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Bosons in a toroidal trap: Ground state and vortices
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We study the Bose-Einstein condensate~BEC! in a three-dimensional toroidal sombrero-shaped trap. By
changing the parameters of the potential, or the number of bosons, it is possible to modify strongly the density
profile of the BEC. We consider the ground-state properties for positive and negative scattering length and
calculate the spectrum elementary excitations. We also discuss the macroscopic phase coherence and super-
fluidity of the BEC by analyzing vortex states and their stability.@S1050-2947~99!06804-3#

PACS number~s!: 03.75.Fi, 05.30.Jp, 32.80.Pj
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I. INTRODUCTION

Recent spectacular experiments with alkali-metal vap
87Rb,23Na, and 7Li confined in magnetic traps and coole
down to a temperature of the order of 100 nK@1–3# have
renewed the interest in the Bose-Einstein condensation. T
oretical studies of the Bose-Einstein condensate~BEC! in
harmonic traps have been performed for the ground s
@4–7#, collective low-energy surface excitations@8,9#, and
vortex states@6#. The presence of vortex states is a signat
of the macroscopic phase coherence of the system~the exis-
tence of a macroscopic quantum phase has been rec
demonstrated@10#!. Moreover, vortices are important t
characterize the superfluid properties of Bose systems@11#. It
has been found that the BEC in monotonically increas
potentials cannot support stable vortices in the absence o
externally imposed rotation@12#. Instead, stable vortices o
Bose condensates can be obtained in one-dimensional~1D!
@13# and quasi-2D@14# toroidal traps: such Bose condensa
are superfluid@11#.

In this paper we study a 3D toroidal trap given by a qu
tic sombrero potential along the cylindrical radius and a h
monic potential along thez axis. The resulting trapping po
tential is very flexible and it is possible to modif
considerably the density profile of the BEC by changing
parameters of the potential or the number of bosons.
analyze the ground-state properties and the vortex stabilit
the condensate for both positive and negative scatte
length and calculate also the spectrum of the Bogoliub
elementary excitations. In particular, we consider87Rb and
7Li atoms.

The Gross-Pitaevskii energy functional@15# of the BEC
reads

E

N
5E d3r

\2

2m
u¹C~r !u21V0~r !uC~r !u21

gN

2
uC~r !u4,

~1!

whereC(r ) is the wave function of the condensate norm
ized to unity,V0(r ) is the external potential of the trap, an
the interatomic potential is represented by a local pseudo
tential so thatg54p\2as /m is the scattering amplitude (as
is thes-wave scattering length!. N is the number of bosons o
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the condensate andm is the atomic mass. The scatterin
lengthas is supposed to be positive for87Rb and 23Na, but
negative for7Li. It means that for87Rb and 23Na the inter-
atomic interaction is repulsive while for7Li the atom-atom
interaction is effectively attractive. The extremum conditi
for the energy functional gives the Gross-Pitaevskii~GP!
equation@15#

S 2
\2

2m
¹21V0~r !1gNuC~r !u2DC~r !5mC~r !, ~2!

where m is the chemical potential. This equation has t
form of a nonlinear stationary Schro¨dinger equation.

We study the BEC in an external sombrero potential w
cylindrical symmetry, which is given by

V0~r !5
l

4
~r22r0

2!21
mvz

2

2
z2, ~3!

wherer5Ax21y2 andz are the cylindrical coordinates. Thi
potential is harmonic along thez axis and quartic along the
cylindrical radiusr. V0(r ) is minimum along the circle of
radiusr5r0 at z50 andV0(r ) has a local maximum at the
origin in the (x,y) plane. Small oscillations in the (x,y)
plane aroundr0 have a frequencyv'5r0(2l/m)1/2.

First, let us consider the Thomas-Fermi~TF! approxima-
tion: i.e., neglect the kinetic energy. It is easy to show t
the kinetic energy is negligible ifN@(\2/2m)(lr0

2

1mvz
2/2)/m0

2 , where m05(2/p2)(l/4)1/4(mvz
2/2)1/4g1/2 is

the bare chemical potential. This condition is satisfied
l2r0

8@16\2(lr0
21mvz

2/2)/(2m). In the TF approximation
we have

C~r !5S 1

gN
@m2V0~r !# D 1/2

Q@m2V0~r !#, ~4!

whereQ(x) is the step function. For our system we obta
that ~a! the wave function has its maximum value atr5r0
2990 ©1999 The American Physical Society
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PRA 59 2991BOSONS IN A TOROIDAL TRAP: GROUND STATE . . .
andz50; ~b! for m,lr0
4/4 the wave function has a toroida

shape;~c! for m.lr0
4/4 the wave function has a local min

mum at r5z50; ~d! the chemical potential scales asm
;m0N1/2. It is important to note that the TF approximatio
neglects tunneling effects: to include these processes,
necessary to analyze the full GP problem.

II. GROUND-STATE PROPERTIES AND ELEMENTARY
EXCITATIONS

We perform the numerical minimization of the GP fun
tional by using the steepest descent method@16#. It consists
of projecting onto the minimum of the functional an initi
trial state by propagating it in imaginary time. In practice o
chooses a time stepDt and iterates the equation

C~r ,t1Dt!5C~r ,t!2DtĤC~r ,t! ~5!

by normalizingC to 1 at each iteration.
We discretize the space with a grid of points taking a

vantage of the cylindrical symmetry of the problem. At ea
time step the matrix elements entering the Hamiltonian
evaluated by means of finite-difference approximants.
use grids up to 2003200 points verifying that the results d
not depend on the discretization parameters. The numbe
iterations in imaginary time depends on the degree of c
vergence required and the goodness of the initial trial w
function. We found that strict convergence criteria have to
required on the wave function in order to obtain accur
estimates of the wave function.

In our calculations we use thez-harmonic oscillator units.
We write r0 in units az5@\/(mvz)#1/251 mm, l in units
(\vz)az

2450.477(5.92) peV/mm4, and the energy in units
\vz50.477(5.92) peV for87Rb(7Li). Moreover, we use
the following values for the scattering length:as550
(213) Å for 87Rb(7Li) @1,3#.

We have to distinguish two possibilities: positive or neg
tive scattering length. In the case of positive scattering len
we can control the density profile of the BEC by modifyin
the parameters of the potential and also the number of
ticles. In Fig. 1 we show the ground-state density profile
the 87Rb condensate for several numbers of atoms. Fo
small number of particles the condensate is essentially c
fined along the minimum ofV0(r ); there is a very smal
probability of finding particles in the center of the trap
that the system is effectively multiply connected. AsN in-
creases, the center of the trap starts to fill up and the sys
becomes simply connected. The value ofN for which there is
a crossover between the two regimes increases with the v
of l and ofr0 and, within the Thomas-Fermi~TF! approxi-
mation, scales likel3/2r0

8 . In Table I we show the energy pe
particle, the chemical potential, and the average transv
and vertical size for the trapping potential characterized
the parametersr052 andl54 in thez-harmonic oscillator
units. As expected, the energy per particle and the chem
potential grow by increasing the number of particles but th
do not scale asN1/2 because, with this trapping potential, th
TF approximation is valid forN@104. It is instead interest-
ing to observe thatA^x2&5A^y2& grows less thanA^z2& due
is
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to the presence of a steep~quartic! potential along the trans
verse directionr5Ax21y2 and a softer~quadratic! barrier
along the vertical directionz.

In the case of negative scattering length, it is well know
that for the BEC in harmonic potential there is a critic
number of bosonsNc , beyond which there is the collapse o
the wave function@7#. We obtain the same qualitative beha
ior for the 7Li condensate in our sombrero potential. How
ever, in cylindrical symmetry, the collapse occurs along
line which characterizes the minima of the external potent
i.e., atr5r0 andz50. The numerical results are shown
Fig. 2. We notice that, for a fixedr0 , the critical number of
bosonsNc is only weakly dependent on the height of th
barrier of the Sombrero potential. These results suggest
we cannot use toroidal traps to significantly enhance
metastability of the BEC with negative scattering length.

To calculate the energy and wave function of the elem
tary excitations, one must solve the so-called Bogoliubov–
Gennes~BdG! equations@18,19#. The BdG equations can b
obtained from the linearized time-dependent GP equat

FIG. 1. Particle probability density in the ground state of87Rb
atoms as a function of the cylindrical radius atz50 ~symmetry
plane!. The curves correspond to different numbers of atoms: fr
5000 to 50 000. Parameters of the external potential:r052 andl
54. Lengths are in units ofaz51 mm and l in units of
(\vz)az

2450.477 peV/mm4.

TABLE I. Ground state of87Rb atoms in the toroidal trap with
r052 and l54. Chemical potential and energy are in units
\vz50.477 peV(vz50.729 kHz). Lengths are in units ofaz

51 mm.

N E/N m A^r2& A^z2&

5000 5.85 7.71 1.96 1.41
10000 7.45 10.26 1.97 1.70
20000 9.84 14.00 1.97 2.05
30000 11.73 16.94 1.97 2.29
40000 13.36 19.47 1.98 2.48
50000 14.81 21.74 1.99 2.63
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Namely, one can look for zero angular momentum solutio
of the form

C~r ,t !5e2~ i /\!mt@c~r,z!1u~r,z!e2 ivt1v* ~r,z!eivt#,
~6!

corresponding to small oscillations of the wave functi
around the ground-state solutionc. By keeping terms linear
in the complex functionsu and v, one finds the following
BdG equations:

F2
\2

2mS ]2

]r2 1
1

r

]

]r
1

]2

]z2D1V0~r,z!2m

12gNUc~r,z!U2Gu~r,z!1gNuc~r,z!u2v~r,z!

5\vu~r,z!, ~7!

F2
\2

2mS ]2

]r2 1
1

r

]

]r
1

]2

]z2D1V0~r,z!2m

12gNUc~r,z!U2Gv~r,z!1gNuc~r,z!u2u~r,z!

52\vv~r,z!. ~8!

The BdG equations allow one to calculate the eigenfrequ
ciesv and hence the energies\v of the elementary excita
tions. This procedure is equivalent to the diagonalization
the N-body Hamiltonian of the system in the Bogoliubo
approximation@17#. The excitations can be classified accor
ing to their parity with respect to the symmetryz→2z.

We have solved the two BdG eigenvalue equations
finite-difference discretization with a lattice of 40340 points
in the (r,z) plane. In this way, the eigenvalue problem r
duces to the diagonalization of a 320033200 real matrix.

FIG. 2. Critical numberNc of 7Li atoms vs the potential barrie
at the origin:V0(0)5lr0

4/4. Open squares,r052; full squares,
r053; open circles, r054. Energy is in units of \vz

55.92 peV(vz59.03 kHz) and length in units ofaz51 mm.
s
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We have tested our program in simple models by compa
numerical results with the analytical solution and verifi
that a 40340 mesh already gives reliable results for the lo
est part of the spectrum. In Table II we show the lowe
elementary excitations of the Bogoliubov spectrum for t
ground state of the system. One observes the presence
odd collective excitation at energy quite close to\v51 ~in
units \vz). This mode is related to the oscillations of th
center of mass of the condensate which, due to the harm
confinement along thez-axis, is an exact eigenmode of th
problem characterized by the frequencyvz , independently
of the strength of the interaction. For largeN the lowest
elementary excitations saturate, suggesting that the Thom
Fermi asymptotic limit is reached.

In the case of negative scattering length we verified th
quite close to the critical number of bosonsNc , an even
mode softens driving the transition towards a collapsed st

III. VORTICES AND THEIR METASTABILITY

Let us consider states having a vortex line along thez axis
and all bosons flowing around it with quantized circulatio
The observation of these states would be a signature of m
roscopic phase coherence of trapped BEC. The axially s
metric condensate wave function can be written as

Ck~r !5ck~r,z!eiku, ~9!

whereu is the angle around thez axis andk is the integer
quantum number of circulation. The resulting GP function
~1!, representing the energy per particle, can be written
terms ofck(r ) by taking advantage of the cylindrical sym
metry of the problem:

E

N
5E rdrdzdu

\2

2mS U]ck~r,z!

]r U2

1U]ck~r,z!

]z U2D
1S \2k2

2mr21V0~r,z! D uck~r,z!u21
gN

2
uck~r,z!u4.

~10!

Due to the presence of the centrifugal term, the solution
this equation forkÞ0 has to vanish on thez axis providing a
signature of the vortex state.

Vortex states are important to characterize the mac
scopic quantum phase coherence and also superfluid pro
ties of Bose systems@11#. It is easy to calculate the critica

TABLE II. Lowest elementary excitations of the Bogoliubo
spectrum for the ground state of87Rb atoms in the toroidal trap
with r052 andl54. Units are as in Table I.

N \v1 \v2 \v3 \v4

1 1.00 1.98 2.97 3.96
5000 1.00 1.70 2.43 3.19

10000 1.00 1.68 2.37 3.08
20000 1.00 1.66 2.32 3.00
30000 1.00 1.66 2.30 2.96
40000 1.00 1.66 2.30 2.95
50000 1.00 1.66 2.30 2.95
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PRA 59 2993BOSONS IN A TOROIDAL TRAP: GROUND STATE . . .
frequencyVc at which a vortex can be produced. One has
compare the energy of a vortex state in a frame rotating w
angular frequencyV, that isE2VLz , with the energy of the
ground state with no vortices. Since the angular momen
per particle is\k, the critical frequency is given by\Vc
5(Ek /N2E0 /N)/k, whereEk /N is the energy per particle
of the vortex with quantum numberk. In Table III we show
some results for vortices of87Rb. The critical frequency
turns out to increase slightly with the number of atoms. T
corresponds to a moderate lowering of the momentum
inertia per unit mass of the condensate whenN grows.

For 7Li we calculate the critical numberNc of bosons for
which there is the collapse of the vortex wave function. W
find that Nc has a rather weak dependence on the quan
number of circulationk. Note that, in the case of a harmon
external potential, there is an enhancement ofNc by increas-
ing k because in that case rotation strongly reduces the
sity in the neighborhood of the origin, where the extern
potential has its minimum@6#.

Once a vortex has been produced, the BEC is superflu
the circulating flow persists, in a metastable state, in the
sence of an externally imposed rotation@11#. As discussed
previously, vortex solutions centered in harmonic traps h
been found@6#, but such states turn out to be unstable
single-particle excitations out of the condensate. To study
metastability of the vortex we first analyze the followin
Hartree-Fock equation@12#:

S 2
\2

2m
¹21V0~r !12gNUck~r !U2Df~r !5ef~r !, ~11!

which describes, in the weak coupling limit, one partic
transferred from the vortex stateCk(r ) to an orthogonal
single-particle statef(r ). Quasiparticle motion is governe
by an effective Hartree potential veff(r )5V0(r )
12guck(r )u2, which combines the effects of the trap with
mean repulsion by the condensate. Figure 3 showsveff(r,z)
for N55000 and 50 000. The repulsion induced by the u
derlying condensate is quite evident nearr5r0 . Let mk be
the chemical potential of the vortex state characterized b
circulation quantum numberk, then the vortex is metastabl
if e.mk and unstable ife,mk @12#. As shown in Table III,
for our 3D system all the studied vortices are metastable
so the BEC can support persistent currents, thus it is su
fluid. Contrary to what may be inferred by means of sem
classical arguments@12#, the wave function describing th
excitationf(r ) is not localized near the symmetry axis ev
for rather large numbers of atoms. A bound state atr5z

TABLE III. Vortex states and excitation energies of87Rb atoms
with k51 in the toroidal trap withr052 and l54 within the
Hartree-Fock approximation. Units are as in Table I.

N E1 /N m1 e \Vc

5000 6.00 7.87 9.56 0.15
10000 7.61 10.44 12.46 0.16
20000 10.02 14.22 16.60 0.18
30000 11.93 17.20 19.80 0.20
40000 13.57 19.75 22.54 0.21
50000 15.04 22.04 25.09 0.23
o
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50 should pay a large kinetic energy cost due to the str
localization of the particle induced by the effective potenti
Instead, it is more convenient to place the excited particle
top of the Bose condensate, i.e., atr5r0 andzÞ0 as shown
in Fig. 4.

It is well known that the Hartree-Fock approximation d
scribes only single-particle excitations@17#. To have the

FIG. 3. Effective potentialveff(r,z) appearing in the eigenvalu
equation for the single-particle excitation Eq.~8!. Two sections at
z50 andz53(z56) are shown forN55000 (N550 000) atoms
in panel ~a! @~b!#. z50 corresponds to the symmetry plane. T
dotted line represents the external potential. The chemical pote
of the vortex state is marked by a short dashed line, the excita
energy by a long dashed line. Parameters of the external poten
r052 and l54. Units as in Fig. 1 with\vz50.477 peV(vz

50.729 kHz).

FIG. 4. Particle probability density of thek51 vortex state
~solid line! and square of the excitation wave function~dashed line!
at the radial distancer5r052, i.e., where both the wave function
peak. Curves are forN55000 (N550 000) atoms in panel~a! @~b!#.
Units and parameters as in Fig. 3.
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complete spectrum, including collective excitations, o
must solve the BdG equations@18,19#. One must look for
solutions of the form

Ck~r ,t !5e2~ i /\!mkt@ck~r,z!eiku1u~r,z!ei ~k1q!u

3e2 ivt1v* ~r,z!ei ~k2q!ueivt#. ~12!

Hereq represents the quantum number of circulation of
elementary excitation. We have solved the two BdG eig
value equations by finite-difference discretization using
same method described in Sec. II. We have checked th
40340 mesh gives the correct excitation energies within
Hartree-Fock approximation. Therefore, for the purpose
determining the stability of the vortex state, this rather coa
mesh is sufficiently accurate. The results are shown in Ta
IV: The lowest Bogoliubov excitation is positive and alwa
lower than the lowest Hartree-Fock one. Moreover, by
creasing the number of particles, their difference increase
expected for collective excitations. We have also verifi
that vortex states become unstable by strongly reducing
ther density ~down to about one hundred bosons in o
model trap! or scattering length.

Therefore, the behavior of the 3D trap we have analy
closely resembles the simplified 1D model studied in R
@13#, which represents the limit of a deep trapping potent
Also in that case the Bogoliubov approximation has be
used to evaluate the spectrum of elementary excitat
showing that vortices are stabilized by strong repulsive in
particle interactions~or equivalently by high density!. The

TABLE IV. Bogoliubov vs Hartree-Fock lowest elementary e
citation for a vortex state of87Rb atoms withk51 in the toroidal
trap with r052 andl54. Units are as in Table I.

N \v e2m1

5000 1.22 1.69
10000 1.48 2.02
20000 1.73 2.38
30000 1.88 2.60
40000 1.99 2.79
50000 2.08 3.05
an
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1D model, however, should be taken with caution beca
other branches of low energy collective excitations a
present in such low-dimensional systems@20#.

IV. CONCLUSIONS

We have studied the Bose-Einstein condensate in a
toroidal trap given by a quartic sombrero potential along
cylindrical radius and a harmonic potential along thez axis.
We have shown that it is possible to modify strongly t
density profile of the condensate by changing the parame
of the potential or the number of bosons. The properties
the condensate and its elementary excitations have been
lyzed for both positive and negative scattering length by c
sidering 87Rb and 7Li atoms. For 7Li, which has negative
scattering length, we have calculated the critical numbe
atoms for which there is the collapse of the wave functio
The results have shown that a toroidal trap does not enha
the metastability of the ground state of the condensate.
the other hand, in the case of a harmonic external poten
we have recently shown@21,22# that, when a realistic nonlo
cal ~finite range! effective interaction is taken into account,
new stable branch of Bose condensate appears for7Li at
higher density. Presumably a similar state can be found
in the presence of a toroidal external trap for a sufficien
large number of particles when nonlocality effects are
cluded.

A superfluid is characterized by the presence of persis
currents in the absence of an externally imposed rotation
order to investigate this peculiar sign of the macrosco
phase coherence of the condensate, we have also stu
vortex states. Our results suggest that vortices can sup
persistent currents in 3D toroidal traps with fairly large nu
bers of atoms. This feature essentially depends on the to
dal geometry of the trap and should be independent of o
details of the confining potential.
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