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DERIVED EQUIVALENCES INDUCED BY NONCLASSICAL

TILTING OBJECTS

LUISA FIOROT, FRANCESCO MATTIELLO, AND MANUEL SAORÍN

Abstract. Suppose that A is an abelian category whose derived category
D(A) has Hom sets and arbitrary (small) coproducts, let T be a (not neces-
sarily classical) (n-)tilting object of A and let H be the heart of the associated
t-structure on D(A). We show that there is a triangulated equivalence of un-

bounded derived categories D(H)
∼
=

−→ D(A) which is compatible with the
inclusion functor H →֒ D(A). The result admits a straightforward dualization
to cotilting objects in abelian categories whose derived category has Hom sets
and arbitrary products.

Introduction

Tilting theory first appeared in the eighties of last century in the context of Rep-
resentation Theory of finite dimensional algebras (see [BB80], [HR82], [Bo81]) as a
generalization of Morita Theory. Instead of the classical equivalence of module cate-
gories given by the theorem of Morita, for a tilting A-module T , which was always fi-
nite dimensional in these seminal papers, the so-called Brenner-Butler theorem gave
a counter-equivalence between the torsion pairs (Ker(Ext1A(T, ?)),Ker(Hom(T, ?)))

and (Ker(?⊗B T ),Ker(TorB1 (?, T ))) of mod−A and mod−B, respectively, where
B = End(TA) is the endomorphism algebra and mod denotes the category of finite
dimensional modules. This theorem was extended in [CF90] by considering A to be
an arbitrary ring, T to be a finitely presented A-module and the module categories
over A and B to be those of all modules, not just the finitely presented ones. By
definition, in all these papers tilting modules had projective dimension less or equal
than one. A generalization of the concept to modules of finite projective dimension
greater than one was given in [M86], where the new tilting modules had a finite pro-
jective resolution with finitely generated terms (we will call these modules strongly
finitely presented). The substitute of Brenner-Butler theorem in this context was

a series of equivalences of full subcategories Ker(ExtkA(T, ?))
∼=
←→ Ker(TorBk (?, T )),

for all integers k ∈ Z.
Up to here, even working over arbitrary rings, tilting modules were assumed to

be strongly finitely presented. The historical development brought a new notion
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of tilting module, where finite projective dimension was still required but not the
strongly finitely presented condition. This was first done in [CT95], for modules
of projective dimension less or equal than one, and in [AC01] for modules of arbi-
trary finite projective dimension. Since then the most commonly used terminology
reserves the term classical (n-)tilting module for the strongly finitely presented mod-
ules of finite projective dimension (less or equal than n), while the term (n-)tilting
module applies to all modules, not just the strongly finitely presented ones.

Even from the beginning, tilting theory expanded from studying tilting mod-
ules to study tilting objects in more general abelian categories, and this extension
has played a fundamental role in several branches of Mathematics, as Algebraic
Geometry and Representation Theory of Groups and Algebras (see [AHK07]).

Soon after their introduction, it became clear that tilting modules and tilting
objects had to do with derived categories. In [CPS86] and [H87] (see also [H88]), the
authors proved that any classical tilting module gives an equivalence of bounded

derived categories Db(A)
∼=
−→ Db(B). The general Morita theory for derived cate-

gories, developed immediately after by Rickard and Keller (see [Ri89] and [Ke94]),
showed that this equivalence actually extended to one between the corresponding
unbounded derived categories. It was then the turn for nonclassical tilting mod-
ules to be related to derived categories. This was first done implicitly in [HRS96],
within the study of quasi-tilted algebras. The authors proved that each torsion pair
t = (T ,F) in an abelian category A defined a t-structure in Db(A) (and also in
D(A)), in the sense of [BBD82], whose heart H admitted (X ,Y) := (F [1], T ) as a
torsion pair (counterequivalent to t). Then they showed that if either T was a co-
generating or F was a generating class, then the inclusion H →֒ Db(A) extended to

a triangulated equivalence Db(H)
∼=
−→ Db(A). This result can be then applied when

A = Mod−A and the torsion pair is either (Ker(Ext1A(T, ?)),Ker(Hom(T, ?))), the
one associated to any 1-tilting module, or (Ker(HomA(?, Q)),Ker(Ext1A(?, Q))), the
one associated to a 1-cotilting module (defined dually). Furthermore, the module T
is a projective generator of H, which is a progenerator when T is classical 1-tilting
(see [BR07, III.4]). Therefore in this latter case H is equivalent to Mod−B and, as
a consequence, the equivalence of [CPS86] or [H87] for classical 1-tilting modules is
just a particular case of the mentioned result of [HRS96]. For another example of
the relatioship between nonclassical tilting modules and derived equivalences, we
refer to [BMT11].

When T is an arbitrary n-tilting module, we no longer have a torsion pair in
Mod − A, although the pair τT = (T⊥>0 , T⊥<0) in D(A) (or Db(A)) is still a t-
structure (see, for example [NSZ15]). The mentioned result of [HRS96] naturally
leads to two questions. The first one would ask whether the equivalence Db(H) ∼=
Db(A) for 1-tilting modules also holds at the unbounded level. The second one would
ask whether this equivalence (at the bounded or unbounded level) also holds when
we replace 1-tilting (resp. 1-cotilting) by n-tilting (n-cotilting), for n arbitrary,
and H is the heart of τT . The first question was answered in the affirmative by
Xiao Wu Chen [Ch10], for any 1-tilting object in an arbitrary abelian category.
As for the second question, an affirmative answer in the case of a classical n-
tilting object in a Grothendieck category, both in the bounded and unbonded ed
situations, follows from [FMT14]. When T is a nonclassical tilting object, the second
question has an affirmative answer at the bounded level, in essentially any AB3
abelian category, due to a stronger recent result of Psaroudakis and Vitória (see
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[PV15][Corollary 5.2]). The main goal of this short note is to prove that the second
question has an affirmative answer also at the unbounded level for any (n-)tilting
object in essentially any AB3(=cocomplete) abelian category A. More concretely,
the following result and its dual will be direct consequences of our main theorem
(see Theorem 1.7):

Proposition 2.3. Let A be an abelian category such that its derived category D(A)
has Hom sets and arbitrary (small) coproducts, let T be a tilting object in A and
let H be the heart of the associated t-structure τT = (T⊥>0 , T⊥<0) in D(A). Then

there is a triangulated equivalence D(H)
∼=
−→ D(A) which is compatible with the

inclusion functor H →֒ D(A).
In this statement and in the rest of the paper, the compatibility with the in-

clusion H →֒ D(A) means that the restriction of the equivalence to H is naturally
isomorphic to the inclusion functor.

The organization of the paper goes as follows. In Section 1, we recall some basic
fact about t-structures in triangulated categories and we prove the Tilting Theo-
rem 1.7. Here the setup is very general. We consider a t-structure τ = (U ,U⊥[1])
in D(A) such that D≤−n(A) ⊆ U ⊆ D≤0(A) and consider the class Y := A ∩ Hτ ,
where Hτ is the heart of τ . Theorem 1.7 states that if Y is cogenerating in A, then

there is a triangulated equivalence D(Hτ )
∼=
−→ D(A) which is compatible with the

inclusion functor Hτ →֒ D(A). In Section 2 we apply the Tilting Theorem to non-
classical tilting objects. Firstly, we give the definition of (nonclassical) tilting object
in any abelian category as in the statement and a give characterizations suitable
for our purposes. Both, definition and characterizations, are taken from [NSZ15].
Then we show that the above Proposition 2.3 and its dual (see Proposition 2.4,
which includes a recent result of Stovicek about derived equivalences induced by
n-cotilting modules) are direct consequences of the Tilting Theorem. Finally, as a
byproduct, we prove that a (n-)tilting object as in the situation of Proposition 2.3
is self-small if and only if it is classical tilting (Corollary 2.5). Except for the case
n = 1 (see [CT95][Proposition 1.3]), this fact seems to be unknown even for tilting
modules.

1. Tilting Theorem

Let D be an additive category. For any full subcategory D′ of D we denote by
⊥D′ the following full subcategory of D:

⊥D′ := {X ∈ D |HomD(X,Y ) = 0, for all Y ∈ D′},

and by D′⊥ the following full subcategory of D:

D′⊥ := {X ∈ D |HomD(Y,X) = 0, for all Y ∈ D′}.

Let D be a triangulated category and denote its suspension functor by ?[1]. If
U ,V are full subcategories of D, then we denote by U ⋆V the category of extensions
of V by U , that is, the full subcategory of D consisting of objects X which may be

included in a distinguished triangle U → X → V
+
→ in D, with U ∈ U and V ∈ V .

Recall that a t-structure in D is a pair τ = (U ,V) of full additive subcategories
of D which satisfy the following properties:

(i) HomD(U, V [−1]) = 0, for all U ∈ U and V ∈ V .
(ii) U [1] ⊆ U .
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(iii) D = U ⋆ V [−1], that is, for each object X of D, there is a distinguished

triangle U → X → V
+
→ in D, where U ∈ U and V ∈ V [−1].

In such case one has V = U⊥[1] and U = ⊥(V [−1]) = ⊥(U⊥). Thus, we may
write a t-structure as τ = (U ,U⊥[1]). The objects U and V in the above triangle
are uniquely determined by X , up to isomorphism, and define functors τU : D → U

and τU
⊥

: D → U⊥ which are right and left adjoints to the respective inclusion
functors. The full subcategory Hτ = U ∩ V = U ∩ U⊥[1] is called the heart of the
t-structure and it is an abelian category, where the short exact sequences “are” the

triangles in D with their three terms in Hτ . The assignments X  (τU ◦ τ
U⊥[1])(X)

and X  (τU⊥[1] ◦ τU )(X) define naturally isomorphic functors D → H which are
cohomological (see [BBD82]). In the sequel, we will use the notation τ [a,b] = U [−b]∩
U⊥[1−a], where a ≤ b are integers. Given an abelian categoryA, its derived category
D(A) is a triangulated category which admits a t-structure δ = (D(A)≤0,D(A)≥0),
called the natural t-structure, where D(A)≤0 (resp. D(A)≥0) is the full subcategory
of complexes without cohomology in positive (resp. negative) degrees. The heart of
δ is (naturally equivalent to) A.

For the rest of this section, we make the following assumptions and set the
following notation:

Setup 1. A is any abelian category such that D(A) has Hom sets. We denote by
δ = (D(A)≤0,D(A)>0[1]) the natural t-structure on D(A) and by τ = (U ,U⊥[1])
another t-structure on D(A), whose heart is Hτ . We shall assume that

D(A)≤−n ⊆ U ⊆ D(A)≤0 (equivalently, D(A)>0 ⊆ U⊥ ⊆ D(A)>−n).

Consider the class Y = A∩Hτ in the sequel. We denote by KA
ac(Y) (resp. K

Hτ

ac (Y))
the additive full subcategory of the homotopy category K(Y) of cochain complexes
on Y whose objects are the complexes of K(Y) which are acyclic in A (resp. in Hτ ).

Lemma 1.1. Let s be a natural number and let Y • be the complex

. . . // 0 // Y −s d−s

// Y −s+1 // . . . // Y −1 d−1

// Y 0 // 0 // . . .

where Yi is an object of Y, for every i = −s, . . . ,−1, 0. Then Y • ∈ δ[−s,0] ∩ τ [−s,0].

Proof. The complex Y • belongs to the following full subcategory of D(A):

(D(A)>0[1]∩U)[0]⋆(D(A)>0[1]∩U)[1]⋆· · ·⋆(D(A)>0[1]∩U)[s−1]⋆(D(A)>0[1]∩U)[s],

The latter subcategory is contained in D(A)>0[1+ s]∩U . By the assumption made
in Setup 1, U ⊆ D(A)≤0 and D(A)>0[1 + s] ⊆ U⊥[1 + s]. From this we conclude
that Y • belongs to

(D(A)≤0 ∩ D(A)>0[1 + s]) ∩ (U ∩ U⊥[1 + s]) = δ[−s,0] ∩ τ [−s,0].

�

Lemma 1.2. Let Y −n f−n

→ Y −n+1 → · · · → Y −1 f−1

→ Y 0 be a sequence of morphisms
in Y such that f−k ◦ f−k−1 = 0, for every k = 1, . . . , n− 1, where n is the natural
number such that D(A)≤−n ⊆ U ⊆ D(A)≤0. The following assertions hold.

(1) If the sequence is exact in Hτ , then KerHτ
f−n ∈ Y.

(2) If the sequence is exact in A, then CokerAf−1 ∈ Y.
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Proof. Let Y • be the complex in D(A) obtained from the sequence Y −n f−n

→

Y −n+1 → · · · → Y −1 f−1

→ Y 0 by completing with zeros on both sides. By Lemma 1.1,
Y • ∈ δ[−n,0] ∩ τ [−n,0].

1) For every k = 0, 1, . . . , n there is a distinguished triangle in D(A)

KerHτ
(f−k) // Y −k // KerHτ

(f−k+1)
+

//

(with the convention that f0 : Y
0 → L := CokerHτ

(f−1) = KerHτ
(f1) is the coker-

nel morphism of f−1). By an iterated use of the octahedral axiom, we obtain the
following distinguished triangle in D(A):

KerHτ
(f−n)[n] // Y • // L

+
//

thus by shifting:

KerHτ
(f−n) // Y •[−n] // L[−n]

+
//

Now, Y •[−n] ∈ D(A)>0[1] and L[−n] ∈ Hτ [−n] ⊆ D(A)
>0[1]. Thus KerHτ

(f−n) ∈
D(A)>0[1]. Therefore KerHτ

(f−n) ∈ D(A)
≤0∩D(A)>0[1] = A since Hτ ⊆ D(A)

≤0.
It follows that KerHτ

(f−n) ∈ A ∩Hτ = Y.
2) This is the symmetric argument of the previous one, using the fact that

Y • ∈ τ [−n,0]. �

Proposition 1.3. Let Y • be a complex of objects in Y. The following are equivalent:

(1) Y • is acyclic in A.
(2) Y • is acyclic in Hτ .

Proof. 1) =⇒ 2) The complex Y • is obtained by gluing the following short exact
sequences in A:

(1.1) 0 // CokerA(d
k−2
Y • ) // Y k // CokerA(d

k−1
Y • ) // 0 , k ∈ Z.

Now the sequences Y k−n
d
k−n

Y •

→ Y k−n+1 → · · · → Y k, k ∈ Z, satisfy the hypothesis of
Lemma 1.2, 2), hence CokerA(d

k−1
Y • ) ∈ Y, for all k ∈ Z. Then we have distinguished

triangles in D(A)

CokerA(d
k−2
Y • ) // Y k // CokerA(d

k−1
Y • )

+
// , k ∈ Z.

with all the terms in Hτ . From this we can conclude that the sequences (1.1) are
short exact in Hτ and hence that Y • is acyclic in Hτ .

2) =⇒ 1) This is just a symmetric argument using Lemma 1.2, 1). �

In order to construct resolutions of complexes, we will need the following two
auxiliary results and their duals, which hold true since the opposite category of an
abelian category is again abelian.

Lemma 1.4. [KS05, Lemma 13.2.1] Let A be an abelian category, let I be an

additive full subcategory of A and let X ∈ C≥a(A) for some a ∈ Z. Assume that

I is cogenerating in A. Then there exist Y ∈ C≥a(I) and a quasi-isomorphism
X → Y .

Proposition 1.5. [KS05, Proposition 13.2.6] Let A be an abelian category and let
I be an additive full subcategory of A. Assume that:
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(i) I is cogenerating,
(ii) there exists a non-negative integer d such that, for any exact sequence Y d →
· · · → Y 1 → Y → 0, with Y j ∈ I for 1 ≤ j ≤ d, we have Y ∈ I.

Then for any complex X ∈ C(A), there exist Y ∈ C(I) and a quasi-isomorphism
X → Y . In particular, there is an equivalence of triangulated categories

K(I)/KA
ac(I)

∼=
→ D(A),

where KA
ac(I) is the class of complexes on I which are acyclic in A.

Lemma 1.6. If the class Y = A ∩ Hτ is cogenerating in A, then Y is generating
in Hτ .

Proof. Let us suppose that Y cogenerates A and let us prove that Y generates Hτ .
Let B ∈ Hτ . First we show that we can represent the object B as a complex

Y • := · · · → 0→ Y −n d−n

→ Y −n+1 d−n+1

→ · · ·
d−2

→ Y −1 f
→ A→ 0→ · · ·

whose terms Yi lie in Y for any −n ≤ i ≤ −1, A ∈ A and it is placed in degree
zero. Indeed, since Hτ ⊆ δ[−n,0], Lemma 1.4 gives that B is quasi-isomorphic to a
complex ...→ 0→ Y −n → ...→ Y 0 → Y 1 → ..., with Y i in Y for all i ≥ −n. Then
using the classical truncation at 0 by taking A = KerA(Y

0 → Y 1), gives a complex
... → 0 → Y −n → ... → Y −1 → A → 0 → ..., which is clearly quasi-isomorphic to
Y •, and hence isomorphic to B in D(A).

Now let us consider the following distinguished triangle in D(A) (see on the left
in the vertical sense the distinguished triangle):

C

��

0 //

��

Y −n //

��

Y −n+1 //

��

· · · //

��

Y −2 //

��

Y −1

f

��

A[0]

��

0 //

��

0 //

��

0 //

��

0 //

��

0 //

��

A

��

B Y −n // Y −n+1 // · · · // · · · // Y −1 // A.

By Lemma 1.1, we have C ∈ δ[−n,0] ∩ τ [−n,0]. Since B ∈ Hτ we deduce that
A ∈ A∩U = Y. Now A,B ∈ Hτ hence C ∈ U⊥[1]∩ τ [−n,0] = Hτ . We can conclude
that Y generates Hτ since for any B ∈ Hτ we have found A ∈ Y and the previous
distinguished triangle proves that 0 → C → A → B → 0 is an exact sequence in
Hτ . �

Theorem 1.7 (Tilting Theorem). Let A be an abelian category such that D(A) has
Hom sets and let τ = (U ,U⊥[1]) be a t-structure in D(A) such that D≤−n(A) ⊆
U ⊆ D≤0(A), for some n ∈ N, and let Hτ be its heart. If the class Y = A ∩ Hτ

cogenerates A, then there is a triangulated equivalence

D(Hτ )
∼=
−→ D(A)

which is compatible with the inclusion functor Hτ →֒ D(A).

Proof. By assumption, the full subcategory Y is cogenerating in A and by
Lemma 1.2,1) Y satisfies assumption (ii) of Proposition 1.5. Therefore we can
apply the latter result, which gives that the canonical composition of functors

K(Y) −֒→ K(A) −֒→ D(A) induces a triangulated equivalence K(Y)/KA
ac(Y)

∼=
→ D(A).
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On the other hand, by Lemma 1.6 the full subcategory Y is generating in Hτ and
by Lemma 1.2, 2) Y satisfies the assumptions of the dual of Proposition 1.5. There-
fore by the dual of Proposition 1.5, the canonical composition of functors K(Y) −֒→

K(Hτ ) −֒→ D(Hτ ) induces a triangulated equivalence K(Y)/KHτ

ac (Y)
∼=
→ D(Hτ ). By

Proposition 1.3, KA
ac(Y) = K

Hτ

ac (Y) =: Kac(Y). Hence we obtain the following dia-
gram

K(Y)/Kac(Y)
∼=

xx♣♣
♣♣
♣♣
♣♣
♣♣
♣

∼=

&&▼
▼▼

▼▼
▼▼

▼▼
▼

D(Hτ )
∼=

// D(A)

Finally, consider any object X• of Hτ and denote by F the just defined equiva-

lenceD(Hτ )
∼=
−→ D(A). By the dual of Proposition 1.5, we have a quasi-isomorphism

Y • −→ X• in K(Hτ ), whence an isomorphism in D(Hτ ), where Y • ∈ K(Y). By
the above commutative diagram, we have an isomorphism F (X•) ∼= F (Y •) ∼= Y •

in D(A), which shows the compatibility of F with the inclusion functor Hτ →֒
D(A). �

Remark 1.8. Lemma 1.6 can be dualized in the following way: let A be an abelian
category such that D(A) has Hom sets and let τ = (U ,U⊥[1]) be a t-structure in
D(A) such that D≤0(A) ⊆ U ⊆ D≤n(A), for some n ∈ N, and let Hτ be its heart. If
the class Y = A∩Hτ is generating in A, then Y is cogenerating in Hτ . The proof of
this statement follows by using the dual arguments of those presented in the proof
of Lemma 1.6. Under these assumptions, Theorem 1.7 yields a triangle equivalence

D(Hτ )
∼=
−→ D(A) which is compatible with the inclusion Hτ →֒ D(A).

2. Applications to nonclassical tilting objects

In this section we apply the Tilting Theorem 1.7 to the case of nonclassical tilting
objects.

The following definition appears in [NSZ15].

Definition 2.1. [NSZ15] Let A be an abelian category whose derived category has
Hom sets and arbitrary (small) coproducts. Let n be a natural number. An object
T of A is called n-tilting when the following conditions hold:

T0 For each set I, the object T (I) is the coproduct of I copies of T both in A
and D(A);

T1 ExtkA(T, T
(I)) = 0, for all integers k > 0 and all sets I;

T2 The projective dimension of T is ≤ n, that is, ExtkA(T,N) = 0 for all
integers k > n and all objects N of A;

T3 There is a generating class G of A such that, for each G ∈ G, there is an
exact sequence 0→ G→ T 0 → T 1 → · · · → T n → 0, where all the T k are
in Add(T ).

T is called a tilting object when it is n-tilting, for some natural number n. A classical
(n-)tilting object is a (n-)tilting object which is compact as an object of D(A).

As proved in [NSZ15], if A be an abelian category whose derived category has
Hom sets and arbitrary (small) coproducts, as in Definition 2.1, then A is auto-
matically cocomplete. When A is an abelian category whose derived category has
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Hom sets and arbitrary (small) products, the dual concepts of n-cotilting, cotilting
and classical (n-)cotilting object appear naturally.

Recall from [PV15] that a silting object in D(A) is a complex T • such that

the pair (T •⊥>0 , T •⊥<0) is a t-structure in D(A) and T • ∈ T •⊥>0 . Here T •⊥>0

(resp. T •⊥<0) is the full subcategory of D(A) consisting of those Y • such that
HomD(A)(T

•, Y •[k]) = 0, for all k > 0 (resp. k < 0).
In the next result, when m ∈ N, the subcategory of objects Y of A which admit

an exact sequence T−m −→ ... −→ T−1 −→ T 0 −→ Y → 0, with all the T−k in
Add(T ), will be denoted by Presm(T ).

Theorem 2.2. [NSZ15] Let A be an abelian category such that its derived category
D(A) has Hom sets and arbitrary (small) coproducts, and let T be an object of
A such that the coproduct T (I) is the same in A and in D(A). The following are
equivalent:

(1) T is a tilting object in A.
(2) T has finite projective dimension and is a silting object of D(A).

(3) If Y =
⋂

k>0 Ker(ExtkA(T, ?)), then:
(a) Y = Presm(T ), for some integer m ∈ N;
(b) Y is a cogenerating class of A.

Moreover, when one of the previous assertion holds, the pair τT = (T⊥>0 , T⊥>0) is
a t-structure in D(A) and D(A)≤−n ⊆ T⊥>0 ⊆ D(A)≤0.

The main application of the Tilting Theorem 1.7 is the following proposition,
which generalizes the derived equivalence induced by a classical tilting object (at
the level of unbounded derived categories) to the non-classical case.

Proposition 2.3. Let A be an abelian category whose derived category has Hom
sets and arbitrary (small) coproducts, let T be a tilting object in A and let HT be
the heart of the associated t-structure τT = (T⊥>0 , T⊥<0) in D(A). Then there is

a triangulated equivalence D(HT )
∼=
−→ D(A) which is compatible with the inclusion

functor HT →֒ D(A).

Proof. The proof follows directly from Theorems [NSZ15] and Theorem 1.7, after

we realize that A ∩HT = A ∩ T⊥>0 =
⋂

k>0 Ker(ExtkA(T, ?)). �

It is worth stating explicitly the dual of the last proposition, which is known
when A is a module category (see [Sto14][Theorems 4.5 and 5.21]).

Proposition 2.4. Let A be an abelian category such that D(A) has Hom sets and
arbitrary (small) products, let Q be a cotilting object in A and let HQ be the heart
of the associated t-structure (⊥<0Q,⊥>0Q) in D(A). Then there is a triangulated

equivalence D(HQ)
∼=
−→ D(A) which is compatible with the inclusion HQ →֒ D(A).

Recall that an object A of A is self-small when the canonical morphism
HomA(A,A)

(I) −→ HomA(A,A
(I)) is an isomorphism, for all sets I. The following

result seems to be unknown even when A is a module category, and is an easy
consequence of Theorem 1.7.

Corollary 2.5. Let A be an abelian category whose derived category has Hom sets
and arbitrary (small) coproducts and let T be a tilting object of A. The following
assertions are equivalent:

(1) T is a self-small object of A.
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(2) T is a classical tilting object of A.

Proof. 2) =⇒ 1) On the one hand, by definition of tilting object, the coproduct
T (I) is the same in A and in D(A). On the other hand, since T is classical by
assumption, then it is a compact object of D(A). Hence, for any set I, we have a
chain of isomorphisms

HomA(T, T )
(I) ∼= HomD(A)(T, T )

(I)

∼= HomD(A)(T, T
(I))

∼= HomA(T, T
(I)),

whose composition is the canonical morphism HomA(T, T )
(I) −→ HomA(T, T

(I)).
1) =⇒ 2) By [NSZ15], we know that the heart HT of the associated t-structure

τ = (T⊥>0 , T⊥<0) is a module category, with H̃(T ) = T as a progenerator. In

particular, T is a compact generator of D(HT ). If now F : D(HT )
∼=
−→ D(A) is

a triangulated equivalence which is compatible with the inclusion functor HT →֒
D(A), then F (T ) ∼= T is compact in D(A). �
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[NSZ15] NICOLÁS, P.; SAORÍN, M.; ZVONAREVA, A.: Silting objects in arbitrary triangu-
lated categories. Preprint available at http://arxiv.org/pdf/1512.04700v3.pdf.

http://arxiv.org/pdf/1412.8679.pdf
http://arxiv.org/pdf/1512.04700v3.pdf


10 LUISA FIOROT, FRANCESCO MATTIELLO, AND MANUEL SAORÍN

[PV15] PSAROUDAKIS, C.; VITÓRIA, J.: Realisation functors in tilting theory. Preprint avail-
able at http://arxiv.org/pdf/1511.02677v1.pdf

[Ri89] RICKARD, J.: Morita theory for derived categories. J. London Math. Soc. 39 (1989),
436-456.

[Sto14] STOVICEK, J.: Derived equivalences induced by big cotilting modules. Adv. Math. 263
(2014), 45-87. doi:10.1016/j.aim.2014.06.007. [link to the journal] [arXiv:1308.1804]
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