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Abstract 

This paper considers the maritime container assignment problem in a market setting with two competing firms. 
Given a series of known, exogenous demands for service between pairs of ports, each company is free to design a 
liner service network serving a subset of the ports and demand, subject to the size of their fleets and the potential for 
profit. The model is designed as a three-stage complete information game: in the first stage, the firms 
simultaneously invest in their fleet; in the second stage, they individually design their networks and solve the route 
assignment problem with respect to the transport demand they expect to serve, given the fleet determined in the first 
stage; in the final stage, the firms compete in terms of freight rates on each origin-destination movement. The game 
is solved by backward induction. Numerical solutions are provided to characterize the equilibria of the game. 
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1. Introduction 
 
       Over the last 50 years, containerization has grown to account nowadays for roughly 70% of total deep sea trade 
(by value) and it is now a key component of the global economy (UNCTAD, 2014). The maritime industry has long 
sought the development of a model that can represent the flow of containers through the global liner shipping 
network. Such a model would not only assist shipping lines in the design of their services, but would also be useful 
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for port operations, governments and international organizations as it could inform investments, strategic and 
operational planning, and policy design. One of the earliest works to model maritime container flows is the 
Container World project (reviewed in Newton, 2008), while Perrin et al. (2008) developed one of the earlier 
macroscopic container assignment models. At the same time, much research has focused on the empty container 
management problem, which occurs due to the effects of trade imbalances, predominately (e.g., between Western 
and Asian markets).  
       Previous work by Bell et al. (2011 and 2013) focused on the development of a container flow assignment 
framework that acknowledges transshipment operations and capacity constraints in the ports and vessels involved. 
The resulting optimization algorithms remain linear in nature, are built around the frequency-based structure of liner 
shipping services and seek to minimize aggregate container travel durations or costs, respectively. Both techniques 
are capable of simultaneously addressing full and empty container flows – in the past the latter have mostly been 
examined in isolation and as part of the empty container repositioning problem. Given their linear nature they have 
modest computational requirements, therefore making them particularly attractive for application in large problem 
settings that involve hundreds of ports and services.   
       With a few exceptions, most studies on container flow assignment have relied on predetermined liner service 
structures, used as inputs to the container assignment problem. Agarwal and Ergun (2008) notably added a network 
design stage to the container assignment model. In their paper this is referred to as a cargo routing model, therefore 
reflecting the absence of empty container repositioning from their assignment model. More recently, Mulder and 
Decker (2014) have enhanced the methodology developed by Agarwal and Ergun. Both studies however take the 
perspective of a single shipping line or alliance. 
       The considered academic efforts have provided important results towards the representation of the forces that 
drive the global flows of containers. However, the existing models still fail to take into account some crucial 
features of the global shipping market such as: the elasticity of the transport demand to the economic conditions 
(e.g., travel time and fees) that prevail in the shipping industry at any given moment; and, on the supply side, the 
effects of competitive actions that are taken by groups of players (e.g., shipping liners or alliances) in the same 
shipping market. 
       As regards the effects of competition on network design and service provision, the economic theory of industrial 
organization highlights two possible outcomes (Tirole, 1988). If competing shipping firms (i.e., liners or alliances) 
provide services of similar quality (e.g., service reliability) and features (e.g., planned delivery time), competition 
would take the form of strong price war, reducing profits and, in some cases, preventing the market to find a stable 
configuration (or medium-term equilibrium). On the other hand, if competing shipping firms are able to determine 
some form of service differentiation they may reduce the strength of competition and, in this way, increase profits 
(which nevertheless will remain lower than in the monopolistic case). This case is potentially relevant for the 
shipping industry, given that firms are able to design different service networks that, in turn, imply diverse delivery 
times and service features1. The policy implications of the two scenarios are quite different: if competition is strong, 
no regulation of the shipping sector is desirable, given that the market tends to determine the lowest possible prices 
for shippers; conversely, if competition is weak, prices and profits would tend to increase, and a regulatory remedy 
could be desirable. 
       The model introduced in this paper seeks to address this gap in academic literature, by developing an algorithm 
that could be used to determine an optimal set of liner services, given the presence of a competing shipping firm. 
The resulting model has game-theoretic elements, whereby the network design strategy of each shipping liner or 
alliance reacts to the actions of its competitors. Container flow assignment is integral part of this process, as it is 
used to establish how the market would respond to the simultaneous provision of routes by competing parties.  
       The types of services considered in the model follow established liner shipping trends, where vessel services are 
composed by a looped sequence of port visits (commonly referred to as service strings or loops). The resulting 
model takes into account revenues deriving from a demand for transport services that is distributed between firms in 
accordance to service costs. The latter include fees charged by the firm operating the chosen service as well as the 
opportunity cost of travel times. Empty container repositioning is retained in the container assignment model.  
       The key actors of the model are two firms (i.e., shipping liners or alliances) that seek to maximize their profit by 
operating in a given region with known transport demands for full containers among a set of ports. To meet this 

                                                           
1 We can read the considered scenarios in terms of a monopolistic competition model where the degree of substitutability of services provided by 
different firms is infinite (first scenaro) or finite (second scenario). 
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objective, they both seek to establish sets of liner services, each being a circular tour of ports with given frequency 
and capacity. Respective fleet sizes constrain the services that each firm is capable of offering.  

                  
 

Fig. 1 – Left: A single service loop that consists of three port visits. Trip links are illustrated using red arrows while journey 
legs are illustrated using green arrows. Right: A multi-service constrainer trip that utilizes two intersecting service loops. 

 
The model acknowledges the practice of transshipment in the maritime industry, as the possibility exists for a firm 
to satisfy demand between two ports that are not served by the same tour. This is achieved by identifying two 
services that include the origin and destination port, respectively, that also intersect at some intermediate location. In 
modelling terms, this is achieved by simultaneously representing each service in three forms: 
 

 as a sequence of port visits (in a closed loop form); 
 as a sequence of trip links (journeys between two adjacent ports in the service); 
 as a sequence of journey legs (a pair of any two ports in a service, among which travel is possible). 

 
       In our analysis, container routes will consist of leg chains, belonging to potentially intersecting tours offered by 
a single or two competing firms. The relationships among ports, trip links and journey legs are illustrated in Figure 1.  
       While practical when no other options exist, container flows that include transshipment include additional 
handling operations, and are therefore likely to have longer journey times and total service costs when compared to 
a direct route between the same two ports (some exceptions may exist). Furthermore, storage limitations in 
transshipment ports may impose constraints to the amount of containers that may be temporarily stored between 
journey legs.  
The model is designed as a complete-information sequential game, taking place over the following stages: 
 

Stage 1: The firms simultaneously invest in their fleet; 
Stage 2: The firms design their networks and solve the flow assignment problem with respect to the transport 

demand that they expect to serve, given the fleet sizes determined in the first stage; 
Stage 3: The firms compete in terms of freight rates on each origin-destination movement, acknowledging the 

share of overall transport demand to be served by the competing party. 
 

       The game is solved using backward induction (i.e., incorporating the solution of later stages in previous ones), 
relying on the concept of Subgame Perfect Equilibrium (Gibbons, 1992)2. The model is solved for two cases: 
monopoly and duopoly. The main difference between these cases is the expression for revenues that captures the 
monopolistic or competitive behavior of each firm, respectively, and is worked out as solution of the third stage of 
the game. Given the complexity of the problem, we rely on numerical examples to characterize the equilibria of the 
sequential game.  
       The main contribution of the paper to the literature is both theoretical and methodological. At first, we address 
the issue of the effect of competition on network design and service provision in the shipping industry. From a 
methodological point of view, the main innovations are the use of advanced game-theoretic concept to address the 
issue of competition, while keeping the model tractable as well as the introduction of innovation in the manipulation 

                                                           
2 Backward induction can be considered a generalization of Bellman’s optimization principle (Fudenberg and Tirole, 1991). The latter is applied 
in dynamic optimization problems (hence, also in dynamic games where multiple agents choose their intertemporal strategies), while the first is 
applied also in static optimization problems. 



272   Panagiotis Angeloudis et al.  /  Transportation Research Procedia   9  ( 2015 )  269 – 282 

of variables to address the resulting mixed linear-integer program.  
       Our theoretical and methodological setting considers a shipping industry where only one or two firms (i.e., 
liners or shipping alliances) operate. However, the framework can be straightforwardly extended to analyze 
oligopolistic shipping industries where more than two liners (or alliances) operate. Furthermore, the monopolistic 
and duopolistic cases provide appropriate frameworks to analyze competition in real-world regional shipping 
markets where we observe only one or two alliances. 
       The remainder of the paper is organized as follows. Section 2 describes the basic structure of the model; Section 
3 and 4 analyze the monopolistic and duopolistic cases, respectively; Section 5 draws conclusions. 
 
2. The Model 
        
       We consider a model of strategic network design with two competing firms (i.e., shipping liners or alliances); 
the list of all variables and parameters is in the Appendix. The map of ports – specifically, the distances between 
each pair of ports – and the specific features of each port  (where I is the set of existing ports or nodes) are 
exogenous, in particular the maximum throughput capacity ( ). To keep the analysis as simple as possible, we 
consider a standard transport technology, thus the distance of the link  between two ports (where  is the set of 
all possible links between pair of ports) implies exogenous sailing time ( ). 
       The demand for maritime transport services between any pair of ports is assumed to be exogenous; but, quite 
naturally we assume that transport demand is decreasing (or non-increasing) in the total cost of transport borne by 
shippers. In particular, the total transport cost from the port of origin r to the port of destination s is the sum of the 
travel fees for full containers chosen by the shipping firm providing the transport service, , and the opportunity 
cost of travel (e.g., commodity depreciation) involved by the service, , where  is the average 
opportunity cost per travel day for the shipper and  is the travel time in days involved by the provided service.3 
       Continuously decreasing functions, commonly used in transport economics to represent market demand, would 
introduce non-linearities requiring a Mixed Integer Quadratically Constrained Quadratic Program (MIQCQP) 
formulation that is difficult to solve for larger problem instances. Thus, for the sake of tractability, we represent the 
container transport demand from r to s using a simple step-function: 
 

 , for all  and  (where  are the set of origin and destination ports, respectively), if 
the total transport cost borne by shippers is lower or equal than a given threshold ;4 

 . 
 

Each firm would then seek to maximize its total profit , using the following objective function: 
 

 (1) 

 
The aggregate profit function  is defined a composite of the various components of operational costs and revenues: 

 
 (1.1)

 (1.2)

 (1.3)

 (1.4)

(1.5)

                                                           
3 In case a firm provides the service through different paths, we consider the average travel time, weighted by the container flows. This amounts 
to assume that shippers bear the risk of different actual delivery times. 
4 In economic terms, this threshold represents the “reserve price” above which the average shipper becomes uninterested in transport services. Of 
course,  for all . 
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       In equation 1.1,  is the total revenue earned across all container transport demands, with  being the 
specific revenue obtained by the firm for the transport of full containers between r and s. The remaining terms in eq. 
1 relate to various operational cost aspects, incurred by each potential route .  
       Service costs for each route  (where N is the set of all possible routes) are provided by equation 1.2. Only 
services that are actually offered are considered (therefore ). These can be decomposed into two components: 
 

 A travel cost  for each sailing link l that belongs to the route (therefore ), that would 
include bunker fuel, vessel maintenance, crew salaries and other costs that would be a function of link 
sailing time. 

 Port visit costs  for the destination port of each link  in the route. 
 
       A container handling cost  would be incurred by containers travelling through each journey legs , and 
would include the cost of loading and unloading operations on leg endpoints (ports). The presence of such costs 
would deter unnecessary transshipment whenever a feasible and direct service exists between two ports  and is 
captured by eq. 1.3. This cost would apply to both full and empty container flows (  and  respectively), and is 
assumed to be the same for either class for the purposes of this study.  
       Container rental and cargo depreciation is captured by equation. 1.4, that are incurred by the periods  that a 
container would spent aboard vessels over a journey leg , as well as while waiting in a port before loading and in 
case of transshipment. (   and  for full and empty containers, respectively). The parameter  is used to 
identify links in set  that belong to a leg  in subset . 
       A simplified form of set summations for decisions variables , ,  and  is used in eqs. 1.3 and 1.5. 
These conventions apply to similar expressions encountered later in this paper: 
 

   

      
  Fixed vessel operation costs (such as loan repayments, vessel insurance and administrative costs) are captured by 
eq.1.6, where  is the size of the firm’s fleet, and CRC is the average vessel operation cost. As such, the 
following remarks are in order:  
 
i. when a given route n is not operated (i.e., ), only fixed costs associated to capacity deployed on that route 

are borne by the firm; 
ii. assuming a standardized vessel size, used across all routes: 

a.  is the maximum capacity (measured in terms of number of containers per week) that the 
firm deployed on route n, with the number of containers that can be transported on each ship; 

b.  is the frequency of sailing at route n; 
 

following sequential 
game: 

1) each firm deploys its maximum transport capacity for each route n, that in turn determines firm’s fixed 
costs in the following stages of the game; 

2) given firms’ capacity constraints and expectations about the other firm’s service offer, and the outcome of 
downstream (i.e., third stage) competition, each firm decides its network design (i.e., which routes are 
operated) and solves its container-flows assignment problem; 

3) as an outcome of the second stage, container travel times and potential transport capacity limits (with 
respect to the potential demand)5 between each pair of ports are determined for each firm, then firms 

                                                           
5 Remark that capacity limits in the transport of containers between any two ports may arise because of the overall capacity on involved routes 
(that is fixed at the first stage of the game) is insufficient, given the solution of the assignment problem. In this case, firms just ration their 
services with respect to potential market demand. 
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compete à la Bertrand by fixing a fee for each full container transported between each pair of ports that are 
served by their networks.6 

 
3. Maritime container transport design in monopolistic market 
 
       In this section, we consider (as a benchmark) the case of a single firm that is free to accommodate the entire 
transport demand in all ports. As usual in complete-information sequential games, the solution has to be found by 
backward induction (i.e., incorporating the solution of later stages in previous ones). 
 
3.1 Theoretical analysis 
 
       Once the deployed capacity, network design and assignment have been chosen (by the monopolistic firm) it is 
possible to determine the admissible (maximum) flow of full containers, , and transport time, , for each pair of 
origin and destination ports.  
       The demand for transport from r to s will be considered as equal to  only if . As 
such if transport time is too high (i.e., ) no containers would be shipped from r to s, independently of the 

level of transport fee. Conversely, if , the monopolistic firm would charge the maximum travel fee that is 
compatible with a positive demand, i.e., . 
       As such, the revenue that the monopolist earns on the (potential) service from r to s can be characterized as: 
 

      (2)  

 
where . 
       Anticipating the impact of the market reaction on firm’s revenue (equation 2), and given the deployed capacity 
on each route, the monopolist optimizes its network design and assignment problem by solving a mixed linear-
integer program (MIP) that is characterized by the maximization of the profit function (1) subject to the following 
set of constraints (see the Appendix for notation): 
 

       (3.1) 
        (3.2) 

       (3.3) 
       (3.4) 
      (3.5) 

   ,   (3.6) 

           (3.7) 

          (3.8) 

        (3.9) 

                                                           
6  The underlying assumption of Betrand’s competition in the last stage of the game is that the service provided by competing firms is 
homogeneous. This is rather realistic for the maritime container transport industry, though some form of service quality differentiation may arise, 
which could bring to imperfect substitutability and monopolistic competition between the two firms. 
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          (3.10) 
        (3.11) 
         (3.12) 
        (3.13) 
        (3.14) 
         (3.15) 
 

       The constraints (3.3) and (3.4) feature a multiplication between decision variables. However, it is possible to 
linearize this constraint using the following transformations:  
 

  ,    (3.3)  
where: 

          (3.3.1) 
          (3.3.2)  
        (3.3.3) 
           (3.3.4) 
 

where  is the maximum dwell time of full containers at port i. Similarly, the constraint (3.4) can be linearized 
as follows: 
 

     (3.4) 
          (3.4.1) 
          (3.4.2)  
        (3.4.3) 
           (3.4.4) 
 

where  is the maximum dwell time of empty containers at port i.  
       Given the solution of the second and third stages of the optimization, the total profit of the firm depends on the 
vector of the maximum capacity deployed on each route. Thus, the firm chooses the vector of capacity deployment 
maximizing its profit. This model possesses a sufficient amount of operational detail that would facilitate its 
applications to realistic scenarios, as illustrated by the numerical example presented in the following section. 
 
3.2 Numerical analysis 
 
       Perhaps the most challenging part of problem instance definition for the above model is the generation of virtual 
network components for a given maritime service network and managing the , and  parameter sets 
that capture the structural and operational relationships between the two types of networks.  
       A custom tool (Delos) was developed (using the C# programming language) to simplify this process. The key 
features of this tool include a geospatial data management interface that facilitates the visual definition of maritime 
transport networks, and a database that captures operational aspects of the maritime transport market environment 
(including parameters that relate to companies, services, ports and market demands). The actual MILP model that 
was defined in the previous section was implemented using the OPL modelling language and solved using the 
CPLEX optimization engine. A custom C#/OPL interface was developed to link Delos with the final OPL model 
and manage the algorithm workflow.  
       To test the monopolistic version of the model we created a sample scenario focused on the Eastern 
Mediterranean liner shipping market (Figure 2) and several key ports in the region (Ancona, Antalya, Beirut, 
Benghazi, Cagliari, Gioia Tauro, Haifa, Heraklion, Istanbul, Izmir, Kavala, Limassol, Pireaus, Port Said, 
Thessaloniki, Tripoli and Venice). Five mid-range feeder services were defined, inspired from real market offerings. 
Liner service circuit durations spanned between six and nine days, therefore requiring either one or two vessels for 
the provision of weekly services – the latter is the case for services that exceed the seven-day-duration threshold. 
Several opportunities for transshipment were provided (mainly in the port of Piraeus). 
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Fig. 2: Delos screenshot – The area covered and the routes included in the numerical example (Map data: Google Maps)  
 

Table 1: Services included in the numerical example / Order of port calls 
Service Calls 
Service 1 Piraeus  Beirut  Port Said  Ancona  Venice  Piraeus 
Service 2 Heraklion  Benghazi  Port Said  Antalya  Heraklion 
Service 3 Piraeus  Tripoli  Cagliari  Gioia Tauro  Piraeus 
Service 4 Thessaloniki  Istanbul  Izmir  Limassol  Haifa  Thessaloniki 
Service 5 Piraeus  Beirut  Port Said  Ancona  Venice  Piraeus 

 
       Four transport service demands were defined in the model, namely Kavala  Cagliari, Thessaloniki Izmir, 
Piraeus  Ancona and Antalya Haifa (all 100 TEU/w). Two iterations of the model were required in order to 
reach a stable solution, with the firm opting to partially serve only two of the four market demands, namely 
Thessaloniki Izmir (50 out of 100 TEU/w), Piraeus Ancona (75 out of 100 TEU/w). Despite the MIP nature of 
the problem definition, individual problem instances were solved in less than 400ms using the CPLEX optimizer on 
a relatively modern computer workstation (Quad core Intel i7 2.8GHz processor and 16GB RAM). 
       Given the solution of the second and third stage, the total profit of the firm depends on the vector of the 
maximum capacity deployed on each route. Thus, the firm chooses the vector of capacity deployment maximizing 
its profit, taking into account the financial feasibility of service provision and limitations imposed by its available 
fleet. In the numerical example outlined above and given the design of the service network, a fleet of four vessels 
would have been sufficient to provide the entire set of services defined in the model. But, only two of the services 
were provided by the firm, even in cases that the firm fleet consisted of more than 2 vessels. Thus, by backward 
induction procedure, we know that in at the first stage of the game, the firm would choose to invest in two vessels 
only. 
       The outcome of this process can be justified from the fact that further service provision would diminish the 
potential profit of the firm; given the limited set of potential services and the amount of transport service demand in 
the market (as defined within this problem instance), the requirement for more complicated transshipment 
arrangements that would have been necessary to serve port pairs without any direct service links (Antalya  Haifa 
in this case). A different outcome would have been observed widening the set of potential services that the firm 



277 Panagiotis Angeloudis et al.  /  Transportation Research Procedia   9  ( 2015 )  269 – 282 

could select, thus making it more able to control the operating cost it faces to satisfy market demand. 
 
4. Maritime container transport design in duopolistic market 
 
       We now consider the case of two firms competing in the maritime container market. We solve the game relying 
on the concept of Subgame Perfect Equilibrium. Hence, we proceed by backward induction. 
 
4.1 Theoretical analysis 
 
       Once deployed capacity, network design and assignment are chosen by the competing firms, we obtain 
(similarly to the benchmark case), the admissible (maximum) flow of full containers, , and transport time, , for 
each firm and for its rival (i.e.,  and ) and any pair of origin and destination ports. As before, the demand for 
transport from r to s is positive (and equal to ) only if any of the two competing firms is able to offer a 
sufficiently low total cost of transport (i.e., below ).  
       Two kinds of equilibria may arise at this stage of the game on market of transport services from r to s: 
 

 if  there is an excess of demand over the supply of transport services offered by both 
firms; 

 if  there is an excess of supply over demand. 
 

Let us consider a given firm (the same analysis holds true also for the rival firm). Any type of equilibrium involving 
non-zero demand flows for the firm may arise only if . The revenue function of the firm is 

. The following proposition characterizes the equilibrium of type a): 
 
Proposition 1. If equilibrium flows from r to s are such that , then the equilibrium firm’s fee 
necessarily is . 
 
Proof. Remark that  would imply a zero demand for the firm. Assume, by contradiction, 
that . The rival firm cannot absorb any excess of demand, because it already operates at its 
optimally planned flow (as determined at stage two). Thus, the firm could increase its revenue, , (hence 
its total profit) by raising the transport fee. And the proposition follows.  
 
       The implication of the previous argument is that the revenue function for each firm is exactly as in the 
monopolistic case analyzed in Section 3. Let us now consider the equilibrium of type b): 
 
Proposition 2. If equilibrium flows from r to s are such that , then the equilibrium firm’s fee 
necessarily is 

       (4)  

 
Proof. By  the actual flow of demand for transport from r to s could be lower than the optimally 
planned flow . The same argument applies to the rival firm. Given the excess of supply over demand, the 
equilibrium fees necessarily should imply that the total cost of transport from r to s is equal across them, i.e., 

. Moreover, if  the firm offer a worse service in terms of travel (opportunity 
cost of) time, however the minimum transport fee that it can charge is  (earning a zero revenue, whatever the 
actual transport flow). The reverse holds if , in particular: . In this case, the firm’s equilibrium fee 
cannot be higher than  (otherwise it would lose demand flows to the benefit of the rival) nor 
lower than that (otherwise it could increase its revenue and profit by a small increase of the fee, given that the 
service provided by the rival is worse in terms of travel time). Thus the proposition follows.  
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       A key feature of this model is that the most time-efficient firm can always attract all the traffic that it is able to 
serve (i.e.,  by fixing its transport fee in such a way that the total transport cost for the shipper is slightly lower 
than the rival firm one. Having observed this we can conclude that the revenue function of the firm can be 
represented as follows: 

       (5) 

 
where . 
       Taking as given the network design and assignment solution of the rival, the firm anticipates the impact of the 
market reaction on its revenue, given the deployed capacity on each route. In particular, the firm will anticipate to 
ioerate on each service from r to s it as a monopolist (in which case revenue is given by equation 2) or as a duopolist 
(in which case revenue is given by equation 5). 
       The firm would thus optimize its network design and assignment problem by solving a mixed integer linear 
program whose objective is to maximize the same profit function (1) subject to the following set of constraints (see 
the Appendix for notation): 
 

      (6.1) 
       (6.2)  

     (6.3)  
      (6.4) 
   (6.5)  

 ,    (6.6)  

          (6.7)  

          (6.8)  

  (6.9)  

          (6.10)  
        (6.11)  
         (6.12)  
        (6.13)  
        (6.14)  
         (6.15)   
 

       The constraint (6.9) features a variable-conditional constraint. To solve this problem we adopt the following 
transformation, based on the introduction of indicator decision variables, and , if 

, and and  if , . Thus, , the 
constraint (6.9) can be substituted by: 

         (6.9.1)  
        (6.9.2)  
  (6.9.3)  
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       However, the constraint (6.9.3) is affected by multiplication between decision variables. Hence, we linearize it 
as follows: 

   (6.9.3’)  
         (6.9.3.1)  
          (6.9.3.2)  

       (6.9.3.3)  
         (6.9.3.4)  
          (6.9.3.2)  
        (6.9.3.3)  

 
       As before, also constraints (6.3) and (6.4) feature multiplication between decision variables that are linearized 
as follows: 

 ,     (6.3)  
where: 

          (6.3.1)  
          (6.3.2)  
        (6.3.3)  
           (6.3.4)  

 
where  is the maximum dwell time of full containers at port i. Similarly, the constraint (6.4) can be 
transformed as follows: 

     (6.4)  
          (6.4.1)  
          (6.4.2)  
        (6.4.3)  
           (6.4.4)  
 

where  is the maximum dwell time of empty containers at port i. 
       At the first stage of the game, both firms are able to anticipate the effect of subgame equilibria (stages 2 and 3) 
on their outcome, depending on their strategic choices in terms of capacity limits. Again, because of the complexity 
of the sequential game, we rely on a numerical example to characterize the equilibrium. 
 
4.2 Numerical example 

       The analysis can be conducted on the basis of an iterative process (Figure 3). As first, we assume that the rival 
firm behaves as a monopolist. Thus, we determine the outcome of the linear-integer program as in Section 3. These 
results are the first-iteration guess of the firm about the behavior of the rival firm, to run the linear-integer 
optimization program of the firm. The output of such a program is then used as second-iteration guess.  
       This algorithm was implemented again using a combination of the Delos maritime network design tool (used for 
data management and algorithm flow control) and IBM OPL CPLEX. The duopolistic version of the algorithm was 
tested on the same market environment that was used earlier in this study, with the key difference being that in this 
case two symmetrical shipping firms being allowed to operate and compete. In this context, Company 2 is referred 
to as the rival firm (represented with an asterisk) and Company 1 the other firm – both have the ability to allocate up 
to four vessels to accommodate the various transport demands in the market.  
       The algorithm would then allocate flows to among firms, taking into account the effects of competition in the 
structure of the revenue functions. A series of iterations are necessary before a stable solution is reached, with the 
flow of the algorithm summarized in Figure 3 below: 
       Up to three iterations on each step were required to obtain market allocations for each firm with a converged 
cargo flow time , with four overall iterations of the duopolistic case before a stable market allocation for both 
firms had been reached. The final market allocation was found to have a minor degree of sensitivity to the initial 
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market share assumption for the competing firm.  
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No

Yes

Obtain service allocation
for Firm 1

Repeat iteration using
revised flow times

Converged allocation
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Firm 2 from previous

iteration

Obtain market share for
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Firm 2?

No

Stable market allocation for
both Firms?

No

End Yes

 
 

Fig. 3: Logic flow of the duopolistic assignment algorithm 
 
       While one of the potential companies of the competitive iteration process would have been an unstable 
assignment of the market share among the two firms, with a set of two (or more) allocations for each firm that would 
continuously alternate, and thus prohibiting the algorithm from terminating, such an outcome was not observed in 
any of the scenarios attempted.  
 

           Table 2: Market allocation in a duopolistic scenario with symmetrical competitors 

Port Pair Market  Demand 
(TEU/week) 

Firm 1 flow
(TEU/week)

Firm 2 flow
(TEU/week)

Unmet Demand  
(%) 

KAVALA   CAGLIARI 100 75 0 25% 
THES/NIKI  IZMIR 100 60 0 40% 

PIRAEUS  ANCONA 100 0 70 30% 

ANTALYA  HAIFA 100 0 0 100% 

 
       Assuming an initial market share of 40% for all cargo demands by Firm 2, the algorithm quickly converged into 
an asymmetric allocation, with Firm 1 opting to operate on Service 1, 3 and 4. On the other hand Firm 2 operated on 
Service 5. Given the two distinct strategies, there is evidence that the two competitors to concentrate on different 
parts of the market. The final outcome of the iteration process is summarized in Table 2.  
       At the first stage of the game, both firms are able to anticipate the effect of subgame equilibria (stages 2 and 3) 
on their outcome, depending on their strategic choices in terms of capacity limits. In the above competitive scenario, 
the two companies opted to allocate 2 and 3 vessels (respectively) in the region, therefore accommodating market 
demands for cargo transportation in all port pairs except Antalya  Haifa. As in the monopolistic case, the vessel 
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capacity limit is not reached due to exceedingly large operational costs. The fact that firms do not serve all the 
available demand can be justified by the excessive cost that the available service set induce (mainly determined by 
transshipment between two linked services), one of which had already exhausted its available capacity (in the case 
of Firm 2) while serving the remaining market demands. 
 
5. Conclusions and future work 

       This paper presents a sequential game-theoretic model to analyze network design, container assignment and 
service provision of shipping firms (or alliances) both when they operate in a set of ports as monopolist and when 
they compete with another rival firm. The model takes into account exogenous demands for container transport 
among ports of origin and destination which reacts to the total cost of transport, including the travel fee that is paid 
to the shipping firm and the opportunity cost of time (e.g., depreciation of shipped commodities) for the shipper. 
Because of the complexity of the theoretical model, we rely on a numerical algorithm to characterize the equilibrium 
of the game.       We find that: 

 the monopolist firm does not cover all possible market demand, because of the high cost of available 
services (i.e., possible routes that it can activate) mainly linked to transshipment. Moreover, the monopoly 
never satisfies all the existing demand in ports that are served through the chosen network. 

 when a duopoly is considered, the scope for demand satisfaction improves. The firms tend to choose 
diversify network designs; one of the two competing firms uses all possible routes, while the other firm 
uses the same services than the monopolist. 

       The introduction of competitive behavior adds a new level of complexity to container flow assignment and liner 
service network design problems, therefore bringing them closer to real life settings. Duopoly (and monopoly) are a 
good approximation of the behavior of the shipping market in some regional areas of the world. Our model can be 
used as a framework for future research addressing the case of oligopolistic shipping markets with multiple players.       
Several other issues need to be investigated, such as what is the effect of widening the scope for network design (i.e., 
potential routes to be selected) on the possibility of firms to differentiate their networks and thus relax completion 
among them, and on the possibility for each firm to optimize the cost structure of their networks. The assessment of 
these issues in alternative set of ports can also shed some light on the role of vessel capacity limit (and investment 
costs). The theoretical model and the numerical algorithm we developed in this paper is sufficiently powerful to 
address these issues, which will be explored as part of future research. 
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Appendix – Variable Definitions 
 

Indices 
 

 for legs 
 for companies 
 for links 
 for routes 
 for ports 
 for origin ports 
 for destination ports 

Sets 

 
 Legs 
 Origin Ports 
 Destination Ports 

 All Ports 
 Set of routes  
 Set of links  

 
 
Subsets 

 
 Legs entering port  
 Legs leaving port  
 Legs on route  
 Routes on leg  
 Links on route  

 
 

Parameters 
 

 Operating cost for link       $/day 
 Port visit cost for link        $ 
 Container handling cost for route  offered    $/TEU 

 Cost per unit time per container       
 Opportunity cost of time     $/week 

 Capacity of route         TEU/week 
 Maximum cost of travel (from port  to port )   $ 
    Maximum flow of full containers (from port  to port )  TEU/week 

 Maximum throughput of port      TEU/week 
 Sailing time for link        week 

 1 if link  uses route , and 0 otherwise     ----- 
 1 if leg  is on route , 0 otherwise    ----- 
 1 if leg  contains link , 0 otherwise    ----- 

CFS Fleet Size for current firm     vessels 
 Route Vessel Requirement     vessels 
 /  max empty and full dwell times at     week 

  Frequency of sailings at route      vessel/week 
 
Decision Variables 
 

 Flow of full containers (from port  to port )   TEU/week 
 1 if route  is offered; 0 otherwise    ----- 
 Travel time for full containers (from port r to port s)  week 
 Revenue for full containers from (from port r to port s)  $ 
 Flow of full containers on leg  en route to port    TEU 

 Flow of empty containers on leg      TEU 
 Dwell time at port  for full containers en route to port   week 
 Dwell time at port  for all empty containers   week 

 
Composite Expressions 
 

 Total revenue across all OD pairs     $ 
 Service operational costs for route     $ 
 Leg operational costs for route      $ 
 Container deployment costs for route     $ 
 Vessel deployment costs for route     $ 


