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Abstract. We show that volume potentials associated to a parameter de-6

pendent analytic family of weakly singular kernels depend real-analyt-7

ically upon the density function and on the parameter. Then we consider8

the special case in which the analytic family corresponds to a family of9

fundamental solutions of second order differential operators with con-10

stant coefficients.11

Mathematics Subject Classification. Primary 26E05, 31B10;12

Secondary 35E05, 47H30.13

Keywords. Volume potentials, second order differential operators with14

constant coefficients, domain perturbation, special nonlinear operators.15

1. Introduction16

The aim of this paper is to analyze the behavior of the volume potential17

corresponding to the fundamental solution of a parameter dependent second18

order differential operator upon variation of the density and of the parameter.19

We first introduce our parameter dependent differential operators. We20

fix once for all a natural number21

n ∈ N\{0, 1}.22

We denote by N2,n the set of multi-indexes α ∈ N
n with |α| ≤ 2. If a ≡23

(aα)|α|≤2 ∈ C
N2,n , then we set24

P [a, x] ≡
∑

|α|≤2

aαxα ∀x ∈ R
n.25
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We also set26

E ≡

⎧

⎨

⎩

a ≡ (aα)|α|≤2 ∈ C
N2,n :

∑

|α|=2

aαξα �= 0 ∀ξ ∈ R
n\{0}

⎫

⎬

⎭

.27

Clearly, E coincides with the set of coefficients a ≡ (aα)|α|≤2 such that the28

complex coefficient partial differential operator29

P [a, D] ≡
∑

|α|≤2

aαDα
30

is elliptic. As is well known, P [a, D] has a fundamental solution for all a ∈ E .31

We are now interested into a parameter dependent family of fundamental32

solutions, and we want to consider the following assumptions33

Let K be a real Banach space. Let O be an open subset of K. (1.1)34

Let a(·) be a real analytic map from O to E .35

Let S(·, ·) be a real analytic map from (Rn\{0}) × O to C such that36

S(·, κ) is a fundamental solution of P [a(κ), D] for all κ ∈ O.37

Next we fix an open bounded connected subset Ω of R
n of class C1, and an38

open bounded subset Ω1 of R
n such that39

clΩ1 ⊆ Ω.40

Then we are interested into the dependence of the volume potential41

Pκ[ϕ] ≡

∫

Ω

S(x − y, κ)ϕ(y) dy ∀x ∈ clΩ1, (1.2)42

upon ϕ and κ. Indeed, in the applications of volume potentials to perturbation43

problems for partial differential equations, one often needs to understand the44

dependence of the composition Pκ[ϕ] ◦ ψ of Pκ[ϕ] with a function ψ in the45

subset Cm,α(clΩ#,Ω1) upon the triple (κ, ϕ, ψ) (cf. Sect. 6.3). Here Ω# is46

a bounded open subset of R
n of class C1, and Cm,α(clΩ#,Ω1) denotes the47

set of functions from clΩ# to Ω1 which belong to the Schauder space with48

exponents m ∈ N and α ∈]0, 1[.49

As shown by Preciso [32,33], if we want that both ψ and Pκ[ϕ] ◦ ψ50

belong to a Schauder space and that Pκ[ϕ] ◦ ψ depends analytically on ψ,51

then a right choice for the space for Pκ[ϕ] is the Roumieu class C0
ω,ρ(clΩ1)52

built on the space of continuous functions on clΩ1 for some ρ ∈]0,+∞[ [see53

(2.1) below]. Thus it is natural to ask whether there exist ρ and ρ1 ∈]0,+∞[54

such that the map from O × C0
ω,ρ(clΩ) to C0

ω,ρ1
(clΩ1) which takes (κ, ϕ) to55

Pκ[ϕ] is a real analytic map. We prove such analyticity in Theorem 5.1.56

The dependence of integral operators associated to fundamental solu-57

tions of elliptic differential equations upon perturbations has long been in-58

vestigated by several authors with the aim of applying those results to the59

study of boundary value problems.60

For example, Fréchet differentiability results for the dependence of layer61

potentials for the Helmholtz equation upon the support of integration have62

been obtained by Potthast [29–31] in the framework of Schauder spaces, in63

order to analyze the domain derivative of the far field pattern for a scattering64
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Analytic Dependence of Volume Potentials

problem. In this context, we also mention the works by Haddar and Kress65

[11], Hettlich [13], Kirsch [17], and Kress and Päivärinta [18]. Instead, Fréchet66

differentiability properties of operators related to the inverse elastic scattering67

problem have been shown by Charalambopoulos [2]. Analogous results in the68

framework of Sobolev spaces on Lipschitz domains have been obtained by69

Costabel and Le Louër [3,4,26].70

The authors of the present paper have developed a method based on71

potential theory to prove analyticity results for the solution of boundary72

value problems upon perturbations of the domain and of the data (cf. e.g.,73

[20]). In order to exploit such a method, one has to study the dependence of74

layer and volume potentials upon perturbations. As a consequence, [24,25]75

have analyzed the layer potentials associated to the Laplace and Helmholtz76

equations. Then [6] has investigated the case of layer potentials corresponding77

to second order complex constant coefficient elliptic differentials operators,78

and [23] has considered a periodic analog.79

The present paper extends such a technique to volume potentials in or-80

der to investigate perturbation results for the solutions of boundary value81

problems for non-homogeneous elliptic differential equations (cf. Sect. 6.3).82

The paper is organized as follows. In Sect. 2, we introduce some basic no-83

tation. In Sect. 3, we introduce some variant of some classical material on84

volume potentials in a form which is suitable to the developments of the85

present paper. In Sect. 4, we estimate the Roumieu norm of a volume po-86

tential corresponding to a general kernel in terms of a weighted norm of the87

kernel and of a norm of the density. Here the idea is to introduce a special88

weighted class of singular functions at the origin, which are analytic away89

from the origin (see Definition 4.1). In Sect. 5 we exploit the results of Sect.90

3 to prove the analyticity Theorem 5.1 for volume potentials corresponding91

to a family of fundamental solutions. In Sect. 6, we present some concrete92

applications.93

2. Notation94

We denote the norm on a normed space X by ‖ · ‖X . Let X and Y be normed95

spaces. We endow the space X × Y with the norm defined by ‖(x, y)‖X×Y ≡96

‖x‖X + ‖y‖Y for all (x, y) ∈ X × Y, while we use the Euclidean norm for97

R
n. For standard definitions of Calculus in normed spaces, we refer to Deim-98

ling [8]. The symbol N denotes the set of natural numbers including 0. Let99

D ⊆ R
n. Then clD denotes the closure of D, and ∂D denotes the boundary100

of D, and diam(D) denotes the diameter of D. The symbol | · | denotes the101

Euclidean modulus in R
n or in C. For all R ∈]0,+∞[, x ∈ R

n, xj denotes the102

jth coordinate of x, and Bn(x,R) denotes the ball {y ∈ R
n : |x − y| < R}.103

Let Ω be an open subset of R
n. The space of m times continuously differ-104

entiable complex-valued functions on Ω is denoted by Cm(Ω, C), or more105

simply by Cm(Ω). Let f ∈ (Cm(Ω)). Then Df denotes the gradient of f . Let106

η ≡ (η1, . . . , ηn) ∈ N
n, |η| ≡ η1 + · · · + ηn. Then Dηf denotes ∂|η|f

∂x
η1
1 ...∂xηn

n
.107

The subspace of Cm(Ω) of those functions f whose derivatives Dηf of or-108

der |η| ≤ m can be extended with continuity to clΩ is denoted Cm(clΩ).109
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The subspace of Cm(clΩ) whose functions have mth order derivatives that110

are Hölder continuous with exponent α ∈]0, 1] is denoted Cm,α(clΩ) (cf.111

e.g., Gilbarg and Trudinger [10]). Let D ⊆ C
n. Then Cm,α(clΩ, D) denotes112

{f ∈ (Cm,α(clΩ))
n

: f(clΩ) ⊆ D}. The subspace of Cm(clΩ) of those func-113

tions f such that f|cl(Ω∩Bn(0,R)) ∈ Cm,α(cl(Ω ∩ Bn(0, R))) for all R ∈]0,+∞[114

is denoted Cm,α
loc (clΩ).115

Now let Ω be a bounded open subset of R
n. Then Cm(clΩ) and Cm,α

116

(clΩ) are endowed with their usual norm and are well known to be Banach117

spaces (cf. e.g., Troianiello [36, §1.2.1]). For the definition of a bounded open118

Lipschitz subset of R
n, we refer for example to Nečas [28, §1.3]. We say that119

a bounded open subset Ω of R
n is of class Cm or of class Cm,α, if it is a120

manifold with boundary imbedded in R
n of class Cm or Cm,α, respectively121

(cf. e.g., Gilbarg and Trudinger [10, §6.2]). We denote by νΩ the outward122

unit normal to ∂Ω. For standard properties of functions in Schauder spaces,123

we refer the reader to Gilbarg and Trudinger [10] and to Troianiello [36] (see124

also [24, §2]). We denote by dσ the area element of a manifold imbedded in125

R
n. We retain the standard notation for the Lebesgue spaces.126

We note that throughout the paper ‘analytic’ means always ‘real an-127

alytic’. For the definition and properties of analytic operators, we refer to128

Deimling [8, §15].129

Next, we turn to introduce the Roumieu classes. For all bounded open130

subsets Ω of R
n and ρ ∈]0,+∞[, we set131

C0
ω,ρ(clΩ) ≡

{

u ∈ C∞(clΩ): sup
β∈Nn

ρ|β|

|β|!
‖Dβu‖C0(clΩ) < +∞

}

, (2.1)132

and133

‖u‖C0
ω,ρ(clΩ) ≡ sup

β∈Nn

ρ|β|

|β|!
‖Dβu‖C0(clΩ) ∀u ∈ C0

ω,ρ(clΩ).134

As is well known, the Roumieu class
(

C0
ω,ρ(clΩ), ‖ · ‖C0

ω,ρ(clΩ)

)

is a Banach135

space.136

3. Preliminaries on Volume Potentials137

We first introduce the following preliminary classical lemma. We denote by138

mn the n-dimensional Lebesgue measure and by sn the (n − 1)-dimensional139

measure of ∂Bn(0, 1).140

Lemma 3.1. Let h ∈ L1(Rn). For each ǫ ∈]0,+∞[ there exists δ ∈]0,+∞[141

such that142

∫

E

|h| dx ≤ ǫ,143

for all measurable subsets E of R
n such that mn(E) ≤ δ.144

For a proof, we refer to Folland [9, Cor. 3.6, p. 89]. Then we have the145

following elementary technical statement.146
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Analytic Dependence of Volume Potentials

Lemma 3.2. Let λ ∈]0, n[, R ∈]0,+∞[. Let h ∈ C0((clBn(0, R))\{0}). Let147

sup
x∈(clBn(0,R))\{0}

|h(x)| |x|λ < +∞.148

Let ρ ∈]0, R[. For each ǫ ∈]0,+∞[ there exists δ ∈]0,+∞[ such that149

∫

E

|h(x − y)| dy ≤ ǫ,150

for all measurable subsets E of clBn(0, R − ρ) such that mn(E) ≤ δ and for151

all x ∈ clBn(0, ρ).152

Proof. Let h̃ be the function from R
n to R defined by h̃(x) ≡ h(x) if x ∈153

(clBn(0, R))\{0}, h̃(x) ≡ 0 if x ∈ R
n\((clBn(0, R))\{0}). Then h̃ ∈ L1(Rn)154

and for each ǫ ∈]0,+∞[, there exists δ ∈]0,+∞[ such that155

∫

F

|h| dx =

∫

F

|h̃| dx ≤ ǫ,156

for all measurable subsets F of clBn(0, R) such that mn(F ) ≤ δ. Now if E is157

a measurable subset of Bn(0, R − ρ) and if mn(E) ≤ δ, and if x ∈ clBn(0, ρ),158

then we have mn(x − E) = mn(E) ≤ δ, x − E ⊆ clBn(0, R) and accordingly,159

∫

E

|h(x − y)| dy =

∫

x−E

|h(y)| dy ≤ ǫ.160

161

�162

Next we introduce the following class of singular functions in a punc-163

tured ball.164

Definition 3.3. Let λ ∈]0,+∞[. Let R ∈]0,+∞[. Then we denote by A0
λ(R)165

the set of functions h ∈ C0((clBn(0, R))\{0}) such that166

sup
x∈(clBn(0,R))\{0}

|h(x)| |x|λ < +∞,167

and we set168

‖h‖A0
λ(R) ≡ sup

x∈(clBn(0,R))\{0}

|h(x)| |x|λ ∀h ∈ A0
λ(R).169

One can readily verify that (A0
λ(R), ‖ · ‖A0

λ(R)) is a Banach space. Then170

we prove the following.171

Proposition 3.4. Let λ ∈]0, n[. Let Ω be a bounded open subset of R
n. Then172

the following statements hold.173

(i) If (h, ϕ) ∈ A0
λ(diam (Ω))×L∞(Ω) and if x ∈ clΩ, then the function from174

Ω to R which takes y ∈ Ω to h(x − y)ϕ(y) is integrable.175

(ii) If (h, ϕ) ∈ A0
λ(diam (Ω))×L∞(Ω), then the function P[h, ϕ] from clΩ to176

R which takes x ∈ clΩ to177

P[h, ϕ](x) ≡

∫

Ω

h(x − y)ϕ(y) dy,178

is continuous.179
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(iii) P[h, ϕ] is bounded and180

‖P[h, ϕ]‖L∞(Ω) ≤ sn
(diam (Ω))n−λ

n − λ
‖h‖A0

λ(diam (Ω))‖ϕ‖L∞(Ω), (3.1)181

for all (h, ϕ) ∈ A0
λ(diam (Ω)) × L∞(Ω).182

Proof. If (h, ϕ) ∈ A0
λ(diam (Ω)) × L∞(Ω), then we have183

|h(x − y)ϕ(y)| ≤ |h(x − y)|‖ϕ‖L∞(Ω) for a.a. y ∈ Ω,184

for all x ∈ clΩ. Then h(x−·)ϕ(·) is integrable in Ω. Since Ω ⊆ Bn(x,diam (Ω))185

for all x ∈ clΩ, we have186

∣

∣

∣

∣

∫

Ω

h(x − y)ϕ(y) dy

∣

∣

∣

∣

≤

∫

Bn(x,diam (Ω))

|h(x − y)| dy‖ϕ‖L∞(Ω)187

≤ ‖h‖A0
λ(diam (Ω))

∫

Bn(x,diam (Ω))

dy

|x − y|λ
‖ϕ‖L∞(Ω)188

= ‖h‖A0
λ(diam (Ω))sn

(diam (Ω))n−λ

n − λ
‖ϕ‖L∞(Ω) ∀x ∈ clΩ.189

Hence, inequality (3.1) follows.190

Next we show that P[h, ϕ] is continuous. Let x0 ∈ clΩ. Let ǫ ∈]0,+∞[.191

By Lemma 3.2 with ρ = diam (Ω)/2, there exists δ ∈]0,diam (Ω)/2[ such that192

∫

Bn(x0,δ)

|h(x − y)| dy =

∫

Bn(0,δ)

|h((x − x0) − z)| dz ≤ ǫ/2193

for all x ∈ Bn(x0, δ). Then we have194

|P[h, ϕ](x) − P[h, ϕ](x0)|195

≤

∣

∣

∣

∣

∣

∫

Ω\Bn(x0,δ)

h(x − y)ϕ(y) dy −

∫

Ω\Bn(x0,δ)

h(x0 − y)ϕ(y) dy

∣

∣

∣

∣

∣

196

+

∫

Bn(x0,δ)

|h(x − y)| dy‖ϕ‖L∞(Ω) +

∫

Bn(x0,δ)

|h(x0 − y)| dy‖ϕ‖L∞(Ω)197

≤

∣

∣

∣

∣

∣

∫

Ω\Bn(x0,δ)

h(x−y)ϕ(y) dy−

∫

Ω\Bn(x0,δ)

h(x0−y)ϕ(y) dy

∣

∣

∣

∣

∣

+ǫ‖ϕ‖L∞(Ω),198

for all x ∈ clΩ∩Bn(x0, δ). Since h is continuous in clBn(0,diam (Ω))\{0}, we199

have200

γ ≡ sup
ξ∈Bn(0,diam (Ω))\Bn(0,δ/2)

|h(ξ)| < ∞.201

If x ∈ clΩ∩clBn(x0, δ/2), we have |x−y| ≥ δ/2 for all y ∈ Ω\Bn(x0, δ). Then202

we have203

|h(x − y) − h(x0 − y)| |ϕ(y)| ≤ 2γ‖ϕ‖L∞(Ω)204

for almost all y ∈ Ω\Bn(x0, δ) and for all x ∈ clΩ ∩ clBn(x0, δ/2). Then the205

dominated convergence theorem implies that206

lim
x→x0

∫

Ω\Bn(x0,δ)

[h(x − y) − h(x0 − y)]ϕ(y) dy = 0,207

Journal: 20 Article No.: 2236 TYPESET DISK LE CP Disp.:2015/4/21 Pages: 23

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d
 p

ro
o
f

Analytic Dependence of Volume Potentials

and we have208

lim sup
x→x0

|P[h, ϕ](x) − P[h, ϕ](x0)| ≤ ‖ϕ‖L∞(Ω)ǫ.209

Since ǫ ∈]0,+∞[ has been chosen arbitrarily, we obtain210

lim
x→x0

P[h, ϕ](x) − P[h, ϕ](x0) = 0,211

and accordingly, P[h, ϕ] is continuous at the point x0. �212

Next we introduce the following.213

Definition 3.5. Let λ ∈]0,+∞[. Let R ∈]0,+∞[. Then we denote by A1
λ(R)214

the set of functions h ∈ C1((clBn(0, R))\{0}) such that215

h ∈ A0
λ(R),

∂h

∂xj
∈ A0

λ+1(R) ∀j ∈ {1, . . . , n},216

and we set217

‖h‖A1
λ(R) ≡ ‖h‖A0

λ(R) +

n
∑

j=1

∥

∥

∥

∥

∂h

∂xj

∥

∥

∥

∥

A0
λ+1(R)

∀h ∈ A1
λ(R).218

One can easily verify that
(

A1
λ(R), ‖ · ‖A1

λ(R)

)

is a Banach space. In219

the following proposition we consider the function P[h, ϕ] with (h, ϕ) in220

A1
λ(diam (Ω)) × L∞(Ω).221

Proposition 3.6. Let λ ∈]0, n − 1[. Let Ω be a bounded open subset of R
n.222

Then the following statements hold.223

(i) If (h, ϕ) ∈ A1
λ(diam (Ω)) × L∞(Ω) and if x ∈ clΩ, then the functions224

from Ω to R which take y ∈ Ω to h(x− y)ϕ(y) and to ∂h
∂xj

(x− y)ϕ(y) for225

j ∈ {1, . . . , n} are integrable.226

(ii) If (h, ϕ) ∈ A1
λ(diam (Ω)) × L∞(Ω), then P[h, ϕ] ∈ C1(clΩ) and227

∂

∂xj
P[h, ϕ] = P[

∂h

∂xj
, ϕ] in clΩ. (3.2)228

Proof. Statement (i) is an immediate consequence of Proposition 3.4 applied229

to h, ∂h
∂xj

.230

We now consider statement (ii). By Proposition 3.4 (ii), P[h, ϕ] and231

P[ ∂h
∂xj

, ϕ] are continuous in clΩ for all j ∈ {1, . . . , n}. Thus it suffices to232

show that ∂
∂xj

P[h, ϕ] exists in Ω and that (3.2) holds in Ω. We proceed by a233

standard argument. Let g ∈ C∞(R) be such that234

g(t) = 0 ∀t ∈] − ∞, 1], g(t) = 1 ∀t ∈ [2,+∞[.235

Then we set236

gδ(t) = g(t/δ) ∀t ∈ R,237

and238

uδ(x) ≡

∫

Ω

gδ(|x − y|)h(x − y)ϕ(y) dy ∀x ∈ clΩ,239
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for all δ ∈]0,+∞[. We also observe that the function which takes (x, y) ∈240

clΩ×clΩ to gδ(|x−y|)h(x−y) is of class C1. We now show that uδ ∈ C1(clΩ),241

by applying the classical theorem of differentiation for integrals depending242

on a parameter. Clearly,243

|gδ(|x − y|)h(x − y)ϕ(y)| ≤ ‖g‖L∞(R)

(

sup
clBn(0,diam (Ω))\Bn(0,δ)

|h|

)

|ϕ(y)|,244

(3.3)245

for all x ∈ clΩ and for almost all y ∈ Ω. Since ϕ ∈ L1(Ω), inequality (3.3) and246

the continuity theorem for integrals depending on a parameter imply that uδ247

is continuous in clΩ. Then we have248

∣

∣

∣

∣

∂

∂xj
{gδ(|x − y|)h(x − y)ϕ(y)}

∣

∣

∣

∣

249

≤

∣

∣

∣

∣

g′
δ(|x − y|)

xj − yj

|x − y|
h(x − y)ϕ(y)

∣

∣

∣

∣

+

∣

∣

∣

∣

gδ(|x − y|)
∂h

∂xj
(x − y)ϕ(y)

∣

∣

∣

∣

,250

(3.4)251

for all x ∈ clΩ and for almost all y ∈ Ω. The functions h and ∂h
∂xj

are252

continuous in clBn(0,diam (Ω))\{0}. Hence, h and ∂h
∂xj

are bounded in clBn253

(0,diam (Ω))\Bn(0, δ). Then the right hand side of (3.4) is less than or equal254

to255

1

δ
‖g′‖L∞(R)

(

sup
clBn(0,diam (Ω))\Bn(0,δ)

|h|

)

|ϕ(y)|256

+‖g‖L∞(R)

(

sup
clBn(0,diam (Ω))\Bn(0,δ)

|
∂h

∂xj
|

)

|ϕ(y)|, (3.5)257

for all x ∈ clΩ and for almost all y ∈ Ω. Since ϕ ∈ L1(Ω), inequalities (3.4),258

(3.5) and the differentiability theorem for integrals depending on a parameter259

imply that260

∂uδ

∂xj
(x) =

∫

Ω

∂

∂xj
[gδ(|x − y|)h(x − y)]ϕ(y) dy ∀x ∈ Ω,261

and that ∂uδ

∂xj
has a continuous extension to clΩ. Hence, uδ ∈ C1(clΩ). In262

order to prove that P[h, ϕ] belongs to C1(clΩ), it suffices to show that263

lim
δ→0

uδ = P[h, ϕ] uniformly in clΩ, (3.6)264

lim
δ→0

∂uδ

∂xj
= P

[

∂h

∂xj
, ϕ

]

uniformly in clΩ, (3.7)265

for all j ∈ {1, . . . , n}. We first consider (3.6). Since 1 − gδ(|x − y|) = 0 for266

|x − y| ≥ 2δ, we have267
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Analytic Dependence of Volume Potentials

|P[h, ϕ](x) − uδ(x)|268

=

∣

∣

∣

∣

∣

∫

Bn(x,2δ)∩Ω

(1 − gδ(|x − y|))h(x − y)ϕ(y) dy

∣

∣

∣

∣

∣

269

≤ (1 + ‖g‖L∞(R))‖ϕ‖L∞(Ω)

∫

Bn(x,2δ)∩Bn(x,diam (Ω))

|h(x − y)| dy270

= (1 + ‖g‖L∞(R))‖ϕ‖L∞(Ω)

∫

Bn(0,2δ)∩Bn(0,diam (Ω))

|h(y)| dy271

= (1 + ‖g‖L∞(R))‖ϕ‖L∞(Ω)272

×

(

sup
x∈Bn(0,diam (Ω))\{0}

|h(x)| |x|λ

)

∫

Bn(0,2δ)

|x|−λ dx273

= (1 + ‖g‖L∞(R))‖ϕ‖L∞(Ω)‖h‖A0
λ(diam (Ω))sn

(2δ)n−λ

n − λ
,274

for all x ∈ clΩ and for all δ ∈]0,diam (Ω)/2]. Hence, (3.6) holds.275

We now turn to prove (3.7). Since the support of g′
δ is contained in276

[δ, 2δ], the same argument we have exploited to prove (3.6) implies that277

∣

∣

∣

∣

P

[

∂h

∂xj
, ϕ

]

(x) −
∂uδ

∂xj
(x)

∣

∣

∣

∣

278

≤

∣

∣

∣

∣

∫

Ω

(1 − gδ(|x − y|))
∂h

∂xj
(x − y)ϕ(y) dy

∣

∣

∣

∣

279

+

∣

∣

∣

∣

∫

Ω

1

δ
g′

(

|x − y|

δ

)

xj − yj

|x − y|
h(x − y)ϕ(y) dy

∣

∣

∣

∣

280

≤ (1 + ‖g‖L∞(R))‖ϕ‖L∞(Ω)281

×

(

sup
x∈Bn(0,diam (Ω))\{0}

∣

∣

∣

∣

∂h

∂xj
(x)

∣

∣

∣

∣

|x|λ+1

)

sn
(2δ)n−λ−1

n − λ − 1
282

+
1

δ
‖g′‖L∞(R)

∫

Bn(x,2δ)\Bn(x,δ)

|h(x − y)| dy‖ϕ‖L∞(Ω)283

≤ sn(1 + ‖g‖L∞(R) + ‖g′‖L∞(R))‖ϕ‖L∞(Ω)284

×

{(

sup
x∈Bn(0,diam (Ω))\{0}

∣

∣

∣

∣

∂h

∂xj
(x)

∣

∣

∣

∣

|x|λ+1

)

(2δ)n−λ−1

n − λ − 1
285

+
1

δ

(

sup
x∈Bn(0,diam (Ω))\{0}

|h(x)| |x|λ
)

(2δ)n−λ

n − λ

}

∀x ∈ Ω,286

for all δ ∈]0,diam (Ω)/2[. Since n − λ − 1 > 0, the limiting relation (3.7)287

follows. �288

Then we present the following variant of the classical formula for the289

partial derivatives of a volume potential with a differentiable density.290
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Lemma 3.7. Let λ ∈]0, n − 1[. Let Ω be a bounded open Lipschitz subset of291

R
n. If (h, ϕ) ∈ A1

λ(diam (Ω)) × C1(clΩ) and j ∈ {1, . . . , n}, then292

∂

∂xj
P[h, ϕ](x) = P

[

h,
∂ϕ

∂xj

]

(x) −

∫

∂Ω

h(x − y)ϕ(y)(νΩ)j(y) dσy ∀x ∈ Ω.293

(3.8)294

Proof. By the previous proposition and by standard computations, we have295

∂

∂xj
P[h, ϕ](x) =

∫

Ω

∂h

∂xj
(x − y)ϕ(y) dy296

= −

∫

Ω

∂

∂yj
(h(x − y))ϕ(y) dy297

= −

∫

Ω

∂

∂yj
(h(x − y)ϕ(y)) dy298

+

∫

Ω

h(x − y)
∂ϕ

∂yj
(y) dy ∀x ∈ clΩ. (3.9)299

Next we fix x ∈ Ω and we take ǫx ∈]0,dist (x, ∂Ω)[. Then clBn(x, ǫ) ⊆ Ω and300

the set301

Ωǫ ≡ Ω\clBn(x, ǫ)302

is of Lipschitz class for all ǫ ∈]0, ǫx[. By the divergence theorem, we have303

∫

Ω

∂

∂yj
(h(x − y)ϕ(y)) dy304

=

∫

Ωǫ

∂

∂yj
(h(x − y)ϕ(y)) dy +

∫

Bn(x,ǫ)

∂

∂yj
(h(x − y)ϕ(y)) dy305

=

∫

∂Ω

h(x − y)ϕ(y)(νΩ)j(y) dσy +

∫

∂Bn(x,ǫ)

h(x − y)ϕ(y)
xj − yj

|x − y|
dσy306

−

∫

Bn(x,ǫ)

∂h

∂xj
(x − y)ϕ(y) dy +

∫

Bn(x,ǫ)

h(x − y)
∂ϕ

∂yj
(y) dy (3.10)307

for all ǫ ∈]0, ǫx[. Next we note that308

∣

∣

∣

∣

∣

∫

∂Bn(x,ǫ)

h(x − y)ϕ(y)
xj − yj

|x − y|
dσy

∣

∣

∣

∣

∣

309

≤

(

sup
x∈Bn(0,diam (Ω))\{0}

|h(x)| |x|λ

)

‖ϕ‖L∞(Ω)

∫

∂Bn(0,ǫ)

|y|−λ dσy310

= ‖h‖A0
λ(diam (Ω))‖ϕ‖L∞(Ω)snǫn−1−λ (3.11)311

for all ǫ ∈]0, ǫx[. By Proposition 3.6 (i), the functions ∂h
∂xj

(x − ·)ϕ(·) and312

h(x − ·) ∂ϕ
∂xj

(·) are integrable in Ω, and accordingly313

lim
ǫ→0

∫

Bn(x,ǫ)

∂h

∂xj
(x − y)ϕ(y) dy = 0,

lim
ǫ→0

∫

Bn(x,ǫ)

h(x − y)
∂ϕ

∂yj
(y) dy = 0.

(3.12)314

Journal: 20 Article No.: 2236 TYPESET DISK LE CP Disp.:2015/4/21 Pages: 23

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d
 p

ro
o
f

Analytic Dependence of Volume Potentials

By (3.11) and (3.12), we can take the limit as ǫ tends to 0 in (3.10) and315

deduce that316

∫

Ω

∂

∂yj
(h(x − y)ϕ(y)) dy =

∫

∂Ω

h(x − y)ϕ(y)(νΩ)j(y) dσy.317

Then equality (3.9) implies that formula (3.8) holds. �318

4. Volume Potentials Corresponding to General Kernels319

in Roumieu Classes320

In order to estimate the Roumieu norm of a volume potential in terms of a321

norm of the kernel and of a norm of the density, we introduce the following322

class of functions which are singular at the origin and analytic away from the323

origin.324

Definition 4.1. Let δ1, δ2 ∈]0,+∞[ with δ1 < δ2. Let λ, ρ ∈]0,+∞[. Then we325

set326

Hλ,ρ(δ1, δ2) ≡
{

h∈A1
λ(δ2) : h|clBn(0,δ2)\Bn(0,δ1)327

∈ C0
ω,ρ((clBn(0, δ2))\Bn(0, δ1))

}

,328

and we set329

‖h‖Hλ,ρ(δ1,δ2) ≡ ‖h‖A1
λ(δ2) + ‖h‖C0

ω,ρ(clBn(0,δ2)\Bn(0,δ1)) ∀h ∈ Hλ,ρ(δ1, δ2).330

One can readily verify that (Hλ,ρ(δ1, δ2), ‖ · ‖Hλ,ρ(δ1,δ2)) is a Banach331

space. Then we can prove the following.332

Proposition 4.2. Let ρ ∈]0,+∞[, λ ∈]0, n − 1[. Let Ω be a bounded open333

Lipschitz subset of R
n. Let Ω1 be a nonempty open subset of R

n such that334

clΩ1 ⊆ Ω. Let335

δ∗ ≡ diam(Ω), δ∗ ≡ min {|t − s| : t ∈ clΩ1, s ∈ ∂Ω} . (4.1)336

Then the restriction of P[h, ϕ] to clΩ1 belongs to C0
ω,ρ(clΩ1) for all (h, ϕ) ∈337

Hλ,ρ(δ∗, δ
∗) × C0

ω,ρ(clΩ).338

Moreover, the map from Hλ,ρ(δ∗, δ
∗) × C0

ω,ρ(clΩ) to C0
ω,ρ(clΩ1) which339

takes (h, ϕ) to P[h, ϕ]|clΩ1
is bilinear and continuous.340

Proof. We first prove that if m ∈ N\{0} and if (h, ϕ) ∈ Hλ,ρ(δ∗, δ
∗) ×341

Cm(clΩ), then P[h, ϕ]|clΩ1
∈ Cm(clΩ1) and342

∂βP[h, ϕ](x) = P[h, ∂βϕ](x)343

−

n
∑

k=1

βk−1
∑

lk=0

∂βn
xn

. . . ∂βk+1
xk+1

∂lk
xk

{∫

∂Ω

h(x − y)344

× (∂βk−1−lk
yk

∂βk−1
yk−1

. . . ∂β1
y1

ϕ(y))(νΩ)k(y) dσy

}

, (4.2)345

for all x ∈ clΩ1 and for all β ∈ N
n such that |β| ≤ m, where we understand346

that
∑βk−1

lk=0 is omitted if βk = 0. We proceed by induction on m. If m = 1,347

then the statement follows by Lemma 3.7. Next we assume that the statement348
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holds for m and we prove it for m+1. Let (h, ϕ) ∈ Hλ,ρ(δ∗, δ
∗)×Cm+1(clΩ).349

By the inductive assumption, we have P[h, ∂ϕ
∂xj

]|clΩ1
∈ Cm(clΩ1) for all350

j ∈ {1, . . . , n}. Since h|clBn(0,δ∗)\Bn(0,δ∗) ∈ Cm(clBn(0, δ∗)\Bn(0, δ∗)) and ϕ,351

(νΩ)j ∈ C0(∂Ω), the classical differentiability theorem for integrals depend-352

ing on a parameter implies that the second term in the right hand side of353

formula (3.8) defines a function of class Cm(clΩ1). Then formula (3.8) implies354

that ∂
∂xj

P[h, ϕ]|clΩ1
belongs to Cm(clΩ1). Hence, P[h, ϕ]|clΩ1

∈ Cm+1(clΩ1).355

Next we prove the formula for the derivatives by following the lines of the cor-356

responding argument of [20, p. 856]. We first prove the formula for ∂β = ∂
βj
xj357

by finite induction on the length of βj . Then we prove the formula for358

∂β = ∂β1
x1

. . . ∂
βj
xj by finite induction on j ∈ {1, . . . , n}. As a consequence,359

the formula holds for |β| ≤ m + 1. For the details, we refer to [20, p. 856].360

If (h, ϕ) ∈ Hλ,ρ(δ∗, δ
∗)×C∞(clΩ), then by applying the above statement361

for all m ∈ N\{0} we deduce that P[h, ϕ]|clΩ1
belongs to C∞(clΩ1) and that362

formula (4.1) holds for all order derivatives.363

We now assume that (h, ϕ) ∈ Hλ,ρ(δ∗, δ
∗) × C0

ω,ρ(clΩ) and we turn to364

estimate the supnorm in clΩ1 of the double summation in the right hand365

side of (4.2), which we denote by I. To do so, we abbreviate by I(k, lk) the366

(k, lk)th term in the sum I, and we estimate the supremum of I(k, lk) in clΩ1.367

We can clearly assume that βk > 0. Then we have368

sup
clΩ1

|I(k, lk)| = sup
x∈clΩ1

∣

∣

∣

∣

∂βn
xn

. . . ∂βk+1
xk+1

∂lk
xk

{ ∫

∂Ω

h(x − y)369

×∂βk−1−lk
yk

∂βk−1
yk−1

. . . ∂β1
y1

ϕ(y)(νΩ)k(y) dσy

}∣

∣

∣

∣

370

≤

∫

∂Ω

sup
ξ∈A

∣

∣

∣∂
βn

ξn
. . . ∂

βk+1

ξk+1
∂lk

ξk
h(ξ)

∣

∣

∣

∣

∣

∣∂βk−1−lk
yk

∂βk−1
yk−1

. . . ∂β1
y1

ϕ(y)
∣

∣

∣ dσy,371

where A ≡ {x − y : x ∈ clΩ1, y ∈ ∂Ω}. Since h ∈ Hλ,ρ(δ∗, δ
∗), we have372

sup
ξ∈A

∣

∣

∣∂
βn

ξn
. . . ∂

βk+1

ξk+1
∂lk

ξk
h(ξ)

∣

∣

∣ ≤ ‖h‖Hλ,ρ(δ∗,δ∗)

(βn + · · · + βk+1 + lk)!

ρβn+···+βk+1+lk
.373

Moreover,374

∣

∣

∣
∂βk−1−lk

yk
∂βk−1

yk−1
. . . ∂β1

y1
ϕ(y)

∣

∣

∣
≤ ‖ϕ‖C0

ω,ρ(clΩ)
(β1 + · · · + βk−1 + βk − 1 − lk)!

ρβ1+···+βk−1+βk−1−lk
,375

for all y ∈ clΩ. Then we have376

sup
clΩ1

|I(k, lk)| ≤ mn−1(∂Ω)‖h‖Hλ,ρ(δ∗,δ∗)‖ϕ‖C0
ω,ρ(clΩ)377

×
(βn + · · · + βk+1 + lk)!(β1 + · · · + βk−1 + βk − 1 − lk)!

ρ|β|−1
,378

(4.3)379

where mn−1(∂Ω) denotes the (n − 1) dimensional Lebesgue measure of ∂Ω.380

Next we note that381

m1!m2! ≤ (m1 + m2)!,382
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Analytic Dependence of Volume Potentials

for all m1, m2 ∈ N. Indeed,383

1 ≤

(

m1 + m2

m1

)

=
(m1 + m2)!

m1!m2!
.384

Then (4.3) implies that385

sup
clΩ1

|I(k, lk)| ≤ mn−1(∂Ω)‖h‖Hλ,ρ(δ∗,δ∗)‖ϕ‖C0
ω,ρ(clΩ)

(|β| − 1)!

ρ|β|−1
.386

Hence,387

sup
clΩ1

|I| ≤ nρmn−1(∂Ω)‖h‖Hλ,ρ(δ∗,δ∗)‖ϕ‖C0
ω,ρ(clΩ)

|β|!

ρ|β|
. (4.4)388

By Proposition 3.4 (iii), we have389

‖P[h, ∂βϕ]‖L∞(Ω) ≤ sn
(diam (Ω))n−λ

n − λ
‖h‖A0

λ(δ∗)‖∂βϕ‖L∞(Ω). (4.5)390

Then equality (4.2) and inequalities (4.4) and (4.5) imply that there exists391

C ∈]0,+∞[ such that392

‖∂βP[h, ϕ]|Ω1
‖L∞(Ω1) ≤ C‖h‖Hλ,ρ(δ∗,δ∗)‖ϕ‖C0

ω,ρ(clΩ)
|β|!

ρ|β|
∀β ∈ N

n,393

for all (h, ϕ) ∈ Hλ,ρ(δ∗, δ
∗) × C0

ω,ρ(clΩ). �394

Proposition 4.2 can be applied in case h is replaced by a fundamental395

solution of a second order elliptic operator. As shown in John [15], if S is a396

fundamental solution of a second order elliptic operator and if δ ∈]0,+∞[,397

then398

sup
x∈Bn(0,δ)\{0}

|S(x)| |x|n−2 < +∞, sup
x∈Bn(0,δ)\{0}

∣

∣

∣

∣

∂S

∂xj
(x)

∣

∣

∣

∣

|x|n−1 < +∞,399

for all j ∈ {1, . . . , n}, if n − 2 > 0, and400

sup
x∈Bn(0,δ)\{0}

|S(x)| |x|1/2 < +∞, sup
x∈Bn(0,δ)\{0}

∣

∣

∣

∣

∂S

∂xj
(x)

∣

∣

∣

∣

|x|3/2 < +∞,401

for all j ∈ {1, . . . , n}, if n−2 = 0. Moreover, S is analytic in R
n\{0}, and the402

classical Cauchy inequalities for the derivatives of S on a compact set imply403

that S ∈ C0
ω,ρ(clBn(0, δ2)\Bn(0, δ1)) for all δ1, δ2 ∈]0,+∞[ such that δ1 < δ2404

and for ρ ∈]0,+∞[ sufficiently small (cf. e.g., John [14, p. 65]). Hence,405

S ∈ Hmax{n−2, 1
2 },ρ(δ1, δ2).406

Thus if we plan to apply Proposition 4.2 with h replaced by a fun-407

damental solution of a second order elliptic operator, we can choose λ =408

max{n − 2, 1
2}.409
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5. A Real Analyticity Result for Volume Potentials410

Corresponding to Analytic Families of Fundamental411

Solutions412

We now exploit Proposition 4.2 of the previous section in order to analyze413

the analytic dependence of the volume potentials of (1.2) upon (κ, ϕ) both414

under the assumption (1.1) and under the following assumption.415

Let κ0 ∈ O. Let δ1, δ2 ∈]0,+∞[, δ1 < δ2. Then (5.1)416

there exist ρ ∈]0,+∞[ and an open neighborhood Vκ0
of κ0 in O417

such that the map from Vκ0
to Hmax{n−2, 1

2 },ρ(δ1, δ2), which takes418

κ to S(·, κ)|clBn(0,δ2)\{0} is real analytic.419

Then we are ready to deduce the validity of the following.420

Theorem 5.1. Let n ∈ N\{0, 1}. Let Ω be a bounded open Lipschitz subset of421

R
n. Let Ω1 be an open subset of R

n such that clΩ1 ⊆ Ω. Let assumption (1.1)422

hold. Let assumption (5.1) hold with δ1 = δ∗, δ2 = δ∗ [see (4.1)]. Then the423

map from Vκ0
× C0

ω,ρ(clΩ) to C0
ω,ρ(clΩ1) which takes (κ, ϕ) to Pκ[ϕ]|clΩ1

is424

real analytic [see (1.2)].425

Proof. Let δ1 ≡ δ∗, δ2 ≡ δ∗ be as in (4.1). Let ρ, Vκ0
be as in (5.1). Then426

assumption (1.1) implies that the map from Vκ0
to Hmax{n−2, 1

2 },ρ(δ∗, δ
∗)427

which takes κ to S(·, κ)|(clBn(0,δ2))\{0} is real analytic.428

By Proposition 4.2, the map from Hmax{n−2, 1
2 },ρ(δ∗, δ

∗) × C0
ω,ρ(clΩ)429

to C0
ω,ρ(clΩ1) which takes (h, ϕ) to P[h, ϕ]|clΩ1

is bilinear and continuous.430

Since a composition of real analytic maps is real analytic, the map from431

Vκ0
× C0

ω,ρ(clΩ) to C0
ω,ρ(clΩ1) which takes (κ, ϕ) to432

Pκ[ϕ]|clΩ1
= P[S(·, κ), ϕ]|clΩ1

433

is real analytic. �434

If the Banach space K of assumption (1.1) coincides with R
n1 for some435

n1 ∈ N\{0}, then the condition in (5.1) can be relaxed and replaced by the436

following.437

Let κ0 ∈ O. Let δ2 ∈]0,+∞[. Then there exists an open (5.2)438

neighborhood Vκ0
of κ0 in O such that the map from Vκ0

439

to A1
max{n−2, 1

2 }(δ2) which takes κ to S(·, κ)|clBn(0,δ2)\{0}440

is real analytic.441

Indeed, in such a case, the real analyticity of the map which takes κ442

to S(·, κ)|clBn(0,δ2)\Bn(0,δ1) from Vκ0
to C0

ω,ρ((clBn(0, δ2))\Bn(0, δ1)), for some443

ρ ∈]0,+∞[, is guaranteed by Proposition A.1 of the Appendix as long as Vκ0
444

is bounded. Then we have the following.445

Theorem 5.2. Let n ∈ N\{0, 1}, n1 ∈ N\{0}. Let assumption (1.1) hold446

with K = R
n1 . Let κ0 ∈ O. Let Ω be a bounded open Lipschitz subset of447

R
n. Assume that condition (5.2) holds with δ2 = diam(Ω), and that Vκ0

is448

bounded, and that clVκ0
⊆ O. Let Ω1 be an open subset of R

n such that clΩ1 ⊆449
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Analytic Dependence of Volume Potentials

Ω. Then there exists ρ ∈]0,+∞[ such that the map from Vκ0
× C0

ω,ρ(clΩ) to450

C0
ω,ρ(clΩ1) which takes (κ, ϕ) to Pκ[ϕ]|clΩ1

is real analytic [see (1.2)].451

Proof. Let δ∗, δ∗ be as in (4.1). Let W ≡ Bn(0, δ∗)\clBn(0, δ∗). Since S is real452

analytic on O×(Rn\{0}) and cl(Vκ0
×W ) is a compact subset of O×(Rn\{0}),453

there exists ρ1 ∈]0,+∞[ such that S|cl(Vκ0
×W ) ∈ C0

ω,ρ1
(cl(Vκ0

× W )). Let454

ρ ∈]0, ρ1[. Then by Proposition A.1 of the Appendix, the map from Vκ0
455

to C0
ω,ρ(clW ) which takes κ to S(·, κ)|clW is real analytic. Then by taking456

δ1 = δ∗, δ2 = δ∗, our assumptions imply that condition (5.1) holds, and thus457

Theorem 5.1 implies the validity of the statement. �458

6. Applications459

6.1. A Family of Fundamental Solutions for Second Order Elliptic Partial460

Differential Operators461

In the following Theorem 6.1 we introduce a family of fundamental solutions462

for second order elliptic partial differential operators. For the construction of463

such a family we refer the reader to [7, Thm. 5.5], where the case of quaternion464

coefficient partial differential operators is considered (see also [5] for the case465

of real coefficients). Then the validity of Theorem 6.1 can be deduced by the466

embedding of C in the quaternion algebra H, by the basic multiplication rules467

of the quaternion units, and by standard properties of real analytic functions.468

Theorem 6.1. Let n ∈ N\{0, 1}. There exist a real analytic function A from469

∂Bn(0, 1)×R×E to C, and two real analytic functions B and C from R
n ×E470

to C such that the function E(·,a) from R
n\{0} to C, defined by471

E(x,a) ≡ |x|2−nA(x/|x|, |x|,a) + B(x,a) log |x| + C(x,a) ∀x ∈ R
n\{0},472

is a fundamental solution of P [a, D] for all a ∈ E. Moreover, the functions473

B and C are identically equal to 0 if n is odd.474

Then one can verify that the function S ≡ E of Theorem 6.1 satisfies475

condition (1.1) with K = C
N2,n , and O = E , and a(·) equal to the identity476

function from E to itself. We now show that S ≡ E satisfies also the condition477

in (5.2). To do so we prove the following.478

Proposition 6.2. Let n ∈ N\{0, 1}. Let a0 ∈ E. Let Va0
be an open bounded479

neighborhood of a0 in E such that clVa0
⊆ E. Let δ2 ∈]0,+∞[. Then the map480

from Va0
to A1

max{n−2, 1
2 }

(δ2) which takes a to E(·,a)|(clBn(0,δ2))\{0} is real481

analytic.482

Proof. Let A, B, and C be as in Theorem 6.1. Then there exist an open483

neighborhood W∂Bn(0,1) of ∂Bn(0, 1) in R
n and a real analytic function Ã484

from W∂Bn(0,1) × R × E such that Ã|∂Bn(0,1)×R×E = A (cf. [7, §4]). Let485

V∂Bn(0,1) be an open bounded neighborhood of ∂Bn(0, 1) with clV∂Bn(0,1) ⊆486

W∂Bn(0,1). By the classical Cauchy inequalities for the derivatives of ana-487

lytic functions, there exists ρ′ ∈]0,+∞[ such that Ã|clV∂Bn(0,1)×[−δ2,δ2]×clVa0

∈488

C0
ω,ρ′(clV∂Bn(0,1) × [−δ2, δ2] × clVa0

) (cf. e.g., John [14, p. 65]). Let ρ ∈]0, ρ′[.489
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Then Proposition A.1 of the Appendix implies that the map from Va0
to490

C0
ω,ρ(clV∂Bn(0,1) × [−δ2, δ2]) which takes a to Ã(·, ·,a)|clV∂Bn(0,1)×[−δ2,δ2] is real491

analytic. Then we observe that the map from C0
ω,ρ(clV∂Bn(0,1) × [−δ2, δ2]) to492

A1
max{n−2, 1

2 }
(δ2) which takes a function F to the function |x|2−nF (x/|x|, |x|)493

of x ∈ (clBn(0, δ2))\{0} is linear and continuous. As a consequence, we con-494

clude that the map from Va0
to A1

max{n−2, 1
2 }

(δ2) which takes a to the function495

|x|2−nA(x/|x|, |x|,a) = |x|2−nÃ(x/|x|, |x|,a) of x ∈ (clBn(0, δ2))\{0} is real496

analytic. Similarly one shows that the maps from Va0
to A1

max{n−2, 1
2 }

(δ2)497

which take a to the function B(x,a) log |x| of x ∈ (clBn(0, δ2))\{0} and to498

the function C(x,a) of x ∈ (clBn(0, δ2))\{0} are real analytic. Now the va-499

lidity of the proposition follows by Theorem 6.1 and by standard calculus in500

Banach spaces. �501

6.2. Families of Fundamental Solutions for the Helmholtz Operator502

We now consider two specific families of fundamental solutions for the Helm-503

holtz operator ∆+λ with λ ∈ C\{0}. Such families have been exploited in [22]504

to study a singularly perturbed Neumann eigenvalue problem for the Laplace505

operator. As we shall see, the first family consists of functions which can be506

extended to entire holomorphic functions of the variable λ ∈ C when the507

spatial variable x is fixed. Instead, the second family consists of fundamen-508

tal solutions which satisfy a Bohr-Sommerfeld outgoing radiation condition509

corresponding to a suitable choice of a square root of λ.510

We start by introducing the holomorphic family, which we denote by511

S♯
h,n. Here the subscript h stands for ‘holomorphic’. To do so, we need the512

following notation. We denote by J♯
ν the function from C to C defined by513

J♯
ν(z) ≡

∞
∑

j=0

(−1)jzj(1/2)2j(1/2)ν

Γ(j + 1)Γ(j + ν + 1)
∀z ∈ C,514

if ν ∈ C\{−j : j ∈ N\{0}}, and by515

J♯
ν(z) ≡

∞
∑

j=−ν

(−1)jzj(1/2)2j(1/2)ν

Γ(j + 1)Γ(j + ν + 1)
∀z ∈ C,516

if ν ∈ {−j : j ∈ N\{0}}. Then J♯
ν(z) is well known to be an entire function of517

z ∈ C for all fixed ν ∈ C and zνJ♯
ν(z2) is the Bessel function of the first kind518

of index ν. Moreover, if ν ∈ N, then we set519

N ♯
ν(z) ≡ −

2ν

π

∑

0≤j≤ν−1

(ν − j − 1)!

j!
zj(1/2)2j

520

−
zν

π

∞
∑

j=0

(−1)jzj(1/2)2j(1/2)ν

j!(ν + j)!

⎛

⎝2
∑

0<l≤j

1

l
+

∑

j<l≤j+ν

1

l

⎞

⎠ ∀z ∈ C.521

As one can see, also N ♯
ν(z) is an entire holomorphic function of the522

variable z ∈ C for all ν ∈ N, and 2
π (log z − log 2 + γ)Jν(z) − zνN ♯

ν(z2)523

coincides with the Bessel function of the second kind and index ν for all524

z ∈ C\] − ∞, 0]. Here log is the principal branch of the logarithm and γ is525
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the Euler-Mascheroni constant. Then we have the following proposition (for526

a proof, see e.g., [22]).527

Proposition 6.3. Let n ∈ N\{0, 1}. Let528

bn ≡

{

π1−(n/2)2−1−(n/2) if n is even,

(−1)
n−1

2 π1−(n/2)2−1−(n/2) if n is odd.
(6.1)529

Let S♯
h,n(·, ·) be the map from (Rn\{0}) × C to C defined by530

S♯
h,n(x, λ) ≡

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

bn

{

2
π λ

n−2
2 J♯

n−2
2

(λ|x|2) log |x|

+|x|2−nN ♯
n−2

2

(λ|x|2)

}

if n is even,

bn|x|2−nJ♯

− n−2
2

(λ|x|2) if n is odd,

531

for all (x, λ) ∈ (Rn\{0}) × C. Then S♯
h,n(·, λ) is a fundamental solution of532

∆ + λ for all λ ∈ C. Moreover, the function S♯
h,n(x, ·) is holomorphic in C533

for all fixed x ∈ R
n\{0}.534

Now, one readily verifies that the function from (Rn\{0})×C to C which535

takes (x, λ) to S♯
h,n(x, λ) is real analytic. Accordingly, the function S ≡ S♯

h,n536

satisfies condition (1.1) with K = O = C, and a(·) ≡ (aα(·))|α|≤2 defined by537

aα(λ) ≡

⎧

⎨

⎩

1 if α = 2ej with j ∈ {1, . . . , n},
0 if |α| = 1 or if α = ej + ek with j, k ∈ {1, . . . , n}, j �= k,
λ if |α| = 0

538

(6.2)539

for all λ ∈ C. Here {e1, . . . , en} denotes the canonical basis of R
n. We now540

show that S♯
h,n verifies also the condition in (5.2). To do so we prove the541

following.542

Proposition 6.4. Let n ∈ N\{0, 1}. Let λ0 ∈ C. Let Vλ0
be an open bounded543

neighborhood of λ0 in C. Let δ2 ∈]0,+∞[. Then the map from Vλ0
to the space544

A1
max{n−2, 1

2 }
(δ2) which takes λ to S♯

h,n(·, λ)|(clBn(0,δ2))\{0} is real analytic.545

Proof. Assume that n is even. Then, by the classical Cauchy inequalities546

for real analytic functions, there exists ρ′ ∈]0,+∞[ such that the function547

from clVλ0
× clBn(0, δ2) to C which takes (λ, x) to λ

n−2
2 J♯

n−2
2

(λ|x|2) belongs548

to C0
ω,ρ′(clVλ0

× clBn(0, δ2)) (cf. e.g., John [14, p. 65]). Then let ρ ∈]0, ρ′[.549

By Proposition A.1 of the Appendix, the map from Vλ0
to C0

ω,ρ(clBn(0, δ2))550

which takes λ to the function λ
n−2

2 J♯
n−2

2

(λ|x|2) of x ∈ clBn(0, δ2) is real ana-551

lytic. We also observe that the map from C0
ω,ρ(clBn(0, δ2)) to A1

max{n−2, 1
2 }

(δ2)552

which takes a function F to the function F (x) log |x| of x ∈ (clBn(0, δ2))\{0}553

is linear and continuous. Hence we conclude that the map from Vλ0
to554

A1
max{n−2, 1

2 }
(δ2) which takes λ to the function λ

n−2
2 J♯

n−2
2

(λ|x|2) log |x| of555

x ∈ (clBn(0, δ2))\{0} is real analytic. Similarly one can show that the map556
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from Vλ0
to A1

max{n−2, 1
2 }

(δ2) which takes λ to the function |x|2−nN ♯
n−2

2

(λ|x|2)557

of x ∈ (clBn(0, δ2))\{0} is real analytic. Now the validity of the proposition558

for n even follows by standard calculus in Banach spaces. The proof for n559

odd is similar and is accordingly omitted. �560

We now turn to consider the family of fundamental solutions S♯
r,n(·, λ),561

where the subscript r stands for ‘radiation’. As well known in scattering562

theory, if λ ∈ C\] − ∞, 0] and Imλ ≥ 0, then a function u ∈ C1(Rn\{0}) is563

said to satisfy the outgoing (e
1
2 log λ)-radiation condition if we have564

lim
x→∞

|x|
n−1

2

(

Du(x)
x

|x|
− ie

1
2 log λu(x)

)

= 0.565

Then we have the following (for a proof we refer the reader to [22]).566

Proposition 6.5. Let n ∈ N\{0, 1}. Let γn be the function from C to C defined567

by setting568

γn(z) ≡

{

[−i + 2
π (z − log 2 + γ)]bn if n is even,

−e−i n−2
2 πbn if n is odd,

569

for all z ∈ C, with bn as in (6.1). Let570

S♯
r,n(x, λ) ≡ S♯

h,n(x, λ) + γn(2−1 log λ)e
n−2

2 log λJ♯
n−2

2

(λ|x|2) ∀x ∈ R
n\{0},571

for all λ ∈ C\]−∞, 0]. Then S♯
r,n(·, λ) is a fundamental solution of ∆+λ for572

all λ ∈ C\]−∞, 0], and satisfies the the outgoing (e
1
2 log λ)-radiation condition573

for all λ ∈ C\] − ∞, 0] with Im λ ≥ 0.574

Then one verifies that the function from (Rn\{0}) × (C\] − ∞, 0]) to C575

which takes (x, λ) to S♯
r,n(x, λ) is real analytic.576

Accordingly, the function S ≡ S♯
r,n satisfies condition (1.1) with K = C,577

and O = C\] − ∞, 0], and a(·) ≡ (aα(·))|α|≤2 with aα as in (6.2). Moreover,578

the following Proposition 6.6 implies that S ≡ S♯
r,n satisfies also the condition579

in (5.2). Its proof is similar to the one of Proposition 6.4 and is accordingly580

omitted.581

Proposition 6.6. Let n ∈ N\{0, 1}. Let λ0 ∈ C\] − ∞, 0]. Let Vλ0
be an open582

bounded neighborhood of λ0 in C\] − ∞, 0]. Let δ2 ∈]0,+∞[. Then the map583

from Vλ0
to A1

max{n−2, 1
2 }

(δ2) which takes λ to S♯
r,n(·, λ)|(clBn(0,δ2))\{0} is real584

analytic.585

6.3. An Application to Domain Perturbation Problems586

The study of the dependence of the solution of a boundary value problem587

upon regular and singular perturbations of the domain has long been investi-588

gated by several authors and with many different approaches. So for example,589

we mention Burenkov and Lamberti [1], Henry [12], Keldysh [16], Maz’ya et590

al. [27], Sokolowski and Zolésio [35], and Ward and Keller [37]. We now briefly591

outline an application of the results of the previous sections to an operator592

which appears when dealing with the investigation of the dependence of the593

solution of a boundary value problem upon perturbation of the coefficients594

of the differential operator, of the domain, and of the data.595
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So let assumption (1.1) hold and let Ω be a bounded open Lipschitz596

subset of R
n. Suppose we are interested in studying the dependence of the597

solution of a certain boundary value problem for the partial differential equa-598

tion599

P [a(κ), D]u = ϕ in ψ(Ω#) , (6.3)600

upon κ, ϕ, and ψ, where Ω# is a bounded open Lipschitz subset of R
n, κ ∈ O,601

ϕ is a sufficiently regular function defined in clΩ, and ψ a certain diffeomor-602

phism of class Cm,α from clΩ# onto ψ(clΩ#) ⊆ Ω. The set Ω# represents a603

‘base domain’ which is perturbed by means of the diffeomorphism ψ. In or-604

der to investigate the dependence of the solution on the triple (κ, ϕ, ψ), one605

may need to convert the boundary value problem for the non-homogeneous606

equation (6.3) defined on the varying domain ψ(Ω#) into a boundary value607

problem for an homogeneous equation defined on the fixed domain Ω#. Thus,608

as in [20], one may find useful to consider the composition Pk[ϕ] ◦ ψ of the609

volume potential Pk[ϕ] with the diffeomorphism ψ, and study the regular-610

ity of the map which takes the triple (κ, ϕ, ψ) to Pk[ϕ] ◦ ψ. As observed in611

the introduction, a convenient choice of the function space for ϕ in order to612

ensure the real analyticity of such operator with the Schauder class Cm,α as613

target space is a Roumieu class.614

Then, in the following proposition, by combining Theorem 5.1 and615

Proposition A.2 of the Appendix, we deduce under suitable assumptions the616

analyticity of the operator which takes the triple (κ, ϕ, ψ) to the composite617

function Pk[ϕ] ◦ ψ.618

Proposition 6.7. Let n ∈ N\{0, 1}. Let m ∈ N\{0}, α ∈]0, 1[. Let assumption619

(1.1) hold. Let Ω, Ω# be bounded open Lipschitz subsets of R
n. Let Ω1 be an620

open subset of R
n such that clΩ1 ⊆ Ω. Let assumption (5.1) hold with δ1 = δ∗,621

δ2 = δ∗ [see (4.1)]. Then the map from Vκ0
× C0

ω,ρ(clΩ) × Cm,α(clΩ#,Ω1) to622

Cm,α(clΩ#) which takes (κ, ϕ, ψ) to Pκ[ϕ] ◦ ψ is real analytic [see (1.2)].623

Appendix A.624

We introduce in this appendix some technical results which we exploit in the625

paper.626

Proposition A.1. Let n1, n2 ∈ N\{0}. Let V , W be bounded open subsets of627

R
n1 and R

n2 , respectively. Let ρ′ ∈]0,+∞[. Let H ∈ C0
ω,ρ′(cl(V × W )). Then628

H(x, ·) ∈ C0
ω,ρ′(clW ) for all x ∈ clV . Moreover, if ρ ∈]0, ρ′[ then the map629

from V to C0
ω,ρ(clW ) which takes x to H(x, ·) is real analytic and630

‖∂α
x H(x, ·)‖C0

ω,ρ(clW ) ≤ ‖H‖C0
ω,ρ′ (cl(V ×W ))|α|!/(ρ′ − ρ)|α| ∀x ∈ clV,631

(A.1)632

for all α ∈ N
n1 .633

Proof. By the membership of H in C0
ω,ρ′(cl(V × W )) we have634

|∂α
x ∂β

y H(x, y)| ≤ ‖H‖C0
ω,ρ′ (cl(V ×W ))(|α| + |β|)!/ρ′|α|+|β| (A.2)635
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for all x ∈ clV , y ∈ clW , α ∈ N
n1 , and β ∈ N

n2 . Then by taking α = (0, . . . , 0)636

we deduce that H(x, ·) ∈ C0
ω,ρ′(clW ) for all x ∈ clV . Now let ρ ∈]0, ρ′[ and637

observe that638

(|α| + |β|)!

ρ′|α|+|β|
=

(

|α| + |β|
|β|

)(

ρ′ − ρ

ρ′

)|α| (
ρ

ρ′

)|β|
|α|!

(ρ′ − ρ)|α|

|β|!

ρ|β|
639

and640

(

|α| + |β|
|β|

) (

ρ′ − ρ

ρ′

)|α| (
ρ

ρ′

)|β|

641

≤

|α|+|β|
∑

j=0

(

|α| + |β|
j

)(

ρ′ − ρ

ρ′

)|α|+|β|−j (

ρ

ρ′

)j

642

=

(

ρ′ − ρ

ρ′
+

ρ

ρ′

)|α|+|β|

= 1.643

Thus inequality (A.2) implies that644

|∂α
x ∂β

y H(x, y)| ≤ ‖H‖C0
ω,ρ′ (cl(V ×W ))

|α|!

(ρ′ − ρ)|α|

|β|!

ρ|β|
645

and the validity of (A.1) follows by the definition of ‖ · ‖C0
ω,ρ(clW ). Now the646

real analyticity of the map from V to C0
ω,ρ(clW ) which takes x to H(x, ·)647

can be deduced by inequality (A.1) and by the classical Cauchy inequalities648

for real analytic maps in Banach spaces (cf. e.g., Prodi and Ambrosetti [34,649

Thm. 10.5]). �650

Then we introduce the following slight variant of Preciso [32, Prop.651

4.2.16, p. 51], Preciso [33, Prop. 1.1, p. 101] on the real analyticity of a652

composition operator. See also [19, Prop. 2.17, Rem. 2.19] and the slight653

variant of the argument of Preciso of the proof of [21, Prop. 9, p. 214]. Indeed,654

bounded open connected Lipschitz subsets of the Euclidean space are easily655

seen to be Whitney regular as requested by the statement of Preciso.656

Proposition A.2. Let h, k ∈ N\{0}, m ∈ N. Let α ∈]0, 1], ρ > 0. Let Ω, Ω′
657

be bounded open subsets of R
h, R

k, respectively. Let Ω′ be a Lipschitz subset.658

Then the operator T defined by659

T [ζ, ψ] ≡ ζ ◦ ψ660

for all (ζ, ψ) ∈ C0
ω,ρ(clΩ)×Cm,α(clΩ′,Ω) is real analytic from the open subset661

C0
ω,ρ(clΩ) × Cm,α(clΩ′,Ω) of C0

ω,ρ(clΩ) × Cm,α(clΩ′, Rh) to Cm,α(clΩ′).662
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Birkhäuser, Basel (2000)743
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