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Quantum Chaos in a Yang–Mills–Higgs System
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Abstract

We study the energy fluctuations of a spatially homogeneous SU(2) Yang–

Mills–Higgs system. In particular, we analyze the nearest–neighbour spacing

distribution which shows a Wigner–Poisson transition by increasing the value

of the Higgs field in the vacuum. This transition is a clear quantum signature

of the classical chaos–order transition of the system.
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1 Introduction

In the last years there has been much interest in classical chaos in field

theories. It is now well known that the spatially uniform limits of scalar

electrodynamics and Yang–Mills theory exhibit classical chaotic motion1)−8).

On the other hand, in field theories, less attention has been paid to quantum

chaos, i.e. the study of properties of quantum systems which are classically

chaotic9).

The energy fluctuation properties of systems with underlying classical

chaotic behaviour and time–reversal symmetry agree with the predictions of

the Gaussian Orthogonal Ensemble (GOE) of random matrix theory, whereas

quantum analogs of classically integrable systems display the characteristics

of the Poisson statistics9)−12). Some results in this direction for field theories

have been obtained by Halasz and Verbaarschot: they studied the QCD

lattice spectra for staggered fermions and its connection to random matrix

theory13).

In this paper we study quantum chaos in a field–theory schematic model.

We analyze the energy fluctuation properties of the spatially homogeneous

SU(2) Yang–Mills–Higgs (YMH) system (see Ref. 1–4). We show that these

fluctuations give a clear quantum signature of the classical chaos–order tran-

sition of the system.

The Lagrangian density of the SU(2) YMH system14) is given by

L =
1

2
(Dµφ)+(Dµφ) − V (φ) −

1

4
F a

µνF
µνa , (1)
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where

(Dµφ) = ∂µφ − igAb
µT

bφ , (2)

F a
µν = ∂µAa

ν − ∂νA
a
µ + gǫabcAb

µAc
ν , (3)

with T b = σb/2, b = 1, 2, 3, generators of the SU(2) algebra, and where the

potential of the scalar field (the Higgs field) is

V (φ) = µ2|φ|2 + λ|φ|4 . (4)

We work in the (2+1)–dimensional Minkowski space (µ = 0, 1, 2) and choose

spatially homogeneous Yang–Mills and the Higgs fields

∂iA
a
µ = ∂iφ = 0 , i = 1, 2 (5)

i.e. we consider the system in the region in which space fluctuations of fields

are negligible compared to their time fluctuations.

In the gauge Aa
0 = 0 and using the real triplet representation for the Higgs

field we obtain

L = ~̇φ
2

+
1

2
( ~̇A

2

1 + ~̇A
2

2) − g2[
1

2
~A2

1
~A2

2 −
1

2
( ~A1 · ~A2)

2+

+ ( ~A2
1 + ~A2

2)
~φ2 − ( ~A1 · ~φ)2 − ( ~A2 · ~φ)2] − V (~φ) , (6)

where ~φ = (φ1, φ2, φ3), ~A1 = (A1
1, A

2
1, A

3
1) and ~A2 = (A1

2, A
2
2, A

3
2).

When µ2 > 0 the potential V has a minimum at |~φ| = 0, but for µ2 < 0

the minimum is at

|~φ0| =

√

−µ2

4λ
= v ,

which is the non zero Higgs vacuum. This vacuum is degenerate and after

spontaneous symmetry breaking the physical vacuum can be chosen ~φ0 =
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(0, 0, v). If A1
1 = q1, A2

2 = q2 and the other components of the Yang–Mills

fields are zero, in the Higgs vacuum the Hamiltonian of the system reads

H =
1

2
(p2

1 + p2
2) + g2v2(q2

1 + q2
2) +

1

2
g2q2

1q
2
2 , (7)

where p1 = q̇1 and p2 = q̇2. Here w2 = 2g2v2 is the mass term of the

Yang–Mills fields. This YMH Hamiltonian is a toy model for classical non–

linear dynamics, with the attractive feature that the model emerges from

particle physics. In the next sections we analyze first the classical chaos–

order transition of the YMH system and then its connection to the quantal

fluctuations of the energy levels.

2 Classical chaos–order transition

A classical chaos–order transition for the YMH system has been observed pre-

viously by different authors: Savvidy used the Chirikov’criterion1), Kawabe

and Ohta studied the Lyapunov exponents3) and Salasnich analyzed the

quantal overlapping resonances4). In this paper we study the chaotic be-

haviour of this YMH system by using the Gaussian curvature criterion of the

potential energy16) and the Poincarè Sections17).

At low energy the motion near the minimum of the potential

V (q1, q2) = g2v2(q2
1 + q2

2) +
1

2
g2q2

1q
2
2 , (8)

where the Gaussian curvature is positive, is periodic or quasiperiodic and is

separated from the instability region by a line of zero curvature; if the energy

is increased, the system will be for some initial conditions in a region of
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negative curvature, where the motion is chaotic. According to this scenario,

the energy Ec of chaos–order transition is equal to the minimum value of the

line of zero gaussian curvature K(q1, q2) on the potential–energy surface. For

our potential the gaussian curvature vanishes at the points that satisfy the

equation

∂2V

∂q2
1

∂2V

∂q2
2

− (
∂2V

∂q1∂q2

)2 = (2g2v2 + g2q2
2)(2g

2v2 + g2q2
1) − 4g4q2

1q
2
2 = 0 . (9)

It is easy to show that the minimal energy on the zero–curvature line is given

by:

Ec = Vmin(K = 0, q̄1) = 6g2v4 , (10)

and by inverting this equation we obtain vc = (E/6g2)1/4. We conclude that

there is a order–chaos transition by increasing the energy E of the system

and a chaos–order transition by increasing the value v of the Higgs field in

the vacuum (see also Ref. 2). Thus, there is only one transition regulated

by the unique parameter E/(g2v4).

It is important to point out that in general the curvature criterion guar-

antees only a local instability16) and should therefore be combined with the

Poincarè sections17) (see Ref. 18). The classical equations of motion of the

YMH system are

q̇1 = p1 , q̇2 = p2 , ṗ1 = −2g2v2q1 − g2q1q
2
2 , ṗ2 = −2g2v2q2 − g2q2

1q2 .

(11)

We use a fourth–order Runge–Kutta method19) to compute the classical tra-

jectories. The conservation of energy restricts any trajectory of the four–

dimensional phase space to a three–dimensional energy shell. At a particular
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energy the restriction q1 = 0 defines a two–dimensional surface in the phase

space, which is called Poincarè section. Each time a particular trajectory

passes through the surface a point is plotted at the position of intersection

(q2, p2). We employ a first–order interpolation process to reduce the inaccu-

racies due to the use of a finite step length17).

In Figure 1 we plot the Poincarè sections for different values of the Higgs

vacuum v but with the same energy E and interaction g. Chaotic regions

on the surface of section are characterized by a set of randomly distributed

points and regular regions by dotted or solid curves. The pictures show

that the parameter v plays an important role: for large values it makes

the system regular. In fact, if we increase the harmonic part of the YMH

potential the effect of the nonlinear term becomes less important. These

numerical calculations confirm the analytical predictions of the curvature

criterion: with E = 10 and g = 1 we get the critical value of the onset of

chaos vc = (E/6g2)1/4 ≃ 1.14, in very good agreement with the Poincarè

sections.

3 Quantum signature of the chaos–order tran-

sition

In quantum mechanics the generalized coordinates of the YMH system satisfy

the usual commutation rules [q̂k, p̂l] = iδkl, with k, l = 1, 2. Introducing the

creation and destruction operators

âk =

√

ω

2
q̂k + i

√

1

2ω
p̂k , â+

k =

√

ω

2
q̂k − i

√

1

2ω
p̂k , (12)
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the quantum YMH Hamiltonian can be written15)

Ĥ = Ĥ0 +
1

2
g2V̂ , (13)

where

Ĥ0 = ω(â+
1 â1 + â+

2 â2 + 1) , (14)

V̂ =
1

4ω2
(â1 + â+

1 )2(â2 + â+
2 )2 , (15)

with ω2 = 2g2v2 and [âk, â
+
l ] = δkl, k, l = 1, 2.

The most used quantity to study the local fluctuations of the energy

levels is the spectral statistics P (s). P (s) is the distribution of nearest–

neighbour spacings si = (Ẽi+1 − Ẽi) of the unfolded levels Ẽi. It is obtained

by accumulating the number of spacings that lie within the bin (s, s + ∆s)

and then normalizing P (s) to unity9)−12).

For quantum systems whose classical analogs are integrable, P (s) is ex-

pected to follow the Poisson limit, i.e. P (s) = exp (−s). On the other

hand, quantal analogs of chaotic systems exhibit the spectral properties

of GOE with P (s) = (π/2)s exp (−π
4
s2), which is the so–called Wigner

distribution9)−12). The distribution P (s) is the best spectral statistics to

analyze shorter series of energy levels and the intermediate regions between

order and chaos.

Seligman, Verbaarschot and Zirnbauer20) analyzed a class of two–dimensional

anharmonic oscillators with polynomial perturbation by using the Brody

distribution21)

P (s, ω) = α(ω + 1)sω exp (−αsω+1) , (16)
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with

α = (Γ[
ω + 2

ω + 1
])ω+1 . (17)

This distribution interpolates between the Poisson distribution (ω = 0) of

integrable systems and the Wigner distribution (ω = 1) of chaotic ones, and

thus the parameter ω can be used as a simple quantitative measure of the

degree of chaoticity.

We compute the energy levels {Ei} with a numerical diagonalization of

the truncated matrix of the quantum YMH Hamiltonian in the basis of the

harmonic oscillators22). If |n1n2 > is the basis of the occupation numbers of

the two harmonic oscillators, the matrix elements are

< n
′

1n
′

2|Ĥ0|n1n2 >= ω(n1 + n2 + 1)δn
′

1
n1

δn
′

2
n2

, (18)

and

< n
′

1n
′

2|V̂ |n1n2 >=
1

4ω2
[
√

n1(n1 − 1)δn
′

1
n1−2+

√

(n1 + 1)(n1 + 2)δn
′

1
n1+2+(2n1+1)δn

′

1
n1

]×

× [
√

n2(n2 − 1)δn
′

2
n2−2 +

√

(n2 + 1)(n2 + 2)δn
′

2
n2+2 + (2n2 + 1)δn

′

2
n2

] . (19)

The symmetry of the potential enables us to split the Hamiltonian matrix

into 4 sub–matrices reducing the computer storage required. These sub–

matrices are related to the parity of the two occupation numbers n1 and

n2: even–even, odd–odd, even–odd, odd–even. The numerical energy levels

depend on the dimension of the truncated matrix: we compute the numerical

levels in double precision increasing the matrix dimension until the first 100

levels converge within 8 digits (matrix dimension 1156 × 1156)22),23).

We use the first 100 energy levels of the 4 sub–matrices to calculate the

P (s) distribution. In order to remove the secular variation of the level density
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as a function of the energy E, for each value of the coupling constant the cor-

responding spectrum is mapped, by a numerical procedure described in Ref.

24, into one which has a constant level density: {Ei} → {Ẽi} (unfolding pro-

cedure). We use the following standard procedure to avoid mixing between

states of different symmetry classes: 1) the diagonalization is performed for

each sub-matrix (first 100 levels for each sub-matrix); 2) the unfolding is done

for each sub-matrix; 3) the spacings are calculated for each sub-matrix; 4) the

spacings of the 4 sub-matrices are accumulated to plot the P(s) distribution.

In Figure 2 we plot the P (s) distribution for different values of the pa-

rameter v. The figure shows a Wigner–Poisson transition by increasing the

value v of the Higgs field in the vacuum. By using the P(s) distribution and

the Brody function it is possible to give a quantitative measure of the degree

of quantal chaoticity of the system. Our numerical calculations show clearly

the quantum chaos–order transition and its connection to the classical one.

4 Conclusions

The chaotic behaviour of an homogenous YMH system has been studied both

in classical and quantum mechanics. The Gaussian curvature criterion and

the Poincarè sections show that the chaotic behaviour is regulated by the

unique parameter E/(g2v4). The YMH system has a order–chaos transition

by increasing the energy E and a chaos–order transition by increasing the

value v of the Higgs field in the vacuum.

The nearest–neighbour spacing distribution of the energy levels confirms

with great accuracy the classical chaos–order transition of the YMH system.
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In particular, the Brody function shows a Wigner–Poisson transition for the

P (s) distribution in correspondence to the classical chaos–order transition.

We observe that, as stressed previously, our YMH system is a toy model

but it is very useful because it is possible to compare classical to quantum

chaos. In the future will be important to study classical and quantum chaos

in more realistic field theories.
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Figure Captions

Figure 1: The Poincarè sections of the model. From the top: v = 1, v = 1.1

and v = 1.2. Energy E = 10 and interaction g = 1.

Figure 2: P (s) distribution. From the top: v = 1 (ω = 0.92), v = 1.1

(ω = 0.34) and v = 1.2 (ω = 0.01), where ω is the Brody parameter. First

100 energy levels and interaction g = 1. The dotted, dashed and solid curves

stand for Wigner, Poisson and Brody distributions, respectively.
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