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Abstract. We give a classification theorem for a relevant class of t-structures

in triangulated categories, which includes, in the case of the derived category of

a Grothendieck category, a large class of t-structures whose hearts have at most
n fixed consecutive non-zero cohomologies. Moreover, by this classification

theorem, we deduce the construction of the t-tree, a new technique which

generalises the filtration induced by a torsion pair. At last we apply our
results in the tilting context generalizing the 1-tilting equivalence proved by

Happel, Reiten and Smalø [HRS96]. The last section provides applications to

classical n-tilting objects, examples of t-trees for modules over a path algebra,
and new developments on compatible t-structures [KeV88b], [Ke07].
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Introduction

In [BBD82], Bĕılinson, Bernstein and Deligne introduced the notion of t-structure
in a triangulated category. A triangulated category C can have plenty of t-structures,
and each of these t-structures determines a full abelian subcategory of C: the heart
of the t-structure. The theory of t-structures has several applications in different
mathematical areas as: algebraic analysis, algebraic geometry, motives, K-theory,
representation theory, etc.
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Happel, Reiten and Smalø in their seminal paper [HRS96] introduced a technique
to construct, starting from a given t-structure D and a torsion pair on its heart, a
new t-structure, called the tilted t-structure with respect to the given torsion pair.
By a result of Polishcuk [Pol07], in such a way one gets all the t-structures T whose
aisles satisfy

D≤−1 ⊆ T ≤0 ⊆ D≤0.

Happel, Reiten and Smalø proved that if the torsion pair we tilt by is tilting or
cotilting, i.e., if the torsion class is cogenerating or the torsion-free class is generat-
ing, then the heart of the new t-structure is derived equivalent to the heart of the
old one ([HRS96, Chapter I, Theorem 3.3]). A motivating example for this result
is given by classical 1-tilting objects in a Grothendieck category G: the heart of the
t-structure obtained by tilting the natural t-structure in the derived category D(G)
with respect to the torsion pair generated by a classical 1-tilting object is derived
equivalent to G.

In his report on [HRS96] for the Mathematical Reviews, Rickard observed that
“Although the theory of tilting modules has undergone many fruitful generaliza-
tions, the original version, involving tilting modules with projective dimension one,
had one aspect that did not generalize. This was the torsion theory on the module
category determined by the tilting module.” A classical tilting object T with projec-
tive dimension one in the category R-Mod of left modules over an arbitrary ring R
determines the torsion pair whose torsion class is {M ∈ R-Mod : Ext1R(T,M) = 0}
and whose torsion-free class is {M ∈ R-Mod : HomR(T,M) = 0}. Therefore every
module in R-Mod decomposes in pieces where at most only one among the derived
functors of HomR(T,−) acts non trivially. It is well known that we lose this possi-
bility when passing to classical tilting objects in R-Mod with projective dimension
greater than one (see [Ton02]).

In this paper we want to generalise the Happel-Reiten-Smalø result and, meeting
Rickard’s demand, to recover the torsion torsion-free decomposition, passing, refer-
ring to the motivating example, from classical 1-tilting objects to classical n-tilting
objects.

A pair (D, T ) of t-structures satisfying D≤−n ⊆ T ≤0 ⊆ D≤0 is right filterable
(see Definition 2.8) if D≥−i ∩ T ≥0 is a co-aisle for any i = 1, ..., n: for n = 1 this
condition is always satisfied. Under this hypothesis we prove that

(1) if (D, T ) is n-tilting then the hearts of D and T are derived equivalent (the
case n = 1 recovers [HRS96, Chapter I, Theorem 3.3]);

(2) for any object in the heart of D we construct a finite tree of short exact
sequences of height n whose leaves have at most one T -cohomology different
from zero (the case n = 1 gets back the usual short exact sequence produced
by the torsion pair associated to a classical 1-tilting object [BB80]).

The paper is divided into six sections.
In Section 1, which is of preliminary nature, the basic concepts used later are in-

troduced. Here we recall some definitions and results, most of them well-known, on
t-structures in triangulated categories and on tilting objects in Grothendieck cat-
egories. We discuss briefly the connection between torsion pairs and t-structures
and indicate the relationship with tilting theory (the main references are [BBD82]
and [BR07]). One of the main tool that we recall is the Happel, Reiten, Smalø con-
struction (see Proposition 1.8) which, starting from the heart of a (non-degenerate)
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t-structure on a triangulated category C and a torsion pair on this heart, permits
to produce a new t-structure on C.

In Section 2, we introduce the notions of shift and gap for an ordered pair (D, T )
of t-structures on a triangulated category C (see Definition 2.1). The motivating
example comes from tilting theory, when D is the natural t-structure on the derived
category of a Grothendieck category G and T is the t-structure compactly generated
by a classical n-tilting object in G. Polishchuk in [Pol07, Lemma 1.2.2] proved that
the pairs of t-structures (D, T ) satisfying D≤−1 ⊆ T ≤0 ⊆ D≤0 are exactly the pairs
in which T is obtained by tilting D with respect to a torsion pair. Generalizing the
result of Polishchuk, we prove that an iterated HRS procedure permits to recover
all the right filterable pairs (D, T ) (see Definition 2.8) which satisfy the condition
D≤−m ⊆ T ≤0 ⊆ D≤0 (see Theorem 2.14).

In Section 3, we introduce and investigate in detail, for a right filterable pair
(D, T ) of t-structures of gap n, a factorization of the objects in the heart of D in
a finite binary t-tree of height n (see Definition 3.1), whose 2n leaves are objects
of C living in (shifts of) the heart of T . This t-tree generalises the Brenner and
Butler factorization of modules induced by the torsion pair generated by a classical
1-tilting module.

In Section 4, we collect the same results of Sections 2 and 3 in the dual hypothesis
of left filterability.

In Section 5, we define and study the so called n-(co)tilting t-structures: a pair
(D, T ) of t-structures in a triangulated category C is n-tilting (resp. n-cotilting)
if (D, T ) is filterable, and the full subcategory HD ∩ HT of HD cogenerates HD
(resp. the full subcategory HD ∩ HT [−n] of HD generates HD). The 1-(co)tilting
pairs of t-structures coincide with the t-structures induced by (co)tilting torsion
pairs studied by Happel, Reiten and Smalø (see [HRS96, Ch. I, §3]). We generalise
in Theorem 5.8 the derived equivalence of Happel, Reiten, Smalø [HRS96, Ch. I,
Theorem 3.3] to the case n ≥ 1.

Section 6 is devoted to some applications. One concerns derived equivalences
induced by n-tilting objects in a Grothendieck category G. In this scenario the right
filterability is satisfied. As remarked before, when D is the natural t-structure on
the derived category of G and T is the t-structure compactly generated by a n-tilting
object T in G, then the pair (D, T ) is n-tilting. The machinery developed in the
previous sections applies, providing a commutative diagram of equivalences which
clarifies the derived Morita equivalence induced by T (see Lemma 6.6). Another
application regards compatible t-structures, introduced by Keller and Vossieck in
[KeV88b], studied also in [Vit14]. Here, according to the literature, we consider the
left filterability assumption. We prove in Theorem 6.14 that given a left-filterable
pair (D, T ), the t-structure T is left D-compatible if and only if in its generating
HRS procedure the torsion classes are all contained in HD. In particular, we deduce
in Corollary 6.16 that if (D, T ) is a n-tilting (resp. n-cotilting) pair of t-structures,
then T is left D-compatible if and only if n = 0 or n = 1, as suggested by Keller in
[Ke07, pag. 26].

Acknowledgement. The authors would like to thank the referee for her/his care in
reading this paper and for her/his insightful comments and suggestions.
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1. Preliminaries

I. Notations. Let C be an additive category. In what follows, any full sub-
category of C will be strictly full (i.e., closed under isomorphisms) and additive.
Any functor between additive categories will be an additive functor. For any full
subcategory S of C we denote by ⊥S the left orthogonal subcategory of S, that is,

⊥S := {X ∈ C | HomC(X,S) = 0, for all S ∈ S},

and by S⊥ the right orthogonal subcategory of S, that is,

S⊥ := {X ∈ C | HomC(S,X) = 0, for all S ∈ S}.

If C is a triangulated category, we will denote its suspension functor by [1].

II. t-structures. Bĕılinson, Bernstein and Deligne [BBD82] introduced the
notion of a t-structure in a triangulated category in their study of perverse sheaves
on an algebraic or analytic variety.

Let C be a triangulated category.

Definition 1.1. A t-structure in C is a pair D := (D≤0,D≥0) of full subcategories
of C such that, setting D≤n := D≤0[−n] and D≥n := D≥0[−n], one has:

(i) D≤0 ⊆ D≤1 and D≥0 ⊇ D≥1;
(ii) HomC(X,Y ) = 0, for every X in D≤0 and every Y in D≥1;

(iii) For any object X ∈ C there exists a distinguished triangle

A→ X → B → A[1]

in C, with A ∈ D≤0 and B ∈ D≥1.

The classes D≤0 and D≥0 are called the aisle and the co-aisle of the t-structure D.

The following proposition summarizes the basic properties of a t-structure.

Proposition 1.2. [BBD82, Proposition 1.3.3, Theorem 1.3.6] Let D = (D≤0,D≥0)
be a t-structure in a triangulated category C.

(i) The inclusion of D≤n in C admits a right adjoint δ≤n, and the inclusion of
D≥n in C a left adjoint δ≥n called the truncation functors.

(ii) For every object X in C there exists a unique morphism d : δ≥1(X) →
δ≤0(X)[1] such that the triangle

δ≤0(X)→X→δ≥1(X)
d→δ≤0(X)[1]

is distinguished. This triangle is (up to a unique isomorphism) the unique
distinguished triangle (A,X,B) with A in D≤0 and B in D≥1 and it is
called the approximating triangle of X (for the t-structure D).

(iii) The category HD := D≤0 ∩ D≥0 is abelian and is called the heart of the
t-structure. The truncation functors induce functors Hi

D : C → HD, i ∈
Z, called the t-cohomological functors associated with the t-structure D,
defined as follows: H0

D(X) := δ≥0δ≤0(X) ' δ≤0δ≥0(X) and for every i ∈ Z,
Hi
D(X) := H0

D(X[i]).

Remark 1.3. Let C be a triangulated category endowed with a t-structure D =
(D≤0,D≥0). We recall that its opposite category C◦ is a triangulated category too
and the pair (D≥0,D≤0) defines a t-structure D◦ on C◦.
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Given an abelian category A, its (unbounded) derived category D(A) is a trian-
gulated category which admits a t-structure, called the natural t-structure, whose
aisle D(A)≤0 (resp. co-aisle D(A)≥0) is the subcategory of complexes without
cohomology in positive (resp. negative) degrees. The t-cohomological functors
associated with the natural t-structure are simply denoted by Hi, i ∈ Z.

Definition 1.4. A t-structure (D≤0,D≥0) in C is called non-degenerate if
⋂
n∈ZD≤n =

0 and
⋂
n∈ZD≥n = 0.

Remark 1.5. The property of being non-degenerate implies that an object C ∈ C:
- vanishes if and only if Hn

D(C) = 0, for each n ∈ Z;
- belongs to D≤0 if and only if Hn

D(C) = 0, for each n > 0;
- belongs to D≥0 if and only if Hn

D(C) = 0, for each n < 0.

From now on we will consider only non-degenerate t-structures and in partic-
ular we will extensively use the characterization of D≤0 and D≥0 in cohomological
terms.

Definition 1.6. Given a t-structure T in C, we call T -static of degree d the objects
in C belonging toHT [−d], and T -static the objects in C which are T -static of degree
d for some d ∈ Z.

An object X is T -static of degree d if and only if X[d] belongs to HT , i.e.,

Hj
T (X) = 0 for each j 6= d.

Definition 1.7. A torsion pair in an abelian category A is a pair (X ,Y) of full
subcategories of A satisfying the following conditions:

(i) HomA(X,Y ) = 0, for every X ∈ X and every Y ∈ Y.
(ii) For any object C ∈ A there exists a short exact sequence:

0→ X → C → Y → 0

in A, with X ∈ X and Y ∈ Y.

A torsion pair (X ,Y) in the heart HD of a t-structure D in a triangulated cate-
gory C induces a new t-structure T(X ,Y) in C:

Proposition 1.8. [HRS96, Ch. I, Proposition 2.1][Bri05, Proposition 2.5] Let HD
be the heart of a t-structure D = (D≤0,D≥0) on a triangulated category C and let

(X ,Y) be a torsion pair on HD. Then the pair T(X ,Y) := (T ≤0(X ,Y), T
≥0
(X ,Y)) of full

subcategories of C

T ≤0(X ,Y) = {C ∈ C | H0
D(C) ∈ X , Hi

D(C) = 0 ∀i > 0}
T ≥0(X ,Y) = {C ∈ C | H−1D (C) ∈ Y, Hi

D(C) = 0 ∀i < −1}

is a t-structure on C. We say that T(X ,Y) is obtained by tilting D with respect to
the torsion pair (X ,Y).

Remark 1.9. The non degeneracy of D = (D≤0,D≥0) and the orthogonality of the

classes X and Y in HD imply the orthogonality of T ≤0(X ,Y) and T ≥1(X ,Y) in C. Moreover

since D≤−1 ⊆ T ≤0(X ,Y) ⊆ D
≤0, the t-structure T(X ,Y) is non-degenerate. Let us

describe for any object C in C the approximating triangle τ≤0C → C → τ≥1C
+1→

of C for the t-structure T(X ,Y). Denote by δ≤n and δ≥n the truncation functors of
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the t-structure D and by X the torsion part of H0
D(C) with respect the torsion pair

(X ,Y). From the diagram

X� _

��

f

''

δ≤0C // H0
D(C) // (δ≤−1C)[1]

+1
//

there exists a map h such that the following diagram commutes

X
f
//

��

(δ≤−1C)[1] // Cone f

h[1]
��

+1
//

H0
D(C) //

��

(δ≤−1C)[1] // (δ≤0C)[1]

ι[1]
��

+1
//

δ≥0C // (δ≤−1C)[1] // C[1]
+1
//

The distinguished triangle Cone f [−1]
ι◦h // C // Cone(ι ◦ h)

+1
// is the ap-

proximating triangle of C with respect to the t-structure T(X ,Y), i.e., τ≤0(C) =

Cone f [−1] and τ≥1(C) = Cone(ι ◦ h).

We say that the t-structure T(X ,Y) is obtained by tilting D with respect to (X ,Y).
The torsion class X is the subcategory of all T(X ,Y)-static objects in HD of degree
0; the torsion free class Y is the subcategory of all T(X ,Y)-static objects in HD of
degree 1.

III. Compactly generated t-structures. Let C be a triangulated category
with small direct sums.

An object T ∈ C is called compact if for any family {Yi}i∈I of objects of C the
canonical morphism of abelian groups:⊕

i∈I
HomC(T, Yi)→ HomC(T,

⊕
i∈I

Yi)

is an isomorphism (see [Nee96, Definition 1.6]).

Proposition 1.10. [BR07, Ch. III, Theorem 2.3] Let C be a triangulated category
with small direct sums and suppose that T is a set of compact objects of C. Then
the following pair (T ≤0T , T ≥0T ) of full subcategories determines a t-structure TT in
C:

T ≥0T = {Y ∈ C |HomC(T, Y [n]) = 0, for all T ∈ T and n < 0 }, T ≤0T = ⊥(T ≥0T ).

The t-structure (T ≤0T , T ≥0T ) is called to be compactly generated by the set of compact
objects T.

Let us recall the definition of homotopy colimit:

Definition 1.11. [Nee96, §2] Suppose that C has direct sums. Let

X0
f0→ X1

f1→ X2
f2→ · · ·

be a sequence of objects and morphisms in C. Then the homotopy colimit of this
sequence is by definition the mapping cone of the morphism⊕

i∈NXi

id−
⊕

i fi //
⊕

i∈NXi
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and it is denoted by HoColimXi. Dually when C admits direct products one gets
the notion of homotopy limit taking the homotopy colimit in C◦.

Lemma 1.12. [Nee96, Lemma 2.8] Let us assume that T is a compact object in a
triangulated category C having direct sums and that

X0 → X1 → X2 → · · ·
is a sequence of objects and morphisms in C. Then the canonical morphism of
abelian groups:

lim−→HomC(T,Xi)→ HomC(T,HoColimXi)

is an isomorphism.

Remark 1.13. If T is a compactly generated t-structure in C, then by Lemma 1.12
its co-aisle is closed under taking homotopy colimits in C. In particular, T is of
finite type (see [BR07, Ch. III, Definition 1.1]), i.e., its co-aisle is closed under
taking small direct sums in C.

Remark 1.14. If G is a Grothendieck category, that is, G is an abelian category
with a generator and admitting exact filtered direct limits, then D(G) has both
small direct sums and small products. In fact, direct sums are obtained by taking
term-wise direct sums and products are obtained by taking term-wise products
of K-injective replacements (recall that G has enough injectives). Moreover, the
direct sum (resp. product) of a family of distinguished triangles in D(G) is a
distinguished triangle (see [Nee01, Proposition 1.2.1 and Remark 1.2.2]) and both
the classes D(G)≤0 and D(G)≥0 are closed under direct sums in D(G): therefore
DG := (D(G)≤0, D(G)≥0) is of finite type.

IV. Classical n-tilting objects and tilting torsion pairs. An object T in
a Grothendieck category G is called n-tilting if the following four properties are
satisfied:

(T1) T is a compact object in D(G);
(T2) T is rigid, i.e., ExtiG(T, T ) = HomD(G)(T, T [i]) = 0 for each i > 0;
(T3) T is a generator of D(G), i.e., given a non-zero object X in D(G) there

exists i ∈ Z such that HomD(G)(T [i], X) 6= 0;

(T4) ExtnG(T,−) 6= 0 and Extn+1
G (T,−) = 0.

In such a case the derived functor R HomG(T,−) : D(G) → D(EndG(T )) is a
triangle equivalence sending T to EndG(T ) (see [CPS86], [Hap87], [Ric89], [Ke94]).
The aisle and the co-aisle of the t-structure TT compactly generated by T are equal
to

T ≤0T = {X ∈ D(G) : HomD(G)(T,X[i]) = 0 for each i > 0}
= {X ∈ D(G) : Hi(R HomG(T,X)) = 0 for each i > 0}

T ≥0T := {X ∈ D(G) : HomD(G)(T,X[i]) = 0 for each i < 0}
= {X ∈ D(G) : Hi(R HomG(T,X)) = 0 for each i < 0}.

The derived functor R HomG(T,−) sends the t-structure TT compactly generated
by T to the natural t-structure in D(EndG(T )) compactly generated by EndG(T );
hence it induces an equivalence between the hearts HTT and Mod- EndG(T ), and
so T is a compact projective generator of HTT [BR07]. A TT -static object of degree
d in D(G) (see Definition 1.6) is a complex X such that Hi R HomG(T,X) = 0
for each i 6= d. In particular for a TT -static object M of degree d in G one has
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ExtiG(T,M) = 0 for each i 6= d: the classes of TT -static objects in G are the
classes KEd(T ), d = 0, 1, ..., n, studied by Miyashita in [Miy86]. If T is a classical
1-tilting object, then the class of TT -static objects of degree 0 and the class of TT -
static objects of degree 1 in G form a torsion pair (see [BB80], [Col99], [CF04]);
any object in G is an extension of a TT -static object of degree 1 by a TT -static
object of degree 0. If T is a classical n-tilting object, n ≥ 2, it is not anymore
possible in general to decompose an object in G in TT -static objects (see [Ton02]
for examples in the case of module categories and a characterisation of modules
which are extensions of TT -static objects).

A torsion class X in an abelian category A is a tilting torsion class (see [HRS96,
Ch. I, §3]) if X cogenerates A, i.e., for all A in A there is XA ∈ X and a monomor-
phism A ↪→ XA. The torsion class generated by a classical 1-tilting object in
a Grothendieck category (see [Col99, Definition 2.3]) is an example of a tilting
torsion class. We recall the fundamental result originally due to Happel, Reiten,
Smalø, and independently improved by Bondal and Van den Bergh in [BvdB03,
Proposition 5.4.3], by Noohi in [Noo09, Theorem 7.6] and by [Che10]:

Theorem 1.15. [HRS96, Ch. I, Theorem 3.3][Che10] Let T := T(X ,Y) be the t-
structure on D(A) induced by a tilting torsion pair (X ,Y) in A. There exists a
triangle equivalence E : D(HT ) → D(A) between the derived category of the heart
HT of the t-structure T and the derived category of A, such that the restriction to
HT is naturally isomorphic to the inclusion HT ⊆ D(A).

Remark 1.16. Let T := T(X ,Y) be the t-structure on D(A) induced by a tilting
torsion pair (X ,Y) in A. In order to prove the previous result, in [Che10] the
author first verifies that a complex in the homotopy category K(X ) is acyclic in
A if and only if is acyclic in HT . Then he observes that the class of all such
complexes forms a null system N in K(X ). Therefore the natural inclusions F and
G of K(X )/N in D(A) and in D(HT ) are triangle equivalences. Finally he gets the
triangle equivalence E : D(HT )→ D(A) composing F with a quasi inverse G−1 of
G such that the restriction of E to K(X )/N coincides with F .

2. A classification theorem for t-structures with finite gap

Throughout this section C is a triangulated category, and D := (D≤0,D≥0),
T := (T ≤0, T ≥0) are two t-structures on C whose truncation functors are denoted
by δ≤0, δ≥0 and τ≤0, τ≥0 respectively. We denote by HD and HT the hearts of
D and T , and by HD and HT the associated t-cohomological functors. For any
integer k we set D[k] := (D≤0[k],D≥0[k]) and hence HD[k] = HD[k]. We will also

use the notation D[a,b] = D≥a ∩ D≤b, where a ≤ b ∈ Z.

Definition 2.1. We say that a pair of t-structures (D, T ) has shift k ∈ Z and
gap n ∈ N if k is the maximal number such that T ≤k ⊆ D≤0 (or equivalently
D≥0 ⊆ T ≥k) and n is the minimal number such that D≤−n ⊆ T ≤k (or equivalently
T ≥k ⊆ D≥−n). Such a t-structure will be called of type (n, k).

Intuitively in a pair of t-structures (D, T ) of type (n, k), the shift k permits to
center the interval, while the gap n gives the wideness of the interval:

D≤−n ⊆ T ≤k ⊆ D≤0 or equivalently D≥0 ⊆ T ≥k ⊆ D≥−n.
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Therefore if (D, T ) is of type (n, k), the pair (D, T [−k]) is of type (n, 0); for this
reason, up to a shift, in the main results we can reduce to study only pairs of type
(n, 0).

Lemma 2.2. If (D, T ) is of type (n, k), then the pair (T ,D) is of type (n,−n−k).
Moreover

HT [−k] ⊆ D[−n,0] and HD[k] ⊆ T [0,n].

In particular the possible non zero D-static objects in HT have degree between −n−k
and −k, while the possible non zero T -static objects in HD have degree between k
and n+ k.

Proof. The pair of t-structures (D, T ) is of type (n, k) if k is the maximal number
and n is the minimal number such that T ≤k ⊆ D≤0 ⊆ T ≤n+k. Applying the
suspension functor [k + n] we get T ≤−n ⊆ D≤−k−n ⊆ T ≤0; moreover −k − n is
the maximal number such that D≤−k−n ⊆ T ≤0 and n is the minimal number such
that T ≤−n ⊆ D≤−k−n: this means that the pair (T ,D) has shift −n − k and gap
n. Moreover

HT [−k] = T ≤k ∩ T ≥k ⊆ D≤0 ∩ D≥−n = D[−n,0].

The second inclusion follows analogously. Finally we get the last statement since
HT ⊆ D[−n−k,−k] and HD ⊆ T [k,n+k]. �

The t-structure T(X ,Y) obtained by tilting D with respect to a torsion pair (X ,Y)
in the heart HD of a t-structure D in C (see Proposition 1.8) satisfies

D≤−1 ⊆ T ≤0(X ,Y) ⊆ D
≤0 or equivalently D≥0 ⊆ T ≥0(X ,Y) ⊆ D

≥−1.

Polishchuk in [Pol07, Lemma 1.2.2] proved that any pair of t-structures verifying
the latter condition is obtained by tilting with respect to a torsion pair:

Proposition 2.3. [Pol07, Lemma 1.2.2] A pair (D, T ) of t-structures in a trian-
gulated category C verifies

D≤−1 ⊆ T ≤0 ⊆ D≤0 or equivalently D≥0 ⊆ T ≥0 ⊆ D≥−1

if and only if T is a t-structure obtained by tilting D with respect to a torsion pair
in HD. In such a case the torsion pair one tilts by is

(X ,Y) := (T ≤0 ∩HD, T ≥1 ∩HD).

Remark 2.4. A pair of t-structures (D, T ) satisfies

D≤−1 ⊆ T ≤0 ⊆ D≤0 or equivalently D≥0 ⊆ T ≥0 ⊆ D≥−1

if and only if it is of type (0, 0), (0, 1) or (1, 0). In the first two cases the torsion
pairs we tilt by are the trivial ones: indeed the case of type (0, 0) corresponds to
tilting with respect to the torsion pair (HD, 0), and that of type (0, 1) corresponds
to tilting with respect to the torsion pair (0,HD). Moreover we note that in all
the three cases the torsion class HD ∩ T ≤0 = HD ∩HT coincides with the class of
objects inHD which are T -static of degree 0, while the torsion-free classHD∩T ≥1 =
HD∩HT [−1] coincides with the class of objects in HD which are T -static of degree
1 (see Definition 1.6). Then each object in HD is an extension of T -static objects
in HD; we have the same phenomenon we encountered in the derived category of a
Grothendieck category G when D is the natural t-structure and T is the t-structure
TT generated by a classical 1-tilting object T in G (see Section IV in Preliminaries).
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Our aim is to generalise the Polishchuk result describing for all m ∈ N all the
pairs of t-structures (D, T ) satisfying

D≤−m ⊆ T ≤0 ⊆ D≤0 or equivalently D≥0 ⊆ T ≥0 ⊆ D≥−m.

Remark 2.5. Observe that a pair (D, T ) satisfies D≥0 ⊆ T ≥0 ⊆ D≥−m if and only
if it is of type (n, k) ∈ N×N with n+ k ≤ m: indeed, the numbers k and n are the
maximal and minimal respectively such that

D≥0 ⊆ D≥−k ⊆ T ≥0 ⊆ D≥−k−n ⊆ D≥−m.

To construct a pair of t-structures satisfying D≥0 ⊆ T ≥0 ⊆ D≥−m it is natural
to iterate the procedure of tilting with respect to a torsion pair.

2.6. Iterated HRS procedure. Let E0 be a t-structure in a triangulated category
C. Given a torsion pair (W0,Z0) in the abelian category HE0 , tilting E0 with respect
to (W0,Z0) one gets in C a new t-structure E1. Consider now a torsion pair (W1,Z1)
in HE1 ; repeating the same procedure one obtains in C the tilted t-structure E2.
Since

E≥00 ⊆ E≥01 ⊆ E≥−10 and E≥01 ⊆ E≥02 ⊆ E≥−11 ,

we have
E≥00 ⊆ E≥01 ⊆ E≥02 ⊆ E≥−11 ⊆ E≥−20

and therefore (E0, E2) satisfies

E≥00 ⊆ E≥02 ⊆ E≥−20 .

Iterating m-times this procedure with respect to torsion pairs (Wi,Zi) in HEi ,
i = 0, 1, ...,m− 1, we get a t-structure Em satisfying

E≥00 ⊆ E≥0m ⊆ E≥−m0 ,

and hence of type (n, k) ∈ N×N with n+k ≤ m. We say that the pair of t-structures
(E0, Em) has been obtained by an iterated HRS procedure of length m.

Remark 2.7. Let D be a t-structure in a triangulated category C. Assume (X ,Y)
is a torsion pair in the heart HD. Let T := T(X ,Y) be the t-structure obtained by

tilting D with respect to (X ,Y). Now let us consider in HT = {C ∈ C : H0
D(C) ∈

X , H−1D (C) ∈ Y, Hi
D(C) = 0 ∀i 6= −1, 0} the torsion pair (Y[1],X [0]) (see [HRS96,

Ch. I, Corollary 2.2]); tilting T with respect to (Y[1],X [0]) we get the t-structure
E(Y[1],X [0]) defined by

E≤0(Y[1],X [0]) := {C ∈ C : H0
T (C) ∈ Y[1], Hi

T (C) = 0 ∀i > 0}.

As observed in [Bri05, p. 461], one has E≤0(Y[1],X [0]) = D≤−1 and hence E(Y[1],X [0]) =

D[1]. Notice that if both X and Y are different from 0, then the pair (D, T ) and
(T ,D[1]) are of type (1, 0), but (D,D[1]) is of type (0, 1): therefore, iterating the
tilting procedure, the gap, the shift, or their sum are not additive functions.

Now we want to prove that, for a fixed t-structure D in C, an iterated HRS
procedure permits to recover all the t-structures T which are D-filterable and satisfy
the condition D≥0 ⊆ T ≥0 ⊆ D≥−m.

Definition 2.8. Let D be a fixed t-structure in C. We say that a t-structure T in
C is

• right D-filterable if for any i ∈ Z the intersection D≥i ∩ T ≥0 is a co-aisle;
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• left D-filterable if for any i ∈ Z the intersection D≤i ∩ T ≤0 is an aisle.

Both the right filterability and left filterability are symmetric notions: therefore
we will say that the pair (D, T ) is right (left) filterable if either T is right (left)
D-filterable or equivalently D is right (left) T -filterable. We call filterable a pair of
t-structures which is right or left filterable.

Remark 2.9. A pair (D, T ) of t-structures satisfying condition

D≤−1 ⊆ T ≤0 ⊆ D≤0 or equivalently D≥0 ⊆ T ≥0 ⊆ D≥−1

is both right and left filterable. Indeed, we have

D≤i ∩ T ≤0 =

{
T ≤0 if i ≥ 0,

D≤i otherwise
and D≥i ∩ T ≥0 =

{
D≥i if i ≥ 0,

T ≥0 otherwise.

Observe that in general the intersection of the aisles or the co-aisles of two t-
structures is not an aisle or a co-aisle (see e.g. [Bon13, Lemma 3]): the inclusion
of the intersection of the two aisles (co-aisles) in the triangulated category C could
not admit a right (left) adjoint.

Nevertheless there is a wide class of interesting examples in which this pathology
does not occur. The following is a (not exhaustive) list of sufficient conditions for
a pair of t-structures to be filterable.

Lemma 2.10. Let (D, T ) be a pair of t-structures in a triangulated category C.
Whenever one of the following conditions holds, the pair (D, T ) is right filterable:

(1 ) C has countable direct sums and both the co-aisles D≥0 and T ≥0 are closed
under taking homotopy colimits in C; the aisle corresponding to D≥i ∩T ≥0
is the smallest subcategory of C containing both D≤i and T ≤0, closed under
suspension, extensions and direct summands.

(2 ) For each i ∈ Z one has τ≥0(D≥i) ⊆ D≥i; the aisle corresponding to D≥i ∩
T ≥0 is D≤i ? T ≤0, i.e., the subcategory of C of extensions of T ≤0 by D≤i.

(2’) For each i ∈ Z one has δ≥0(T ≥i) ⊆ T ≥i; the aisle corresponding to T ≥i ∩
D≥0 is the subcategory of C of extensions of D≤0 by T ≤i.

Dually, whenever one of the following conditions holds, the pair (D, T ) is left
filterable:

(i ) C has countable direct products and both the aisles D≤0 and T ≤0 are closed
under taking homotopy limits in C; the co-aisle corresponding to D≤i∩T ≤0
is the smallest subcategory of C containing both D≥i and T ≥0, closed under
suspension, extensions and direct summands.

(ii ) For each i ∈ Z one has τ≤0(D≤i) ⊆ D≤i; the co-aisle corresponding to
D≤i ∩ T ≤0 is the subcategory of C of extensions of D≥i by T ≥0.

(ii’) For each i ∈ Z one has δ≤0(T ≤i) ⊆ T ≤i; the co-aisle corresponding to
T ≤i ∩ D≤0 is the subcategory of C of extensions of T ≥i by D≥0.

Proof. Since D≥i ∩ T ≥0 is closed under cosuspension and extensions, it is enough
to prove that the inclusion D≥i ∩ T ≥0 ↪→ C has a left adjoint σ≥0 (see [KeV88a,
§1]).

(1) The claim is proved in [BPP13, Theorem 2.3] under the stronger hypothesis
that both D and T are compactly generated: the latter hypothesis is used exactly
in order to get our hypothesis that D≥0 and T ≥0 are closed under taking homotopy
colimits in C.
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(2) The truncation functor σ≥0 := τ≥0 ◦ δ≥i is left adjoint to the inclusion
D≥i ∩T ≥0 ↪→ C; since D≥i ∩T ≥0 is closed under cosuspension and extensions, it is
a co-aisle (see [KeV88a, §1]). Next for any M ∈ C we have the following diagram

δ≤iM // σ≤0M

��

// τ≤0(δ≥i+1(M))

��

δ≤iM //

��

M //

��

δ≥i+1M

��

0 // σ≥1M τ≥1(δ≥i+1(M))

where the first row is a distinguished triangle by [BBD82, Proposition 1.1.11].
Therefore σ≤0M is an extension of the objects δ≤iM ∈ D≤i and τ≤0(δ≥i+1(M)) ∈
T ≤0. (2’) follows by (2) inverting the role of D and T .

The dual part follows by considering the previous statements in C◦. �

In the sequel we will analyze in detail the right filterable pairs of t-structures. We
will collect the dual results for the left filterable pairs of t-structures in Section 4.

Definition 2.11. Let (D, T ) be a right filterable pair of t-structures. We denote
by Di the t-structure whose co-aisle is D≥−i∩T ≥0, by Hi its heart, and by (Xi,Yi)
the torsion pair in Hi defined by Xi := D≤0i+1∩Hi, Yi := D≥1i+1∩Hi. The t-structures
Di, the hearts Hi, the torsion classes Xi and the torsion-free classes Yi are called
the right basic t-structures, the right basic hearts, the right basic torsion classes
and the right basic torsion-free classes of (D, T ).

Example 2.12. Let A be a well-powered, i.e., for any object the class of subob-
jects forms a set, cocomplete (resp. complete) abelian category. Then by [Dic66,
Theorem 2.1], a full subcategory X of A is a torsion (resp. torsion-free) class if and
only if it is closed under quotients, extensions and coproducts (resp. subobjects,
extensions and products). Let R be a ring and let D∗(R) (with ∗ ∈ {b,+,−})
be the derived category (resp. bounded, bounded above, bounded below) of the
category of right R-modules. Denote by D the natural t-structure on D∗(R). Any
t-structure T such that the pair (D, T ) is of type (2, 0) (hence it has gap 2) is both
left and right filterable. One has only to prove that D≤0 ∩ T ≤1 (resp. D≥0 ∩ T ≥1)
is an aisle (resp. a co-aisle). The class HD ∩ T ≤1 (resp. HD ∩ T ≥1) is a torsion
(resp. torsion-free) class in HD = Mod-R by [Dic66, Theorem 2.1], and so it defines
a torsion pair in Mod-R whose associated t-structure has aisle (resp. co-aisle) equal
to D≤0 ∩ T ≤1 (resp. D≥0 ∩ T ≥1).

Lemma 2.13. Let (D, T ) be a right filterable pair of t-structures. Then, for any
i, ` ∈ Z we have the following inclusions

D≥`i ⊆ D
≥`
i+1, D≥`i ⊆ D

≥`−1
i−1 and D≤`i ⊇ D

≤`
i+1, D≤`i ⊇ D

≤`−1
i−1 .

In particular:

(1) (Dj ,D`) is a right filterable pair of t-structures for any j ≤ ` ∈ Z;
(2) Di+1 is obtained by tilting Di with respect to the torsion pair (Xi,Yi);
(3) Xi = D≤0i+1 ∩ D

≥0
i and Yi = D≤0i ∩ D

≥1
i+1;

(4) for each m ≥ 0 we have Hi+m ⊆ D[−m,0]
i , while Hi ⊆ D[0,m]

i+m ;
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(5) if T ≤0 ⊆ D≤0 and i ≥ 0, then Yi = T ≥1 ∩Hi.

Proof. We have first

D≥`i = D≥−i+` ∩ T ≥` ⊆ D≥−i−1+` ∩ T ≥` = D≥`i+1;

then, the second inclusion follows by

D≥`i = D≥−i+` ∩ T ≥` ⊆ D≥−i+` ∩ T ≥`−1 = D≥−i+1+`−1 ∩ T ≥`−1 = D≥`−1i−1 .

The other two inclusions are an easy consequence. Next, point 1 follows since for
j ≤ ` one has

D≥ij ∩ D
≥0
` =

(
D≥i−j ∩ T ≥i

)
∩
(
D≥−` ∩ T ≥0

)
=


D≥ij if i ≥ 0,

D≥0j−i if j − ` ≤ i < 0,

D≥0` if i < j − `.

Since D≥0i ⊆ D≥0i+1 ⊆ D
≥−1
i , point 2 is a consequence of Proposition 2.3. Next the

equalities Xi = D≤0i+1 ∩ D
≥0
i and Yi = D≤0i ∩ D

≥1
i+1 in point 3 follow easily by the

inclusions proved in the first part. Let us prove point 4: by definition of right basic
t-structure, one gets that for any m ≥ 0

D≥0i ⊆ D
≥0
i+m ⊆ D

≥−m
i ;

therefore Hi+m = D≤0i+m ∩ D
≥0
i+m ⊆ D

≤0
i ∩ D

≥−m
i = D[−m,0]. The other inclusion

follows analogously. Finally, point 5 can be deduced by

Yi = D≥1i+1 ∩Hi = D≥−i ∩ T ≥1 ∩Hi = T ≥1 ∩Hi.

�

Theorem 2.14. Any right filterable pair (D, T ) of t-structures such that D≤−m ⊆
T ≤0 ⊆ D≤0 with m ∈ N is obtained by an iterated HRS procedure of length m.

Proof. We proceed by an iteration in m steps. Denote by Di, i ∈ Z, the right
basic t-structures of the pair (D, T ): by Definition 2.11, Di is the t-structure whose
co-aisle is D≥−i ∩ T ≥0. It is D0 = D and we have:

D≥0 =: D≥00 ⊆ D≥01 ⊆ ... ⊆ D≥0m := T ≥0.

In this filtration, we fix a co-aisle D≥0i (marked by “ OO ”) and we prove that the

t-structure Di+1 is obtained by tilting Di. Let us start with i = 0:

D≥0 =: D≥00 ⊆ D≥01 ⊆ ... ⊆ D≥0m := T ≥0.
OO

The co-aisle of the t-structure D1 is D≥01 := D≥−1 ∩T ≥0. By Lemma 2.13 we have

D≥00 ⊆ D≥01 ⊆ D≥−10 and hence by Proposition 2.3 the t-structure D1 is obtained
by tilting D0 with respect to the torsion pair

(X0,Y0) := (D≤01 ∩H0,D≥11 ∩H0)

on the heart H0 of D0:

D≥0 =: D≥00 ⊆ D≥01 ⊆ ... ⊆ D≥0m := T ≥0.
OO
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The co-aisle of the t-structure D2 is D≥02 := D≥−2 ∩ T ≥0; again by Lemma 2.13

one has D≥01 ⊆ D≥02 ⊆ D≥−11 and hence the t-structure D2 is obtained by tilting
D1 with respect to the torsion pair

(X1,Y1) := (D≤02 ∩H1,D≥12 ∩H1)

on the heart H1 of D1. At any step we get D≥0i = D≥−i∩T ≥0; for i = m we obtain
D≥0m = D≥−m ∩ T ≥0 = T ≥0:

D≥0 =: D≥00 ⊆ D≥01 ⊆ ... ⊆ D≥0m := T ≥0.
OO

�

Remark 2.15. Some steps of the HRS procedure in the previous result could be
trivial. The type of the t-structure (D, T ) permits to distinguish them. Let (D, T )
be a right filterable pair of t-structures satisfying

D≤−m ⊆ T ≤0 ⊆ D≤0 or equivalently D≥0 ⊆ T ≥0 ⊆ D≥−m.

As observed in Remark 2.5, (D, T ) is of type (n, k) ∈ N × N with n + k ≤ m: by
Definition 2.1, k and n are the maximum and the minimum natural numbers such
that

D≥−k ⊆ T ≥0 ⊆ D≥−n−k.
Denote by Di, i ∈ Z, the right basic t-structures of the pair (D, T ). It is D0 = D =
D[0],..., Dk = D[k]. As we have observed in Remark 2.4, tilting D0 with respect to
the torsion pair (0,H0 := HD) we get the t-structure D[1]; next tilting D[1] with
respect to the torsion pair (0,H1 = HD[1]) we get the t-structure D[2]. Therefore,
iterating this procedure k times we get Dk = D[k]:

D≥0 ⊆ ... ⊆ D≥0k = D≥−k ⊆ T ≥0 ⊆ D≥−n−k = D≥−nk ⊆ D≥−m.
OO

Now (Dk, T ) is a pair of t-structures of type (n, 0). Following the proof of Theo-
rem 2.14, due to the optimality of (n, k), we get Dk+n = T with an iterated HRS
procedure of n non trivial tilts. We have already recovered the t-structure T via
an iterated HRS procedure of length n + k ≤ m. If one wants to obtain the iter-
ated HRS procedure of length exactly m, another step is necessary. Indeed, tilting
m − n − k times the t-structure Dn+k = T with respect to the trivial torsion pair
(HT , 0) in the heart HT of T we get the t-structures Dn+k = ... = Dm = T :

D≥0 ⊆ ... ⊆ D≥−k ⊆ ... ⊆ T ≥0 = D≥0n+k = ... = D≥0m ⊆ D≥−n−k ⊆ D≥−m.
OO

Summarizing, we have got

(1) For 1 ≤ i ≤ k, the pairs (Di−1,Di) are of type (0, 1); the pair (D0 := D,Di)
is of type (0, i), while the pair (Di,Dm := T ) is of type (n, k − i).

(2) For k + 1 ≤ i ≤ n + k, the pairs (Di−1,Di) are of type (1, 0); the pair
(D0 := D,Di) is of type (i− k, k), while the pair (Di,Dm := T ) is of type
(n+ k − i, 0). In particular Dn+k = T .

(3) For n+ k + 1 ≤ i ≤ m, the pairs (Di−1,Di) are of type (0, 0), i.e., Dn+k =
... = Dm = T .
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3. t-tree

Let (D, T ) be a right filterable pair of t-structures of type (n, 0). We have

D≥0 ⊆ T ≥0 ⊆ D≥−n,
and therefore by Theorem 2.14 the pair (D, T ) is obtained by an iterated HRS
procedure of length n. Denoted by D0 = D, D1,..., Dn = T the right basic t-
structures of (D, T ), we recall that for each i = 0, ..., n−1, any pair (Di,Di+1) is of
type (1, 0), i.e., Di+1 is obtained by tilting Di with respect to the non trivial torsion

pair (Xi,Yi) := (D≤0i+1 ∩Hi,D
≥1
i+1 ∩Hi). Observe that since Xi = D≤0i+1 ∩Hi ⊆ Hi+1

and Yi = D≥1i+1∩Hi ⊆ Hi+1[−1], the torsion class Xi is contained in both the hearts
Hi and Hi+1 while the torsion free class Yi is contained in both Hi and Hi+1[−1].

Starting with an object in H0, it first decomposes with respect to the torsion
pair (X0,Y0), producing a short exact sequence in H0. The first term of this short
exact sequence, i.e., the torsion part, belongs also to H1; therefore it decomposes
with respect to the torsion pair (X1,Y1), producing a new short exact sequence in
H1. Analogously, the third term, i.e., the torsion-free part, belongs also to H1[−1];
therefore it decomposes with respect to the torsion pair (X1[−1],Y1[−1]), producing
a new short exact sequence inH1[−1]. Iterating this procedure n-times we will get a
tree of short exact sequences in the right basic hearts H0 = HD, ..., Hn = HT , that
we call the right t-tree associated to the right filterable pair (D, T ) of t-structures.
In the sequel the symbols ↪→ and � in the t-trees represent monomorphisms and
epimorphisms once considered in the correct heart.

Theorem 3.1. Let (D, T ) be a right filterable pair of t-structures of type (n, 0) in
C. For any object X in HD one can functorially construct its right t-tree

X

,, ,,X0
$ �

22

)) ))

X1

)) ))
X00

( �
55

X01 X10

( �
55

X11

. . . . . . . . . . . . . . . . . . . . . . . .

$$ $$
X00...0︸ ︷︷ ︸

n

, �
::

. . . . . . . . . . . . . . . . . . . . . X11...1︸ ︷︷ ︸
n

whose branches have n+ 1 vertices and where for each ` = 0, ..., n− 1 the sequence

0→ Xi1...i`0 → Xi1...i` → Xi1...i`1 → 0, ij ∈ {0, 1},
is a short exact sequence in the shifted right basic heart H`[−(i1 + · · · + i`)] with
Xi1...i`0 belonging to the torsion class X`[−(i1 + · · ·+ i`)] and Xi1...i`1 belonging to
the torsion-free class Y`[−(i1 + · · ·+ i`)].

Proof. Denote by Di, Hi, i = 0, 1, ..., n − 1, n the right basic t-structures and
the right basic hearts of (D, T ). Let us consider the torsion pairs (Xi,Yi) :=

(D≤0i+1 ∩Hi,D
≥1
i+1 ∩Hi) in Hi, i = 0, 1, ..., n− 1. Take an object X in H0 = HD; we

denote by X0 and X1 its torsion and torsion-free parts with respect to the torsion
pair (X0,Y0) in H0:

0→ X0 → X → X1 → 0 in H0.

The object X0 belongs also to H1, while X1 belongs also to H1[−1]. Therefore X0

has a torsion part X00 and a torsion free part X01 with respect to the torsion pair
(X1,Y1) in H1; analogously X1 has a torsion part X10 and a torsion free part X11

with respect to the torsion pair (X1[−1],Y1[−1]) in H1[−1]. Let 1 ≤ ` ≤ n − 1;
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suppose we have obtained the object Xi1...i` in H`[−(i1 + · · ·+ i`)], where i1, ..., i` ∈
{0, 1}. We denote by Xi1...i`0 and Xi1...i`1 its torsion and torsion free parts with
respect to the torsion pair (X`,Y`)[−(i1 + · · ·+ i`)] in H`[−(i1 + · · ·+ i`)]:

0→ Xi1...i`0 → Xi1...i` → Xi1...i`1 → 0 in H`[−(i1 + · · ·+ i`)].

The object Xi1...i`0 belongs also to H`+1[−(i1+ · · ·+i`)], while Xi1...i`1 belongs also
to H`+1[−(i1 + · · ·+ i` + 1)]. This permits to iterate the procedure until ` = n− 1
obtaining the wished t-tree. �

Definition 3.2. Let (D, T ) be a right filterable pair of t-structures of type (n, 0)
and X an object of HD. We call the degree of the vertex Xi1...i` in the right t-tree
of X the sum i1 + · · ·+ i`. The vertices Xi1...in are called right t-leaves of the t-tree,
and the right t-leaf X 1...1︸︷︷︸

d

0...0︸︷︷︸
n−d

is called the right leading t-leaf of degree d.

Remark 3.3. The 2n right t-leaves Xi1...in in Hn[−(i1 + · · · + in)] = HT [−(i1 +
· · ·+ in)] produced in the last step of the construction of a right t-tree are T -static
objects in C of degree i1 + · · · + in (see Definition 1.6). Therefore we have got a
decomposition of the objects in the heart HD in T -static pieces.

Let us study the right t-tree associated to an object and the information we can
obtain from it.

Definition 3.4. Let (D, T ) be a right filterable pair of t-structures of type (n, 0)
in C. Given the right t-tree of an object X ∈ HD, we define the subtree generated
by the term Xi1...i` to be the subtree of the right t-tree of X which has Xi1...i` as
root.

Remark 3.5. Let X ∈ HD and Xi1...i` be a vertex of its right t-tree. The object
Xi1...i` [i1 + · · · + i`] belongs to H`; since (D`, T ) is a right filterable pair of t-
structures of type (n−`, 0), we can construct the right t-tree of Xi1...i` [i1 + · · ·+ i`]:
this right t-tree coincides with the (i1 + · · · + i`)-shift of the subtree of the right
t-tree of X generated by Xi1...i` . The leaves of this subtree are the leaves of the
right t-tree of X whose index starts with i1...i`.

In the following proposition we give some cohomological properties of the vertices
in the right t-tree of an object X ∈ HD.

Proposition 3.6. Let X ∈ HD. For each 0 ≤ ` ≤ n, the vertex Xi1...i` in the right
t-tree of X satisfies the following properties:

(1) Xi1...i` belongs to T [i1+···+i`,n−`+i1+···+i`] ⊆ T [0,n];

(2) Hi1+···+i`
T (Xi1...i`) = Xi1...i` 0...0︸︷︷︸

n−`

[i1 + · · ·+ i`];

(3) Hn−`+i1+···+i`
T (Xi1...i`) = Xi1...i` 1...1︸︷︷︸

n−`

[n− `+ i1 + · · ·+ i`].

Proof. (1) In Theorem 3.1 we have proved that Xi1...i` belongs toH`[−(i1+· · ·+i`)].
Since the pair of t-structures (D`, T ) is of type (n − `, 0) it follows by Lemma 2.2
that H` ⊆ T [0,n−`]; therefore the assertion is proved.
(2) For any ` = 0, . . . , n− 1 the short exact sequence

0→ Xi1...i`0 → Xi1...i` → Xi1...i`1 → 0



A CLASSIFICATION THEOREM FOR t-STRUCTURES 17

in the heart H`[−(i1 + · · ·+ i`)] provides a distinguished triangle in C. Considering
the long exact sequence of T -cohomology associated to this distinguished triangle,
by point 1 we get first

0→ Hi1+···+i`
T (Xi1...i`0)→ Hi1+···+i`

T (Xi1...i`)→ Hi1+···+i`
T (Xi1...i`1) = 0.

Iterating we have

Hi1+···+i`
T (Xi1...i`)

∼= Hi1+···+i`
T (Xi1...i`0) ∼= ...

... ∼= Hi1+···+i`
T (Xi1...i` 0...0︸︷︷︸

n−`

) = Xi1...i` 0...0︸︷︷︸
n−`

[i1 + · · ·+ i`].

(3) The same long exact sequence of T -cohomology considered in point 2 gives

0 = Hn−`+i1+···+i`
T (Xi1...i`0)→ Hn−`+i1+···+i`

T (Xi1...i`)→ Hn−`+i1+···+i`
T (Xi1...i`1)→ 0.

Iterating we have

Hn−`+i1+···+i`
T (Xi1...i`)

∼= Hn−`+i1+···+i`
T (Xi1...i`1) ∼= ...

... ∼= Hn−`+i1+···+i`
T (Xi1...i` 1...1︸︷︷︸

n−`

) = Xi1...i` 1...1︸︷︷︸
n−`

[n− `+ i1 + · · ·+ i`].

�

Remark 3.7. Points 2 and 3 of Proposition 3.6 give the invariance of the T -
cohomology of degree i1 + · · · + i` on the left branch passing through the vertex
Xi1...i` and of the T -cohomology of degree n− `+ i1 + · · ·+ i` on the right branch
passing through the vertex Xi1...i` :

Xi1...i`

++ ++
Xi1...i`0

% �
33

Xi1...i`1

)) ))
. . .
' � 55

. . .

'' ''
Xi1...i` 00...0︸ ︷︷ ︸

n−`

* 

77

Xi1...i` 11...1︸ ︷︷ ︸
n−`

Let us analyze the objects in HD with a particularly simple right t-tree. The
following lemma will be useful in the sequel.

The following lemma characterizes the objects of HD which are T -static in terms
of the basic torsion pairs.

Lemma 3.8. Let (D, T ) be a right filterable pair of t-structures of type (n, 0) in
C. Then the full additive subcategory HD ∩ HT [−d] of HD consisting of T -static
objects of degree d is equal to:

0 if d < 0 or d > n;
n−1⋂
i=0

Xi =

n⋂
i=0

Hi if d = 0;(
d−1⋂
i=0

Yi[−i]

)
∩

n−1⋂
j=d

Xj [−d]

=

(
d⋂
i=0

Hi[−i]

)
∩

 n⋂
j=d

Hj [−d]

 if 0 < d < n;

n−1⋂
i=0

Yi[−i] =

n⋂
i=0

Hi[−i] if d = n.
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Proof. Since the pair (D, T ) is of type (n, 0), by Lemma 2.2 the heart HT is con-
tained in D[−n,0]; therefore HD ∩HT [−d] = 0 whenever d < 0 or d > n.
By Lemma 2.13, we have for i = 0, ..., n− 1

HD ∩HT = D≥00 ∩ D≤0n ⊆ D
≥0
i ∩ D

≤0
i+1 = D≤0i+1 ∩Hi = Xi ⊆ Hi ∩Hi+1

which proves that

HD ∩HT ⊆
n−1⋂
i=0

Xi ⊆
n⋂
i=0

Hi ⊆ H0 ∩Hn = HD ∩HT

and hence HD ∩HT =

n−1⋂
i=0

Xi =

n⋂
i=0

Hi.

If 0 < d ≤ n, by Lemma 2.13 we have that for each 0 ≤ i ≤ d− 1

HD ∩HT [−d] ⊆ D≤0 ∩
(
D≥0 ∩ T ≥d

)
= D≤00 ∩ D

≥d
d ⊆

⊆ D≤ii ∩ D
≥i+1
i+1 = Hi[−i] ∩ D≥i+1

i+1 = Yi[−i],
while for each d ≤ i ≤ n− 1 we have

HD ∩HT [−d] ⊆
(
D≥0 ∩ T ≥d

)
∩ T ≤d = D≥dd ∩ D

≤d
n ⊆

⊆ D≥di ∩ D
≤d
i+1 = Hi[−d] ∩ D≤di+1 = Xi[−d].

This proves that for 0 < d ≤ n

HD ∩HT [−d] ⊆

(
d−1⋂
i=0

Yi[−i]

)
∩

n−1⋂
j=d

Xj [−d]

 ⊆
in view of Yi ⊆ Hi ∩Hi+1[−1] and Xi ⊆ Hi ∩Hi+1

⊆

(
d⋂
i=0

Hi[−i]

)
∩

 n⋂
j=d

Hj [−d]

 ⊆ H0 ∩Hn[−d] = HD ∩HT [−d].

Thus we get the wanted equalities for 0 < d < n and for d = n we obtain:

HD ∩HT [−n] =

n−1⋂
i=0

Yi[−i] =

n⋂
i=0

Hi[−i].

�

Let us start by studying the case of a right t-tree degenerating in a single branch.

Proposition 3.9. Let (D, T ) be a right filterable pair of t-structures of type (n, 0)
in C. An object 0 6= X ∈ H0 = HD has a right t-tree with a unique non zero branch
if and only if X is T -static. In such a case, if X is T -static of degree d, the unique
non zero leaf is the right leading leaf of degree d.

Proof. If the right t-tree of X has a unique non zero branch, necessarily all the
maps along this branch are isomorphisms; therefore X is isomorphic to one of its
leaves, and by Remark 3.3 it is a T -static object.
Conversely, assume X is T -static of degree d (i.e., X ∈ HT [−d]); then X belongs to

HD∩HT [−d]. If d = 0 by Lemma 3.8 we have X ∈
⋂n−1
i=0 Xi which proves that X =

X 0...0︸︷︷︸
n

. If 0 < d ≤ n by Lemma 3.8 we have X ∈
(⋂d−1

i=0 Yi[−i]
)
∩
(⋂n−1

j=d Xj [−d]
)
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which proves that X = X1 = · · · = X 1...1︸︷︷︸
d

and then in the remaining n − d steps

we have X = X 1...1︸︷︷︸
d

0 = · · · = X 1...1︸︷︷︸
d

0...0︸︷︷︸
n−d

, which is the right leading leaf of degree

d. �

The previous proposition characterises the case in which the right t-tree admits
only one non zero leading leaf in HD. The next result generalises to the case of
right t-trees whose non zero leaves are leading leaves in HD.

Proposition 3.10. Let (D, T ) be a right filterable pair of t-structures of type (n, 0)
in C. An object 0 6= X ∈ H0 = HD has a right t-tree whose non zero leaves are
leading leaves in HD if and only if the T -cohomologies Hi

TX are D-static of degree
−i for each 0 ≤ i ≤ n. In this case all the vertices of the right t-tree of X belong
to HD, and moreover for each 0 ≤ i ≤ n

• X 1...1︸︷︷︸
i

= τ≥iX,

• X 1...1︸︷︷︸
i

0 = ... = X 1...1︸︷︷︸
i

0...0︸︷︷︸
n−i

= Hi
TX[−i],

• X 1...1︸︷︷︸
i

0ji+2...j` = 0 for each ji+2...j` 6= 0...0︸︷︷︸
`−i−1

, with i+ 2 ≤ ` ≤ n.

Proof. First of all, let us recall that HD ⊆ T [0,n]. If n = 0, the statement is clearly
true since D = T . Let n ≥ 1 and assume the right t-tree of X has the leading
leaves in HD and the non leading ones equal to zero. For ` = n− 1, n− 2, ..., 0, the
short exact sequences 0 → Xj1...j`0 → Xj1...j` → Xj1...j`1 → 0 in the shifted right
basic hearts H`[−(j1+ · · ·+j`)] induce distinguished triangles Xj1...j`0 → Xj1...j` →
Xj1...j`1

+1→ in the triangulated category C. Starting with ` = n− 1, and proceeding
along the right t-tree from the leaves towards the root, we easily get that all the
vertices of the t-tree live in HD. We prove now that Hi

TX = X 1...1︸︷︷︸
i

0...0︸︷︷︸
n−i

[i] for

0 ≤ i ≤ n; then we conclude as the leading leaves are in HD. First of all, forasmuch
as the non leading leaves vanish, we have

X 1...1︸︷︷︸
i

0 = ... = X 1...1︸︷︷︸
i

0...0︸︷︷︸
n−i

∈ HD ∩HT [−i], for 0 ≤ i ≤ n− 1,

and X 1...1︸︷︷︸
n

∈ HD ∩HT [−n].

Since X 1...1︸︷︷︸
i

∈ Yi−1[1 − i] ⊆ T ≥1[1 − i] = T ≥i, for 1 ≤ i ≤ n the distinguished

triangle

X 1...1︸︷︷︸
i−1

0 → X 1...1︸︷︷︸
i−1

→ X 1...1︸︷︷︸
i

+1→

coincides with the approximating triangle of X 1...1︸︷︷︸
i−1

with respect to the t-structure

T [−i+1]: indeed X 1...1︸︷︷︸
i−1

0 belongs to T ≤i−1 and X 1...1︸︷︷︸
i

belongs to T ≥i. In particular

X1 = τ≥1X, X11 = τ≥2X1 = τ≥2(τ≥1X) = τ≥2X, and hence

X 1...1︸︷︷︸
i

= τ≥iX, for i = 0, 1, ..., n.
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Next H0
T (X) = X0 = X 0...0︸︷︷︸

n

, H1
T (X) = H1

T (τ≥1X) = H1
T (X1) = X10[1] =

X1 0...0︸︷︷︸
n−1

[1], and hence for i = 0, 1, ..., n

Hi
T (X) = Hi

T (τ≥iX) = Hi
T (X 1...1︸︷︷︸

i

) = X 1...1︸︷︷︸
i

0[i] = X 1..1︸︷︷︸
i

0...0︸︷︷︸
n−i

[i] ∈ HD[i].

Conversely, assume the T -cohomologies Hi
TX are D-static of degree −i, i.e.,

Hi
TX ∈ HD[i], for each 0 ≤ i ≤ n.
Consider the distinguished triangle

Hn−1
T (X)[−n+ 1] = τ≤n−1(τ≥n−1X)→ τ≥n−1X → τ≥nX = Hn

T (X)[−n]
+1→ .

Since the terms Hn−1
T (X)[−n+ 1] and Hn

T (X)[−n] belong to HD, also the middle
term τ≥n−1X belongs to HD and hence

0→ Hn−1
T (X)[−n+ 1]→ τ≥n−1X → τ≥nX → 0

is a short exact sequence in HD. From the distinguished triangle

Hn−2
T (X)[−n+ 2] = τ≤n−2(τ≥n−2X)→ τ≥n−2X → τ≥n−1X

+1→,

considered that Hn−2
T (X)[−n + 2] and τ≥n−1X belong to HD, one gets that also

τ≥n−2X ∈ HD and hence

0→ Hn−2
T (X)[−n+ 2]→ τ≥n−2X → τ≥n−1X → 0

is a short exact sequence in HD. Iterating the same argument, one proves that

(1) 0→ Hi
T (X)[−i]→ τ≥iX → τ≥i+1X → 0

is a short exact sequence inHD for any 0 ≤ i ≤ n−1. Moreover applying Lemma 3.8
we have:

Hi
T (X)[−i] ∈ HD ∩HT [−i] ⊆

n−1⋂
j=i

Xj [−i] ⊆ Xi[−i] ⊆ Hi[−i]

and by Lemma 2.13

τ≥i+1X ∈ HD ∩ T ≥i+1 ⊆ D≤0 ∩ (D≥0 ∩ T ≥i+1) ⊆ D≤ii ∩D
≥i+1
i+1 = Yi[−i] ⊆ Hi[−i]

which proves that also the middle term of τ≥iX ∈ Hi[−i] and the sequence (1) is
the short exact sequence in Hi[−i] associated to the torsion pair (Xi[−i],Yi[−i])
for any 0 ≤ i ≤ n− 1. Thus for i = 0 we have the short exact sequence in HD:

0→ H0
T (X)→ τ≥0X = X → τ≥1X → 0

and hence τ≥1X = X1 and H0
T (X) = X0. Since H0

T (X) ∈ HD∩HT , by Lemma 3.8

it belongs to

n−1⋂
i=0

Xi and hence H0
T (X) = X0 = X00 = ... = X 0...0︸︷︷︸

n

. In particular

the vertices X0j2...j` vanish for each j2...j` 6= 0...0︸︷︷︸
`−1

, with 2 ≤ ` ≤ n. Next for i = 1

we have the short exact sequence in HD ∩H1[−1]:

0→ H1
T (X)[−1]→ τ≥1X = X1 → τ≥2X → 0
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and hence τ≥2X = X11 and H1
T (X)[−1] = X10 = X100 = ... = X1 0...0︸︷︷︸

n−1

. In

particular the vertices X10j3...j` vanish for each j3...j` 6= 0...0︸︷︷︸
`−2

, with 3 ≤ ` ≤ n.

Repeating the same argument we get that for any 0 ≤ i ≤ n− 1 we have the short
exact sequence in HD ∩Hi[−i]:

0→ Hi
T (X)[−i]→ τ≥iX = X 1...1︸︷︷︸

i

→ τ≥i+1X → 0

and hence τ≥i+1X = X 1...1︸︷︷︸
i

1 and Hi
T (X)[−i] = X 1...1︸︷︷︸

i

0 = ... = X 1...1︸︷︷︸
i

0...0︸︷︷︸
n−i

. In

particular the vertices X 1...1︸︷︷︸
i

0ji+2...j` vanish for each ji+2...j` 6= 0...0︸︷︷︸
`−i−1

, with i+ 2 ≤

` ≤ n. �

Remark 3.11. Let X ∈ HD ⊂ T [0,n]. The T -truncation functors applied to X
perform in the so called Postnikov tower of X :

H0
T (X) // τ≤1(X) //

}}

· · · //

��

τ≤n(X) = X

zz

H1
T (X)[−1]

+1

aa

H2
T (X)[−2]

+1

bb

Hn
T (X)[−n]

+1

]]

where all the triangle diagrams are distinguished triangles in the triangulated cat-
egory C. Whenever X satisfies the equivalent conditions of Proposition 3.10 (i.e.,
Hi
TX[−i] ∈ HD) any object written in the previous tower belongs to HD and so

the distinguished triangles can be regarded as short exact sequences in HD and this
permits to interpret the Postnikov tower as a filtration of X:

H0
T (X)0 �

�
// τ≤1(X) �

�
//

}}}}

· · · �
�

//

����

τ≤n(X) = X

zzzz

H1
T (X)[−1] H2

T (X)[−2] Hn
T (X)[−n]

whose graded pieces are D-static.

Remark 3.12. If (D, T ) is a right filterable pair of t-structures of type (n, k), then
we can repeat the construction of the right t-tree for each X in HD; the result will
be a unique branch with k+1 vertices followed by a tree whose branches have n+1
vertices:

X

X0

. . .

X0...0︸ ︷︷ ︸
k

** **
X0...0︸ ︷︷ ︸

k

0

' �

44

X0...0︸ ︷︷ ︸
k

1

. . . . . . . . . . . .

## ##
X00...0︸ ︷︷ ︸

n+k

, �
;;

. . . . . . . . . . . . . . . . . . X11...1︸ ︷︷ ︸
n+k
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4. Left filterable case

In the previous sections we have studied in detail the theory of right filterable
pairs of t-structures (D, T ) satisfying the condition D≤−m ⊆ T ≤0 ⊆ D≤0 with
m ∈ N. This section, for reader convenience, is devoted to collect the same results
in the dual hypothesis of left filterability.

Definition 4.1 (dual to Definition 2.11). Let (D, T ) be a left filterable pair of
t-structures with

D≤−m ⊆ T ≤0 ⊆ D≤0.
We indicate with iD the t-structure whose aisle is iD≤0 = D≤0 ∩ T ≤m−i, by iH
its heart, and by (iX , iY) the torsion pair in iH defined by iX := i+1D≤0 ∩ iH,

iY := i+1D≥1 ∩ iH. The t-structures iD, the hearts iH, the torsion classes iX and
the torsion-free classes iY are called the left basic t-structures, the left basic hearts,
the left basic torsion classes and the left basic torsion-free classes of (D, T ).

Lemma 4.2 (dual to Lemma 2.13). Let (D, T ) be a left filterable pair of t-structures.
Then, for any i, ` ∈ Z we have the following inclusions

iD≤` ⊇ i+1D≤`, iD≤` ⊇ i−1D≤`−1 and iD≥` ⊆ i+1D≥`, iD≥` ⊆ i−1D≥`−1.
In particular

(1) (jD, `D) is a left filterable pair of t-structures for any j ≤ ` ∈ Z;
(2) i+1D is obtained by tilting iD with respect to the torsion pair (iX , iY);
(3) iX = i+1D≤0 ∩ iD≥0 and iY = iD≤0 ∩ i+1D≥1;
(4) for each m ≥ 0 we have i+mH ⊆ iD[−m,0], while iH ⊆ i+mD[0,m];
(5) if T ≤0 ⊆ D≤0 and i ≥ 0, then iX [m− i] = T ≤−1 ∩ iH[m− i].

The following is the left version of Theorem 2.14.

Theorem 4.3 (dual to Theorem 2.14). Any left filterable pair (D, T ) of t-structures
such that D≤−m ⊆ T ≤0 ⊆ D≤0 with m ∈ N is obtained by an iterated HRS procedure
of length m.

Let (D, T ) be a left filterable pair of t-structures of type (n, 0). We have

D≤−n ⊆ T ≤0 ⊆ D≤0,
and therefore by Theorem 4.3 the pair (D, T ) is obtained by an iterated HRS
procedure of length n. Denoted by 0D = D, 1D,..., nD = T the left basic t-
structures of (D, T ), we recall that for each i = 0, ..., n − 1, any pair (iD, i+1D) is
of type (1, 0), i.e., i+1D is obtained by tilting iD with respect to the non trivial
torsion pair (iX , iY) := (i+1D≤0 ∩ iH, i+1D≥1 ∩ iH).

Let us briefly summarise the left t-tree.

Theorem 4.4 (dual to Theorem 3.1). Let (D, T ) be a left filterable pair of t-
structures of type (n, 0) in C. For any object X in HD one can functorially construct
its left t-tree

X

,, ,,
0X
$ �

22

)) ))
1X

)) ))
00X
( �

55

01X 10X
( �

55

11X

. . . . . . . . . . . . . . . . . . . . . . . .

$$ $$

00...0︸ ︷︷ ︸
n

X

, �
::

. . . . . . . . . . . . . . . . . . . . . 11...1︸ ︷︷ ︸
n

X
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whose branches have n+ 1 vertices and where for each ` = 0, ..., n− 1 the sequence

0→ i1...i`0X → i1...i`X → i1...i`1X → 0

is a short exact sequence in the heart `H[−(i1 + · · ·+ i`)] with i1...i`0X belonging to
the torsion class `X [−(i1 + · · ·+ i`)] and i1...i`1X belonging to the torsion-free class

`Y[−(i1 + · · ·+ i`)].

Definition 4.5 (dual to Definition 3.2). Let (D, T ) be a left filterable pair of t-
structures of type (n, 0) and X an object of HD. We call the degree of the vertex

i1...i`X in the left t-tree of X the sum i1 + · · ·+ i`. The vertices i1...inX are called
left t-leaves of the t-tree, and the left t-leaf 0...0︸︷︷︸

n−d

1...1︸︷︷︸
d

X is called the left leading t-leaf

of degree d.

Proposition 4.6 (dual to Proposition 3.6). Let X ∈ HD. For each 0 ≤ ` ≤ n, the
vertex i1...i`X in the t-tree of X satisfies the following properties:

(1) i1...i`X belongs to T [i1+···+i`,n−`+i1+···+i`] ⊆ T [0,n];

(2) Hi1+···+i`
T (i1...i`X) = i1...i` 0...0︸︷︷︸

n−`

X[i1 + · · ·+ i`];

(3) Hn−`+i1+···+i`
T (i1...i`X) = i1...i` 1...1︸︷︷︸

n−`

X[n− `+ i1 + · · ·+ i`].

Lemma 4.7 (dual to Lemma 3.8). Let (D, T ) be a left filterable pair of t-structures
of type (n, 0) in C. Then HD ∩HT [−d] is equal to:



0 if d < 0 or d > n;
n−1⋂
i=0

iX =

n⋂
i=0

iH if d = 0;(
n−d−1⋂
i=0

iX

)
∩

 n−1⋂
j=n−d

jY[−j + n− d]

 =

=

(
n−d⋂
i=0

iH

)
∩

 n⋂
j=n−d

jH[−j + n− d]

 if 0 < d < n;

n−1⋂
i=0

iY[−i] =

n⋂
i=0

iH[−i] if d = n.

5. Tilting t-structures

This paragraph is devoted to a detailed study of the so called n-tilting t-structures.
The motivating example is the t-structure on the derived category of left R-modules
over a ring R generated by a n-tilting module RT .

Definition 5.1. We say that a full subcategory S of an abelian category A cogen-
erates (resp. generates) A if any object of A embeds in an object of S (resp. any
object of A is a quotient of an object in S).

Generalising the notion of tilting (cotilting) torsion class introduced in [HRS96,
Ch. I, §3], we give the following definition.
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Definition 5.2. A pair (D, T ) of t-structures in a triangulated category C is n-
tilting (resp. n-cotilting) if:

(1) (D, T ) is filterable of type (n, 0), and
(2) the full subcategory HD ∩ HT of HD cogenerates HD (resp. the full sub-

category HD ∩HT [−n] of HD generates HD).

The pair (D, T ) is right n-tilting (resp. right n-cotilting) if it is n-tilting (resp.
n-cotilting) and right filterable; left n-tilting and left n-cotilting pair of t-structures
are similarly defined.

Remark 5.3. Consider an abelian category A and a non trivial torsion pair (X ,Y)
on A. Denote by D the natural t-structure on D(A) and by T(X ,Y) the t-structure
obtained by tilting D with respect to the torsion pair (X ,Y). By Remark 2.9,
(D, T(X ,Y)) is both right and left filterable. The torsion pair (X ,Y) is tilting (resp.
cotilting) in the sense of [HRS96, Ch. I , §3] if and only if the pair the t-structures
(D, T(X ,Y)) is 1-tilting (resp. 1-cotilting).

Following our terminology, Theorem 1.15 proved by Happel, Reiten, Smalø be-
comes:

Theorem 5.4. Let A be an abelian category and D be the natural t-structure on
D(A). Suppose that (D, T ) is a 1-tilting pair (resp. 1-cotilting pair) of t-structures;
then there is a triangle equivalence

D(HT )
' // D(HD) = D(A)

such that the restriction to HT is naturally isomorphic to the inclusion HT ⊆ D(A).

We want to extend this result to n-tilting t-structures.

Lemma 5.5. [KaSc06, Lemma 13.2.1]. Given a cogenerating (resp. generating)
full additive subcategory S of an abelian category A, any complex X• in Db(A) is
quasi-isomorphic to a complex:

S• = · · · → 0→ Si → Si+1 → · · · (resp. S• = · · · → Si−1 → Si → 0→ · · · )
where Sj ∈ S for every j ≥ i (resp. for every j ≤ i) and i = min

{
k ∈ Z |Hk(X•) 6= 0

}
(resp. i = max

{
k ∈ Z |Hk(X•) 6= 0

}
).

Lemma 5.6. Let (D, T ) be a right n-tilting pair of t-structures on D(A) with D the
natural t-structure. Consider the right basic t-structures Di, i = 0, ..., n, associated
to the pair (D, T ); then the pair (Di,Di+j) is right j-tilting for each 0 ≤ i ≤ n and
0 ≤ j ≤ n− i.
Proof. It is sufficient to prove that both (D,Dn−1) and (D1, T ) are right (n − 1)-
tilting pairs of t-structures. By Lemma 2.13 and Remark 2.15 the pair (D,Dn−1) is
right filterable of type (n−1, 0). Then by Lemma 3.8 the full subcategory A∩Hn−1
is equal to

⋂n−1
`=0 H` which contains

⋂n
`=0H` = A∩HT ; since the latter cogenerates

A, also A ∩Hn−1 cogenerates A.
Let us prove that (D1, T ) is a right (n − 1)-tilting pair of t-structures. By

Lemma 2.13 (D1, T ) is right filterable; let us prove that the subcategory S1 :=
H1 ∩ HT cogenerates H1. Consider an object X of H1 ⊆ D[−1,0]. By Lemma 5.5
applied to the full subcategory S := A∩HT of A, we may assume that the complex
X is represented by:

X = . . . // 0 // S−1
d−1
X // S0

d0X // S1
d1X // . . .
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with Sj ∈ S and j ≥ −1. Let us define W to be the complex

W := . . . // 0 // S−1
d−1
X // S0 // 0 // . . .

The following exact sequence of complexes 0 → Z → X → W → 0 gives rise to a
distinguished triangle in D(A):

Z :=

q

��

. . . //

��

0 //

��

0 //

��

0 //

��

S1
d1X //

idS1

��

S2
d2X //

idS2

��

. . .

��X =

i

��

. . . //

��

0 //

��

S−1
d−1
X //

idS−1

��

S0
d0X //

idS0

��

S1
d1X //

��

S2
d2X //

��

. . .

W = . . . // 0 // S−1
d−1
X // S0 // 0 // 0 // . . .

To conclude, we shall show that W ∈ S1 := H1∩HT and that i is a monomorphism
inH1. First notice thatW ∈ D≥01 sinceHi(W ) = 0 for any i ≤ −2 whileH−1(W ) ∼=
H−1(X) ∈ Y0. Moreover W ∈ T ≤0 since it is the mapping cone of the morphism

d−1X : S−1 → S0 between objects in HT . Therefore W belongs to D≥01 ∩T ≤0 which
is equal to H1∩HT by Lemma 2.13. In order to prove that i is a monomorphism in
H1 we have to prove that its mapping cone Z[1] lies in H1, i.e., H−1(Z[1]) belongs
to Y0, H0(Z[1]) belongs to X0, and Hi(Z[1]) = 0 for each i 6= −1, 0. The long exact

sequence of D-cohomology of the distinguished triangle Z → X → W
+1→ proves

that

0 // H0(X) // H0(W ) // H1(Z) // H1(X) = 0 and

Hi(Z) = 0 for all i 6= 1; therefore Z[1] lies in H1 since H0(Z[1]) = H1(Z) ∈ X0:
indeed it is a quotient of H0(W ) which is a quotient of S0 ∈ A ∩ HT which is
contained in X0 by Lemma 3.8. �

Remark 5.7. The previous lemma applied to the opposite category yields the
analogous result for the left n-cotilting case. Moreover, following its proof one can
verify that analogous result holds for left n-tilting pairs (and dually for right n-
cotilting pairs) of t-structures: one has first to replace the right basic t-structures
by the left ones; then the pairs (D, n−1D) and (1D, T ) are left filterable, and, since

by Lemma 4.7 (dual of Lemma 3.8) A ∩ n−1H is equal to
⋂n−1
`=0 `H, the remainder

of the proof applies unchanged.

Theorem 5.8. Let A be an abelian category and D be the natural t-structure in
D(A). Suppose that (D, T ) is a n-tilting pair (resp. n-cotilting pair) of t-structures;
then there is a triangle equivalence

D(HT )
E

' // D(HD) = D(A) .

such that the restriction E|HT is naturally isomorphic to the inclusion HT ⊆ D(A).

Proof. We proceed by induction on the gap n. In both the tilting and the cotilting
cases, for n = 0 there is nothing to prove and for n = 1 the result is just Theorem 5.4.
Assume (D, T ) is right filterable; suppose n > 1 and that the statement holds for
n − 1. Consider the right basic t-structures Di, i = 0, ..., n, associated to the pair
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(D, T ). Let us assume (D, T ) is n-tilting; if (D, T ) is n-cotilting one concludes
simply dualising the sequel.

By Lemma 5.6 (D,D1) is right 1-tilting. Therefore there exists a triangle equiva-

lence E0,1 : D(H1)
'→ D(A) such that the restriction to H1 is naturally isomorphic

to the inclusion H1 ⊆ D(A). Via the equivalence E0,1 : D(H1)
'→ D(A), D1 is

the natural t-structure in D(H1), and T can be regarded as a t-structure in D(H1).
Since (D1, T ) is (n−1)-tilting, by inductive hypothesis there is a triangle equivalence
E1,n : D(HT ) → D(H1) such that the restriction to HT is naturally isomorphic
to the inclusion of HT in D(H1); composing E1,n with the triangle equivalence

E0,1 : D(H1)
'→ D(A) we get a triangle equivalence E : D(HT )

'→ D(A) such that
the restriction to HT is naturally isomorphic to the inclusion HT ⊆ D(A).

A� _

��

H1� _

��

� s

%%

H2 � s

%%

· · · Hn−1 � s

&&

HT � s

%%
D(H1) oo //
99

yy

ee

%%

D(H2) oo //99

yy

dd

$$

· · · · · · D(Hn−1)//oo
88

xx

ff

&&

D(HT )//oo
99

yy
D(A) D(A) D(A) · · · D(A) D(A)

If (D, T ) is left filterable, one repeats for both the tilting and cotilting cases
analogous arguments, using the associated left basic t-structures iD. �

Remark 5.9. Since HT ∩ A =
⋂n−1
i=0 Xi, following Remark 1.16 a complex X• in

the homotopy category K(HT ∩A) ⊆ K(X0) is acyclic in A if and only if is acyclic
in H1. Since X• belongs to K(X1), it is acyclic in H1 if and only if is acyclic in
H2. Iterating the procedure we get that X• is acyclic in A if and only if is acyclic
in Hi for i = 0, ..., n. Moreover the class of such complexes forms a null system N
in K(HT ∩A). Therefore the restriction of E : D(HT )→ D(A) to K(HT ∩A)/N
coincides with the natural inclusion of K(HT ∩ A)/N in D(A).

6. Applications

6.1. Tilting objects in Grothendieck categories. Along all this section G is a
fixed Grothendieck category, T is a fixed n-tilting object in G, D is the natural t-
structure in D(G) and TT is the t-structure compactly generated by T (see Sections

III, IV in Preliminaries). By Remark 1.13 the co-aisle T ≥0T is closed under direct
sums and homotopy colimits. Let us prove that also the co-aisle of the natural
t-structure is closed under taking homotopy colimits. The proof we propose is
valid also for AB5 abelian categories; another proof could be obtained by [AJS00,
Proposition 4.5] extending the Gabriel-Popescu adjunction (see [PG64])

G
i
// R-Mod

`oo

to the corresponding derived categories, using the fact that the natural t-structure
in D(R) is compactly generated, and hence its co-aisle is closed under homotopy
colimits.

Lemma 6.1. The co-aisle D≥0 is closed under taking homotopy colimits in D(G).

Proof. We use only the fact that any Grothendieck category admits coproducts

and filtered colimits of exact sequences are exact. Let us consider a sequence X0
f0→

X1
f1→ X2

f2→ · · · whose objects Xn ∈ D≥0 and, denote by δ the truncation functor
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associated to D. Since a coproduct of distinguished triangles is a distinguished
triangle (see Remark 1.14), we get the following diagram:

⊕
n∈N H0

D(Xn)
id−⊕nH

0
D(fn)

//

��

⊕
n∈N H0

D(Xn) //

��

HoColimn(H0
D(Xn))

+1
//

��⊕
n∈NXn

id−⊕nfn //

��

⊕
n∈NXn

//

��

HoColimn(Xn)
+1
//

��⊕
n∈N δ

≥1Xn
id−⊕nδ

≥1fn //

+1

��

⊕
n∈N δ

≥1Xn
//

+1

��

HoColimn(δ≥1Xn)
+1
//

+1

��

whose rows and columns are distinguished triangles.
The homotopy colimit HoColimn(δ≥1Xn) belongs to D≥0 since it is the map-
ping cone of a map between direct sums of objects in D≥1, which belong to D≥1
(as seen in Remark 1.14). Then we have HoColimn(Xn) ∈ D≥0 if and only if
HoColimn(H0

D(Xn)) ∈ D≥0. Let us prove that g := id−⊕n H0
D(fn) is a monomor-

phism in G, obtaining that HoColimn(H0
D(Xn)) ∼= lim→ n

H0
D(Xn) ∈ G and hence

HoColimn(Xn) ∈ D≥0.
In order to prove that g is a monomorphism we have to prove that if A is any object
of G, α belongs to HomG(A,⊕n∈NH0

D(Xn)) and g ◦ α = 0, then α = 0. Since

HomG(A,⊕n∈NH0
D(Xn)) ↪→

∏
n∈N

HomG(A,H0
D(Xn)),

denoted by pm : ⊕n∈NH0
D(Xn) → H0

D(Xm) the m-th projection, a morphism β ∈
HomG(A,⊕n∈NH0

D(Xn)) is zero if and only if pm ◦ β = 0 for each m ∈ N. Now we
have:

p0 ◦ g = p0; pm ◦ g = pm −H0
D(fm−1) ◦ pm−1 ∀m ≥ 1.

Then g ◦ α = 0 implies pm ◦ g ◦ α = 0 for any m ∈ N. Let us prove by induction
that pm ◦ α = 0 for each m ∈ N. First p0 ◦ α = p0 ◦ g ◦ α = 0; assume by induction
that pm−1 ◦ α = 0 with m ≥ 1 and let us prove that pm ◦ α = 0:

0 = pm ◦ g ◦ α = pm ◦ α−H0
D(fm−1) ◦ pm−1 ◦ α = pm ◦ α

which concludes the proof. �

Since both D and TT are closed under taking homotopy colimits in D(G), by
point (1) of Lemma 2.10 the pair (D, TT ) is a right filterable pair of t-structures.
Moreover, the following result holds:

Proposition 6.2. The pair (D, TT ) is right n-tilting.

Proof. It remains to prove that

(1) G ∩ HTT cogenerates G;

(2) D≥0 ⊆ T ≥0T , D≥0 6⊆ T ≥1T , and n is the minimal natural number such that

T ≥0T ⊆ D≥−n.



28 L. FIOROT, F. MATTIELLO, AND A. TONOLO

(1) For any injective object I in G, one has HomD(G)(T, I[i]) = 0 for any i 6= 0 and
hence I ∈ HT : indeed

I ∈ T ≤0T := {X ∈ D(G) : HomD(G)(T,X[i]) = 0 for each i > 0},

I ∈ T ≥0T := {X ∈ D(G) : HomD(G)(T,X[i]) = 0 for each i < 0}.
Since any X ∈ G injects into a suitable injective object IX ∈ G, the intersection
G ∩ HTT cogenerates G.

(2) Since T ∈ G ⊆ D≤0, then we get D≥0 ⊆ T ≥0T ; as T belongs to D≥0, but

T 6∈ T ≥1T , then D≥0 6⊆ T ≥1T . Let us prove that if X ∈ T ≥0T then it belongs to D≥−n.
By Lemma 1.17 (2) in [Sto14], if HomD(G)(T,X[i]) = 0 for each i < 0, then the

cohomology objects of X satisfy Hi
D(X) = 0 for all i < −n and so T ≥0T ⊆ D≥−n.

Next, since T is n-tilting, there exists M ∈ G such that

0 6= HomD(G)(T,M [n]).

Then M [n − 1] ∈ D≤−n+1, but M [n − 1] does not belong to T ≤0T : therefore

D≤−n+1 6⊆ T ≤0T , or equivalently T ≥0T 6⊆ D≥−n+1. �

Denoted by Di and Hi, i = 0, ..., n, the right basic t-structures and hearts of the
pair (D, TT ), by Lemma 5.6 for each j > i the pairs (Di,Dj) are right (j− i)-tilting
and therefore by Theorem 5.8 there are triangle equivalences

Ei,j : D(Hj)
'→ D(Hi)

such that the restriction to Hj is naturally isomorphic to the inclusion Hj ⊆ D(Hi).
Following the proof of Theorem 5.8, Ei,j := Ei,i+1 ◦ Ei+1,i+2 ◦ · · · ◦ Ej−1,j . Thus
for each 0 ≤ i < j < ` ≤ n we have Ei,` = Ei,j ◦ Ej,`.

We can say something more: indeed, let us prove that all the right basic hearts
Hi of the pair (D, TT ) are Grothendieck categories.

Lemma 6.3. For each i = 0, ..., n the torsion free class Yi coincides with the kernel
of the functor HomHi

(T,−).

Proof. By point 5 of Lemma 2.13, we have Yi = Hi ∩ T ≥1T for i ≥ 0. Then, for

i = 0 one gets Y0 = H0 ∩ T ≥1T = Ker HomH0
(T,−). Assume i > 0; if Y belongs

to T ≥1T ∩ Hi, then we have HomHi
(T, Y ) ∼= HomD(G)(T, Y ) = 0 since T ∈ T ≤0T .

Conversely, let Y ∈ Hi such that HomHi
(T, Y ) = 0; we have to prove that Y

belongs to T ≥1T . Since Hi ⊆ T [0,n−i]
T , we have the following distinguished triangle

H0
TT (Y ) → Y → τ≥1Y

+1→ in D(G). Applying the functor HomD(G)(T,−) we get
the exact sequence

HomD(G)(T, (τ
≥1Y )[−1]) // HomD(G)(T,H

0
TT (Y )) // HomD(G)(T, Y ).

Since T belongs to T ≤0T and (τ≥1Y )[−1] belongs to T ≥1T [−1] = T ≥2T we have
HomD(G)(T, (τ

≥1Y )[−1]) = 0; in view of HomD(G)(T, Y ) = HomD(Hi)(T, Y ) = 0,

we have 0 = HomD(G)(T,H
0
TT (Y )) = HomHTT (T,H0

TT (Y )). Since T is a generator

of HTT , we get H0
TT (Y ) = 0 and hence Y ∼= τ≥1Y ∈ T ≥1T ∩Hi. �

Lemma 6.4. [Sto14, Theorem 6.7, Theorem 6.8] Let G be a Grothendieck category
and let T be an n-tilting object of G. Then the functor ExtmG (T,−) : G → Ab
preserves direct limits for all m ≥ 0.
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Proof. Since G is a Grothendieck category, it has an injective cogenerator W . Let
R := EndG(T ) and C := W . Then by [Sto14, Theorem 6.8], G is the heart of a t-
structure generated by the module C. Therefore we can apply [Sto14, Theorem 6.7
(1)], which asserts that the functor ExtmG (T,−) : G → Ab preserves direct limits for
all m ≥ 0. �

Proposition 6.5. For i = 0, . . . , n, the right basic heart Hi of the pair (D, TT ) is
a Grothendieck category, and T is a (n− i)-tilting object in Hi.

Proof. We proceed by induction. For i = 0 we have H0 = G which is Grothendieck
and T is a n-tilting object in G. Assume i ≥ 0, Hi is a Grothendieck category and
T is a (n − i)-tilting object in Hi. By Proposition 6.2 and Lemma 5.6, the pair
(Di,Di+1) is 1-tilting. Therefore Di+1 is obtained by tilting Di with respect to the

tilting torsion pair (Xi,Yi) := (D≤0i+1 ∩ Hi,D
≥1
i+1 ∩ Hi). By [PS15, Corollary 4.10]

the heart Hi+1 is Grothendieck if and only if Yi = D≤0i ∩ D≥1i+1 is closed under
taking direct limits in Hi. Since T is a (n− i)-tilting object in Hi, by Lemma 6.4
the functor HomHi

(T,−) preserves direct limits. Since Yi = Ker HomHi
(T,−) by

Lemma 6.3, we get that Yi is closed under direct limits in Hi, and therefore Hi+1

is Grothendieck.
Let us prove that T is a (n − i − 1)-tilting object in Hi+1. First of all T belongs
to G ∩ HTT ⊆ Hi+1. By Lemma 5.6 the pair (D,Di+1) is a pair of right (i + 1)-
tilting t-structures, so by Theorem 5.8 there is a triangulated equivalence E0,i+1 :
D(Hi+1) → D(G) such that the restriction to Hi+1 is naturally isomorphic to
the inclusion Hi+1 ⊆ D(G). Since T is a fixed point for the equivalence E0,i+1 :
D(Hi+1)→ D(G), it is a compact generator in D(Hi+1) and HomD(Hi+1)(T, T [j]) ∼=
HomD(G)(T, T [j]) = 0 for each j > 0. Since (Di+1, TT ) is of type (n− i− 1, 0), by
point 2 of Remark 2.15 we have that i is the maximum natural number such that

Hi+1 ⊆ T [0,n−i−1]
T and hence HomD(Hi+1)(T, L[n−i]) ∼= Extn−iHi+1

(T, L) = 0 for each

L ∈ Hi+1 and Extn−i−1Hi+1
(T,−) 6≡ 0. �

Since the right basic hearts Hi are Grothendieck and T is a (n− i)-tilting object
in Hi, we have for i = 0, ..., n the triangle equivalences

R HomHi
(T,−) : D(Hi)→ D(EndHi

(T )) = D(EndG(T )).

Lemma 6.6. For each i = 0, ..., n we have

R HomHi
(T,−) = R HomG(T,−) ◦ E0,i;

Proof. Let us denote by Ei,0 a quasi inverse of E0,i which is the identity on K(Hi∩
G)/N (see Remark 5.9). It is more convenient to prove that R HomHi(T,−)◦Ei,0 =
R HomG(T,−). Let us denote by IG the full subcategory of injective objects in G.
We have IG ⊆ G ∩ HT ∩ Hi, hence Ei,0(IG) = IG and its objects are acyclic for
both the functors R HomG(T,−) and R HomHi

(T,−). Observe that for any I in
IG one has

R HomG(T, I) = HomG(T, I) = HomHi
(T, I) = R HomHi

(T, I).

Since, as remarked above, the injective objects in G are acyclic for R HomHi
(T,−),

the fibrant-cofibrant replacements with respect to the injective model structure in G
can be used to compute both the functors R HomHi(T,−)◦Ei,0 and R HomG(T,−)
(see, for instance, [Hov01]).

�
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Considering also the equivalence HomHTT (T,−) : HTT → EndG(T )-Mod proved

in [BR07, Ch.3 Corollary 4.2], we get the following commutative diagram where
all dotted arrows are triangulated equivalences and the dashed arrow is a Morita
equivalence:

G �
�

//

H1
�� //
) 	

66

· · ·

HT �� //
) 	

66

HT u�

((

HomHT (T,−)

Morita equiv.
//

D(H1) RHomH1
(T,−)

,,
E0,1

((

E0,1

==· · ·

E1,2

��

D(HT ) RHomHT (T,−)

,,
En−1,n

��

E0,n

((

D(G)

D(G)

· · ·

D(G)

D(EndG(T ))//
RHomG(T,−)

D(EndG(T ))//
RHomG(T,−)

· · ·

D(EndG(T ))//
RHomG(T,−)

EndG(T )-Mod
_�

��

6.2. The t-tree associated to a n-tilting module. For the rest of this section
G = R-Mod with R an arbitrary associative ring and therefore T = RT is a n-
tilting left R-module. Miyashita in [Miy86] introduced the following n + 1 full
subcategories:

KEe(T ) := {M ∈ R-Mod : ExtiR(T,M) = 0, if i 6= e}, and

KTe(T ) := {N ∈ S-Mod : TorSi (T,N) = 0, if i 6= e}, e = 0, 1, ..., n,

and proved that the functors ExteR(T,−) and TorSe (T,−) induce inverse equivalences
between KEe(T ) and KTe(T ). Following Definition 1.6, the objects in KEe(T ) are
exactly the objects in R-Mod which are TT -static of degree e.

If n ≤ 1, Brenner and Butler in [BB80] observed that (KE0(T ),KE1(T )) is a
torsion pair in R-Mod. In particular any object in R-Mod is an extension of a
TT -static module of degree 1 by a TT -static module of degree 0.

As soon as n > 1, we loose the possibility to decompose all the objects in R-Mod
in TT -static left R-modules: in [Ton02] examples of simple non TT -static modules
are provided. We recover the decomposition of all left R-modules in TT -static
objects with the construction of their t-trees (see Section 3): indeed, as we have
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seen in Remark 3.3, the t-leaves are TT -static complexes of left R-modules. In the
case n = 1 the t-tree of a module coincide with its decomposition with respect to
the torsion pair (KE0(T ),KE1(T )). Therefore we can regard the construction of
the t-tree as a generalization of the Brenner and Butler Theorem.

Example 6.7. In this example, k denotes an algebraically closed field. We will
consider a finite-dimensional path k-algebra given by a quiver with relations. If
`, m and n are vertices of the quiver, we continue to denote by `, m and n the
correspondent simple module; `

n denotes the indecomposable module whose radical
(and also socle) is the simple module n and whose top is the simple module `, while
` m
n denotes the indecomposable module whose radical (and also socle) is the

simple module n and whose top is the direct sum ` ⊕m. Let R denote the path
k-algebra given by the quiver

·1 α // ·2
β
// ·3

γ
// ·4 δ // ·5 ·6εoo

with relations 0 = αβ = βγ = γδ. The left projective modules are 1
2 , 2

3 , 3
4 , 4

5 , 6
5 ,

5 . Let RT be the left R-module

RT := 4 6
5 ⊕ 6 ⊕ 3

4 ⊕ 2
3 ⊕ 2 ⊕ 1

2 .

The module RT is a classical 3-tilting object in R-Mod. It is not difficult to verify
that, denoting by IndR the subcategory of indecomposable modules in R-Mod, we
have

IndR = { 1 , 2 , 3 , 4 , 5 , 6 , 1
2 ,

2
3 ,

3
4 ,

4
5 ,

6
5 ,

4 6
5 }.

If L, M and N are left R-modules, we will denote by L →
•

M→ N the bounded
complex with M in degree zero. The derived category D(R) has a finite number of
indecomposable complexes, which are up to shifts

{ 1 , 2 , 3 , 4 , 5 , 6 , 1
2 ,

2
3 ,

3
4 ,

4
5 ,

6
5 ,

4 6
5 , 2

3 →
•
1
2 ,

3
4 →

•
2
3 ,

4
5 →

•
3
4 ,

4 6
5 →

•
3
4 ,

3
4 → 2

3 →
•
1
2 ,

4
5 → 3

4 →
•
2
3 ,

4 6
5 → 3

4 →
•
2
3 ,

4
5 → 3

4 → 2
3 →

•
1
2 ,

4 6
5 → 3

4 → 2
3 →

•
1
2 }

Denoting by D the natural t-structure in D(R), we have proved that (D, TT ) is a
right 3-tilting pair of t-structures, in particular it is right filterable. Therefore for
each object in HD = R-Mod we can construct its right t-tree.
Some computation permits to obtain the indecomposable complexes belonging to
the right basic hearts R-Mod = H0, H1, H2 and H3 = TT associated to the pair
(D, TT ) of t-structures:

H0 = R-Mod = { 1 , 2 , 3 , 4 , 5 , 6 , 1
2 ,

2
3 ,

3
4 ,

4
5 ,

6
5 ,

4 6
5 }

H1 = { 1 , 2 , 3 , 4 , 5[1] , 6 , 1
2 ,

2
3 ,

3
4 ,

4
5
[1] , 6

5
[1] , 4 6

5 , 4
5 →

•
3
4 ,

4 6
5 →

•
3
4 }

H2 = { 1 , 2 , 6 , 1
2 ,

2
3 ,

3
4 ,

4
5
[1] , 6

5
[2] , 4 6

5 , 4
5 →

•
3
4 ,

4 6
5 →

•
3
4 ,

4 6
5 → 3

4 →
•
2
3 }

H3 = { 1 , 2 , 6 , 1
2 ,

2
3 ,

3
4 ,

4
5
[1] , 6

5
[3] , 4 6

5 , 4
5 →

•
3
4 ,

4 6
5 →

•
3
4 ,

4 6
5 → 3

4 →
•
2
3 ,

4 6
5 → 3

4 → 2
3 →

•
1
2 }

The indecomposable objects belonging to the right basic torsion pairs are:

X0 = { 1 , 2 , 3 , 4 , 6 , 1
2 ,

2
3 ,

3
4 ,

4 6
5 }, Y0 = { 5 , 4

5 ,
6
5 }

X1 = { 1 , 2 , 3 , 6 , 1
2 ,

2
3 ,

3
4 ,

4 6
5 , 4

5
[1] , 4

5 →
•
3
4 ,

4 6
5 →

•
3
4 }, Y1 = { 65[1] }
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X2 = { 1 , 2 , 6 , 1
2 ,

2
3 ,

3
4 ,

4 6
5 , 4

5
[1] , 4

5 →
•
3
4 ,

4 6
5 →

•
3
4 ,

4 6
5 → 3

4 →
•
2
3 }, Y2 = { 65[2] }

The simple modules 3 , 4 and 5 are not T -static; since they are simple, they admit
in R -Mod only trivial decompositions. Let us construct their t-trees:

3

,, ,,
3
% �

22

(( ((

0

(( ((
3
' �

55

!! !!

0

�� ��

0
) 	

66

�� ��

0

�� ��
4 6

5 →
•
3
4

+ �
99

6
5 [2] 0

0�
AA

0 0
0�
AA

0 0
0�
AA

0

4

,, ,,
4
$ �

22

(( ((

0

'' ''4 6
5

) 	
66

!! !!

6
5 [1]

## ##

0
* 


77

�� ��

0

�� ��
4 6

5

, �
::

0 0

. �
>>

6
5 [1] 0

0�
AA

0 0
0�
AA

0

5

-- --
0
% �

22

'' ''

5

'' ''
0
* 


77

�� ��

0

�� ��

6 [−1]

( �
66

"" ""

6
5

�� ��
0
0�
AA

0 0
0�
AA

0 6 [−1]

+ �
99

0 0
0�
AA

6
5

The t-leaves in the t-trees are T -static. In particular the simple left R-module 3

has a leaf of degree 0 and one of degree 1; the simple left R-module 4 has a leaf of
degree 0 and one of degree 2; the simple left R-module 5 has a leaf of degree 1 and
one of degree 3.

6.3. The compatible case. This section is devoted to the applications of Sections
2 and 3 to the case of compatible t-structures.

The concept of compatible t-structures has been first introduced by Keller and
Vossieck in [KeV88b] and it has been recently studied independently by Bondal in
[Bon13] under the name of consistent pairs of t-structures. We adopt the notation
of Keller and Vossieck.

Definition 6.8. Let D := (D≤0,D≥0) and T := (T ≤0, T ≥0) be two t-structures in
a triangulated category C. We denote by δ and τ the truncation functors associated
with D and T , respectively. The t-structure T is called:

(1) left D-compatible if T ≤0 is stable under the truncation functors δ≤n, n ∈ Z;
(2) right D-compatible if T ≥0 is stable under the truncation functors δ≥n, n ∈

Z.

It is not hard to check that if T is left D-compatible, then T ≤0 is also stable
under the truncation functors δ≥n and therefore Hn

D(T ≤0)[−n] ⊆ T ≤0 for each
n ∈ Z. Analogously if T is right D-compatible, then T ≥0 is also stable under the
truncation functors δ≤n and therefore Hn

D(T ≥0)[−n] ⊆ T ≥0 for each n ∈ Z.

Remark 6.9. In [Bon13], Bondal defined a pair of t-structures (D, T ) to be lower
consistent if δ≤0T ≤0 ⊆ T ≤0. So the t-structure T is left D-compatible if and only
if (D[n], T ) is lower consistent for any n ∈ Z.
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Let us recall the principal result of Keller and Vossieck concerning left compatible
t-structures. The statement of the following proposition involves the concept of
bounded t-structure D in C i.e., for any X ∈ D there exist m < n in Z such that
X ∈ D[m,n]. In particular any bounded t-structure is non degenerate.

Proposition 6.10. [KeV88b] Let D and T be two bounded t-structures on the
triangulated category C. The following are equivalent:

(1) T is left D-compatible;
(2) T ≤0 =

{
X ∈ C | Hi

D(X) ∈ HD ∩ T ≤−i, for all i ∈ Z
}

;
(3) we have

(a) Hi
TH

j
D(X) = 0, for all X ∈ HT and i+ j > 0,

(b) for each morphism f : Y → Y ′ in HD with Y ∈ T ≤i and Y ′ ∈ T ≤i−1,
we have Ker(f) ∈ T ≤i and Coker(f) ∈ T ≤i−1.

Remark 6.11. Let D be a t-structure in a triangulated category C, (X ,Y) be a tor-
sion pair inHD and T(X ,Y) the t-structure associated to (X ,Y) (see Proposition 1.8).
Note that T(X ,Y) is both left and right D-compatible. Indeed by Proposition 1.8
one has:

T ≤0(X ,Y) = {C ∈ C | H0
D(C) ∈ X , Hi

D(C) = 0 ∀i > 0}
T ≥0(X ,Y) = {C ∈ C | H−1D (C) ∈ Y, Hi

D(C) = 0 ∀i < −1}
which are stable by both δ≤n and δ≥n for any n ∈ Z. On the other side, D is both
left and right T(X ,Y)-compatible: we can regard D as the t-structure obtained by
tilting T(X ,Y)[−1] with respect to the torsion pair (Y[0],X [−1]) which proves that

both D≤0 and D≥0 are stable by τ≤n and τ≥n for any n ∈ Z.

Let us recall that by point (ii) of Lemma 2.10 if T is left D-compatible, then the
pair (D, T ) of t-structures is left filterable; then we can associate to this pair its
left basic t-structures iD whose aisle is iD≤0 = D≤0 ∩ T ≤n−i by Definition 4.1.

Proposition 6.12. Let (D, T ) be pair of t-structures of type (n, 0) in C and assume
T is left D-compatible. Then for any 0 ≤ i ≤ j ≤ n the t-structure jD is left iD-
compatible.

Proof. Let us recall that since T is leftD-compatible and iD≤0 = D≤0∩T ≤n−i, then
by Lemma 2.10 the truncation functor associated to iD is iσ

≤h := δ≤hτ≤n−i+h.
Let 0 ≤ i ≤ j ≤ n and h ∈ Z; since T is left D-compatible, we have:

iσ
≤h(jD≤0) = δ≤hτ≤n−i+h(D≤0 ∩ T ≤n−j) ⊆ δ≤h(T ≤n−j) ⊆ T ≤n−j .

Next, for any h ≤ 0 it is clear that

iσ
≤h(jD≤0) = δ≤hτ≤n−i+h(D≤0 ∩ T ≤n−j) ⊆ D≤h ⊆ D≤0;

on the other side if h > 0 we have 0 ≤ i ≤ j < j+h and so n− i+h > n− j which
implies:

iσ
≤h(jD≤0) = δ≤hτ≤n−i+h(D≤0∩T ≤n−j) = δ≤h(D≤0∩T ≤n−j) ⊆ δ≤h(D≤0) ⊆ D≤0.

Therefore iσ
≤h(jD≤0) ⊆ D≤0 ∩ T ≤n−j = jD≤0 which proves that jD is left iD-

compatible. �

Lemma 6.13. Let (D, T ) be pair of t-structures of type (n, 0) in C and assume T
is left D-compatible. Then for any fixed 0 ≤ k ≤ n−1, the left basic torsion classes
of (D, T ) satisfy

kX := kH ∩ T ≤n−k−1 = iH ∩ T ≤n−k−1 = HD ∩ T ≤n−k−1 for any 0 ≤ i ≤ k
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and hence

n−1X ⊆ n−2X ⊆ · · · ⊆ 1X ⊆ 0X ⊆ HD =: −1X .
Moreover for any f : Xk−1 → Xk with 0 ≤ k ≤ n− 1, Xk−1 ∈ k−1X and Xk ∈ kX
we have

Ker(f) = H−1D Cone(f) ∈ k−1X Coker(f) = H0
D Cone(f) ∈ kX

(kernels and cokernels are computed in HD while Cone(f) indicates the mapping
cone of f in C).

Proof. First of all let us note that by the definition of the left basic t-structures one
obtains −1H = HD and so −1X = HD = HD ∩T ≤n which justifies the definition of

−1X . Let us prove that for 0 ≤ k ≤ n− 1 we have kX = HD ∩T ≤n−k−1. For k = 0
the statement holds true for any n ≥ 1 since 0X = H0 ∩ 1D≤0 = HD ∩ T ≤n−1 as
stated in point (5) of Lemma 4.2. Let us now use induction on the gap n ∈ N. For
n = 1 we have k = 0 and so the statement is true. Let us suppose 1 ≤ k ≤ n − 1
and n ≥ 2. By inductive hypothesis our statement is true for any pair (U ,V) of
t-structures with gap less than n such that V is left U-compatible. In particular,
for 1 ≤ i ≤ n, the pair (iD, T ) is of type (n − i, 0) and by Proposition 6.12 the
t-structure T is left iD-compatible. Observe that the left basic t-structures of the
pair (iD, T ) coincide with the t-structures `D for ` = i, . . . , n. Then by inductive
hypothesis kX := kH ∩ T ≤n−k−1 = iH ∩ T ≤n−k−1 for any 1 ≤ i ≤ k.
It remains to prove that 1H ∩ T ≤n−k−1 = HD ∩ T ≤n−k−1. We have

HD ∩ T ≤n−k−1 ⊆ HD ∩ T ≤n−1 = 0X ⊆ 1H
and therefore HD ∩ T ≤n−k−1 ⊆ 1H ∩ T ≤n−k−1. Viceversa, if X ∈ 1H ∩ T ≤n−k−1
then H−1D (X) ∈ 0Y; on the other hand H−1D (X)[1] = δ≤−1(X) belongs to T ≤n−k−1
by the left compatibility hypothesis and so H−1D (X) ∈ HD ∩ T ≤n−k ⊆ HD ∩
T ≤n−1 =: 0X which implies H−1D (X) = 0 and so X ∈ HD ∩ T ≤n−k−1.
Now, let f : Xk−1 → Xk with 0 ≤ k ≤ n − 1, Xk−1 ∈ k−1X and Xk ∈ kX .
For what we have proved, f is a morphism in HD, Xk−1 ∈ T ≤n−k and Xk ∈
T ≤n−k−1; therefore Cone(f) ∈ T ≤n−k−1. By the definition of the abelian structure
of the heart HD and by the left compatibility we obtain Ker(f) = H−1D Cone(f) =
H0
D(Cone(f)[−1]) ∈ HD ∩ T ≤n−k = k−1X while Coker(f) = H0

D Cone(f) ∈ HD ∩
T ≤n−k−1 = k+1X . �

Lemma 6.13 says that the left basic torsion classes kX , k = 0, ..., n−1, associated
to a pair (D, T ) of t-structures of type (n, 0) with T left D-compatible, satisfy the
following closure property:

(1) (Strong Quotient) If L → M → N → 0 is exact in −1X := HD, then
M ∈ kX ⊆ k−1X 3 L implies N ∈ kX ;

(2) (Weak Hereditariness) If 0 → L → M → N is exact in −1X := HD, then
N ∈ kX ⊆ k−1X 3M implies L ∈ k−1X .

Property (1) is a sort of strong closure of the torsion class kX with respect to
homomorphic images, while property (2) is a sort of weak hereditariness of the
torsion class k−1X .

Theorem 6.14. Let (D, T ) be a left filterable pair of t-structures of type (n, 0).
The t-structure T is left D-compatible if and only if the left basic torsion classes

iX lie in HD; in particular they satisfy

n−1X ⊆ n−2X ⊆ · · · ⊆ 1X ⊆ 0X ⊆ HD.
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Proof. By Lemma 6.13, if T is left D-compatible then iX ⊆ HD. Let us assume
the left basic torsion classes iX lie in HD. By Lemma 4.7

iX ⊆ iH ∩HD =

i−1⋂
`=0

`X ⊆ i−1X ;

thus we get

iX ⊆ i−1X ∩ T ≤n−i−1 ⊆ iH ∩ T ≤n−i−1 = iX .
Then we deduce that

iX = i−1X ∩ T ≤n−i−1 = i−2X ∩ T ≤n−i ∩ T ≤n−i−1 =
= i−2X ∩ T ≤n−i−1 = · · · = HD ∩ T ≤n−i−1.

As proved by Keller and Vossieck in the bounded case (see Proposition 6.10), let
us prove by induction on i = 1, . . . , n that we have

iD≤0 = {C ∈ C | Hk
HD (C) ∈ i−1+kX if − i+ 1 ≤ k ≤ 0 and Hk

HD (C) = 0 if k > 0}

which permits to conclude since they are stable by δ≤h for any h ∈ Z.
For i = 1 the left basic t-structure 1D is obtained by tilting D with respect to the
torsion pair (0X , 0Y) in HD and so:

1D≤0 = {C ∈ C | H0
HD (C) ∈ 0X and Hk

HD (C) = 0 if k > 0}
and hence the statement holds true. Let assume that

iD≤0 = {C ∈ C | Hk
HD (C) ∈ i−1+kX if − i+ 1 ≤ k ≤ 0 and Hk

HD (C) = 0 if k > 0}
and let us prove that

i+1D≤0 = {C ∈ C | Hk
HD (C) ∈ i+kX if − i ≤ k ≤ 0 and Hk

HD (C) = 0 if k > 0}.

By definition i+1D≤0 = {C ∈ C | H0
iH(C) ∈ iX and Hk

iH(C) = 0 if k > 0} and by

Lemma 4.2 one has i+1D≤0 ⊆ iD≤0 ⊆ D≤0. Therefore, first for any C ∈ i+1D≤0
and k > 0 we get Hk

HD (C) = 0; next, since iδ
≤−1C ∈ iD≤−1 ⊆ D≤−1 and H0

iH(C)

belongs to iX ⊆ HD ⊆ D≥0, the distinguished triangle iδ
≤−1C → C → H0

iH(C)
+1→

coincides with the approximating triangle with respect to the t-structure D:

iδ
≤−1C //

∼=
��

C //

idC

��

H0
iH(C)

+1
//

∼=
��

δ≤−1C // C // H0
HD (C)

+1
//

Therefore, since by inductive hypothesis we have

iD≤−1 = {C ∈ C | Hk
HD (C) ∈ i+kX if − i ≤ k ≤ −1 and Hk

HD (C) = 0 if k > −1},
one gets

H0
HD (C) ∼= H0

iH(C) ∈ iX ; Hk
HD (C) ∼= Hk

HD (iδ
≤−1C) ∈ i+kX for any −i ≤ k ≤ −1,

and hence i+1D≤0 ⊆ {C ∈ C | Hk
HD (C) ∈ i+kX if − i ≤ k ≤ 0 and Hk

HD (C) =
0 if k > 0}.
Let us prove the other inclusion: consider C ∈ C belonging to the right side.
By the previous description of iD≤−1, due to the inductive hypothesis, we have
δ≤−1C ∈ iD≤−1 ⊆ i+1D≤0, while δ≥0C = H0

HD (C) ∈ iX ⊆ i+1H ⊆ i+1D≤0; then

C is an extension of objects in i+1D≤0 and hence it belongs to i+1D≤0. �
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The left compatible case has been studied by Vitória in [Vit14]. In particular the
author considers the bounded derived category Db(A) of an AB4 abelian category
A endowed with its natural t-structure D. Then he proves in [Vit14, Theorem 3.13]
that, under a technical hypothesis, the data of n hereditary torsion classes of A
such that

n−1X ⊆ n−2X ⊆ · · · ⊆ 1X ⊆ 0X ⊆ HD =: −1X
permits to construct (via an iterated HRS procedure of length n) a new left D-
compatible t-structure T . So Theorem 6.14 can be seen as a partial generalization
of [Vit14].

Remark 6.15. We have seen in Proposition 2.3 that by Polishchuk’s result a pair
of t-structures (D, T ) in a triangulated category C verifies D≤−1 ⊆ T ≤0 ⊆ D≤0
(or equivalently D≥0 ⊆ T ≥0 ⊆ D≥−1) if and only if T is a t-structure obtained by
tilting D with respect to a torsion pair in HD. Moreover we proved in Remark 2.9
that such a pair of t-structures is always both left and right filterable and we proved
in Remark 6.11 that one is both left and right compatible with respect to the other.
These remarkable properties of a pair of t-structures obtained by HRS procedure of
length 1 do not hold true for t-structures with gap n ≥ 2. Actually we can deduce
from the previous theorem the following corollary.

Corollary 6.16. Let (D, T ) be a n-tilting pair of t-structures. Then T is left
D-compatible if and only if n = 0 or n = 1.

Proof. It is clear that if n = 0 then D = T is left D-compatible and we have seen
in Remark 6.11 that for any pair (D, T ) of type (1, 0), the t-structure T is left
D-compatible.
Viceversa let (D, T ) be a n-tilting pair of t-structures such that T is left D-
compatible; then (D, T ) is left filterable. By Theorem 4.3, the t-structure T is
obtained by an iterated HRS procedure of length n (via its left basic t-structures)

and by Lemma 4.7 we have 0H∩nH =
⋂n−1
i=0 iX = n−1X . Since (D, T ) is a n-tilting

torsion pair we have that n−1X cogenerates HD. So given an element M ∈ HD
there exist a short exact sequence 0 → M

i→ X
p→ CokerHD (i) → 0 in HD with

X ∈ n−1X ⊆ n−2X and a monomorphism j : CokerHD (i) ↪→ Y with Y ∈ n−1X .
Then we obtain:

f := j ◦ p : X −→ Y with X ∈ n−2X , Y ∈ n−1X

and so by Theorem 6.14 we have KerHD (f) = M ∈ n−2X for any M ∈ HD which
proves that n−2X = HD and hence n−2X = · · · = 0X = −1X = HD. This implies
that n = 0 or n = 1 otherwise for n ≥ 2 we would have HD 6= 0X ⊂ HD which can
not occur. �
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(Grothendieck-Roos-duality and tilting)., C. R. Acad. Sci., Paris, Sér. I 307 (1988), no. 11,
543–546.

[Miy86] Y. Miyashita, Tilting modules of finite projective dimension., Mathematische Zeitschrift
193 (1986), 113–146.

[Nee96] A. Neeman, The Grothendieck duality theorem via Bousfields techniques and Brown rep-

resentability, Journal of the American Mathematical Society 9 (1996), no. 1, 205–236.

[Nee01] A. Neeman, Triangulated categories, Princeton, NJ: Princeton University Press, 2001.
[Noo09] B. Noohi, Explicit HRS-tilting, J. Noncommut. Geom. 3 (2009), no. 2, 223–259.
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