ and φ′
c, to get

W [I,K] = NDN exp(
1

2
I�I + 1

2
K�K)∫

DφcDφ exp
[
− 1

2
φ�−1φ − 1

2
φc�

−1φc −
∫

V (φ + φc + �(I + K))
]

.

(5.46)

Next, defining

ρ = φ + φc√
2

, σ = φ − φc√
2

, (5.47)

we get
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W [I,K] = NDN

N0
exp(

1

2
I�I + 1

2
K�K)

∫
Dρ exp

[
− 1

2
ρ�−1ρ −

∫
V (

√
2ρ + �(I + K))

]
. (5.48)

We then set

ρc = �(I + K)√
2

, σc = �(I − K)√
2

, (5.49)

to get TD[ρc, σc] = W [I, K], with

TD[ρc, σc] = NDN

N2
0

exp(
1

2
σc�

−1σc + 1

2
ρc�

−1ρc) exp
(1

2
δρc�δρc

)
exp

(
−

∫
V (

√
2ρc)

)
.

(5.50)

According to (5.5) we have

TD[ρc, σc] = NDN

N2
0

exp(
1

2
σc�

−1σc + 1

2
ρc�

−1ρc) exp
( ∞∑

k=1

Pk[ρc]
k!

)
, (5.51)

where

Pk[ρc] = ∂k
μ ln

[
exp

(1

2
δρc�δρc

)(
− μ

∫
V (

√
2ρc)

)]
|μ=0 . (5.52)

By construction TD[ϕc] corresponds to TD[ρc, σc] evaluated at I = 0

TD[ϕc] = TD[ ϕc√
2
,− ϕc√

2
] , (5.53)

that, by (5.42) and (5.50), corresponds to the identity∫
Dφc exp

(
− 1

2
φc�

−1φc +
∞∑

k=1

Qk[φc]
k! + ϕc�

−1φc

)

= 1

N0
exp(

1

2
ϕc�

−1ϕc) exp(δϕc�δϕc ) exp
(

−
∫

V (ϕc)
)

, (5.54)

which has the same form of the dual generating functional associated to the potential V (φc)

except for the rescaling by a factor 2, of δϕc�δϕc . This is equivalent to rescale the kinetic term by 
a factor 1/2. To see this, note that (5.54) can be directly obtained by replacing ρ and σ in (5.47), 
by their rescaled version

ρ̃ = φ + φc , σ̃ = φ − φc . (5.55)

This leads to

TD[ϕc] = NDN

N0N
′
0

exp(
1

2
ϕc�

−1ϕc)

∫
Dρ̃ exp

(
− 1

4
ρ̃�−1ρ̃ −

∫
V (ρ̃ + ϕc)

)
, (5.56)

with N ′
0 = 1/ 

∫
Dσ̃ exp(− 1

4 σ̃�−1σ̃ ).
Instead of varying the coefficient of the kinetic term, one may rescale ρ̃ and ϕc to get the 

standard normalization of the kinetic term, so that replacing V (ρ̃ + ϕc) by V (
√

2(ρ̃ + ϕc)). 
Iterating n-times the procedure mapping T [φ] to TD[ϕc], leads to a rescaling of a factor 2n/2 of 
the scalar field. Such an iteration may lead to an interpretation of the rescaling of the scalar field 
in the renormalization procedure.
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6. Generating functional and covariant derivatives

In this section we derive a new representation of the generating functional, expressed in terms 
of covariant derivatives acting on 1. The key observation is that some of the relations we derived 
in the previous sections, can be expressed in terms of covariant derivatives. This leads to some 
new results in the path-integral approach to quantum field theory.

The starting point is to note that, given a functional F , one has the operator identity

exp
(

− 1

2
IMI

)
F [δI ] exp

(1

2
IMI

)
= F [DMI ] , (6.1)

where DMI (x) denotes the “covariant derivative”

DMI (x) = δ

δI (x)
+ MI(x) . (6.2)

Eq. (6.1) is the functional generalization of the operator relation

e−x2/2f (D)ex2/2 = f (D + x) . (6.3)

By (2.59), which is not an operator identity, and (6.1), it follows that

exp
(1

2
δIM

−1δI

)
F [MI ] = F [DMI ] · 1 , (6.4)

which is the functional extension of

eD2/2f (x) = f (D + x) · 1 . (6.5)

Furthermore, by (4.1) and (6.1) we get the operator relation

exp
(

− IMI
)

x
x F [δI ] x

x exp
(
LMI

)
|L=I = F [DMI ] . (6.6)

By (6.1) we have

exp(Z0[J ]) exp
(

−
∫

V
( δ

δJ

))
exp(−Z0[J ]) = exp

(
−

∫
V (D−

φc
)
)

, (6.7)

where

D±
φ (x) = ∓�

δ

δφ
(x) + φ(x) . (6.8)

Such operators satisfy the commutation relations

[D−
φ (x),D+

φ (y)] = 2�(x − y) , (6.9)

and

[D−
φ (x),D−

φ (y)] = [D+
φ (x),D+

φ (y)] = 0 . (6.10)

It follows that T [φc] can be expressed in terms of covariant derivatives acting on 1

T [φc] = N

N0
exp(−U0[φc]) exp

(
−

∫
V (D−

φc
)
)

· 1 . (6.11)

By (6.4) or, equivalently, by (2.27) and (6.11), we have

exp
(

± 1 δ
�

δ )
exp

(
−

∫
V (φc)

)
= exp

(
−

∫
V (D∓

φc
)
)

· 1 , (6.12)

2 δφc δφc
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where the action of the Wick operator exp(− 1
2δφc�δφc ) has been obtained by changing sign to �. 

Since

δ

δJ (x)
exp(−U0[φc]) = exp(−U0[φc])D−

φc
(x) , (6.13)

it follows that even the Green’s functions can be expressed in terms of the covariant derivatives

δNW [J ]
δJ (x1) . . . δJ (xN)

= exp(−U0[φc])D−
φc

(x1) . . .D−
φc

(xN) exp
(

−
∫

V (D−
φc

)
)

· 1

= exp(−U0[φc]) exp
(

−
∫

V (D−
φc

)
)
D−

φc
(x1) . . .D−

φc
(xN) · 1 . (6.14)

By (2.58) and (6.12) it follows that the Schwinger–Dyson equation reduces to the identity

( δ

δφc(x)
+

∫
δV (D−

φc
)

δφ(x)

)
exp

(
−

∫
V (D−

φc
)
)

· 1 = 0 . (6.15)

The above representation of the generating functional simplifies the explicit calculations. For 
example, in the case of V = λ

4!φ
4, one immediately gets

T [φc] = N

N0
exp(−U0[φc])

(
1 − λ

4!
∫

dDxD−
φc

4
(x) + . . .

)
· 1

= N

N0
exp(−U0[φc])

[
1 − λ

4!
∫

dDx(φ4
c (x) + 6φ2

c (x)�(0) + 3�2(0)) + . . .
]

.

(6.16)

Using D−
φ (x) · 1 = φ(x) and

[D−
φ (x),φ(y)] = �(x − y) , (6.17)

one gets

2∏
k=1

D−
φ (xk) · 1 =

2∏
k=1

φ(xk) + �(x1 − x2) ,

3∏
k=1

D−
φ (xk) · 1 =

3∏
k=1

φ(x1) + �(x1 − x2)φ(x3) + �(x1 − x3)φ(x2) + �(x2 − x3)φ(x1) ,

4∏
k=1

D−
φ (xk) · 1 =

4∏
k=1

φ(xk) + �(x1 − x2)φ(x3)φ(x4) + �(x1 − x3)φ(x2)φ(x4)

+ �(x1 − x4)φ(x2)φ(x3) + �(x2 − x3)φ(x1)φ(x4) + �(x2 − x4)φ(x1)φ(x3)

+ �(x3 − x4)φ(x1)φ(x2) + �(x1 − x2)�(x3 − x4) + �(x1 − x3)�(x2 − x4)

+ �(x2 − x3)�(x1 − x4) . (6.18)

It is interesting to consider the case of normal ordered potentials. This is the way D+
φ enters in 

the formulation. Namely, according to (6.4) we have

: F [φ] := F [D+
φ ] · 1 . (6.19)

Note that D± acts as the inverse of D∓

φ φ
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F(φ) = (F (D+
φ ) · 1|φ=D−

φ
) · 1 = (F (D−

φ ) · 1|φ=D+
φ
) · 1 . (6.20)

Since D+
φ and D−

φ differ only by the sign of �(x − y), we can easily get the expression of ∏n
k D+

φ (xk) from the one of 
∏n

k D−
φ (xk). For example, by (6.18),

: φ2(x) : = φ2(x) − �(0) ,

: φ3(x) : = φ3(x) − 3�(0)φ(x) ,

: φ4(x) : = φ4(x) − 6�(0)φ2(x) + 3�2(0) . (6.21)

Another feature of D±
φ concerns the case of a product of functionals of φ. As shown in (3.5), 

the action of exp
( ± 1

2δφ�δφ

)
on F [φ]G[φ] is rather involved. On the other hand, using D±

φ we 
have

exp
(1

2
δφ�δφ

)
F [φ]G[φ] = F [D−

φ ]G[D−
φ ] · 1 , (6.22)

and

exp
( − 1

2
δφ�δφ

)
F [φ]G[φ] = F [D+

φ ]G[D+
φ ] · 1 . (6.23)

A feature of the dual representation of the generating functional is that it can be expressed in 
terms of the vev, with respect to the free vacuum, of : exp

( − ∫
V (φ̂)

) : . More precisely, we 
have

T [φc] = N exp(Hφc )〈0|T : exp
(

−
∫

V (φ̂)
)

: exp
(∫

φ̂�−1φc

)
|0〉 , (6.24)

where

Hφc = 1

2
D−

φc
�−1D−

φc
, (6.25)

is the “conjugated free Hamiltonian operator”. To prove Eq. (6.24) we first note that the identifi-
cation of the two representations of the generating functional Eq. (2.29) can be also expressed in 
the form

exp
(

−
∫

V (φc)
)

= exp
(

− 1

2
J�J

)
: exp

(
−

∫
V (δJ )

)
: exp

(1

2
J�J

)
, (6.26)

obtained by replacing e− ∫
V in Eq. (2.29) by : e− ∫

V : . On the other hand, using the vev repre-
sentation of the right hand side of (6.26), we get

exp
(
−

∫
V (φc)

)
= N exp

(
− 1

2
φc�

−1φc

)
〈0|T : exp

(
−

∫
V (φ̂)

)
: exp

(∫
φ̂�−1φc

)
|0〉.

(6.27)

Eq. (6.24) then follows by the identity

exp(−U0[φc]) exp
(1

2

δ

δφc

�
δ

δφc

)
exp(U0[φc]) = exp(

1

2
D−

φc
�−1D−

φc
) (6.28)

and then using the definition of T [φc].
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