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Abstract 

Nanomedicine requires intelligent and non-toxic nanomaterials for real clinical applications. 

Carbon materials possess interesting properties but with some limitations due to toxic effects. 

Interest in carbon nanoparticles (CNPs) is increasing because they are considered green 

materials with tunable optical properties, overcoming the problem of toxicity associated with 

quantum dots or nanocrystals, and can be utilized as smart drug delivery systems. Using 

black tea as a raw material, we synthesized CNPs with a narrow size distribution, tunable 

optical properties covering visible to deep red absorption, non-toxicity and easy synthesis for 

large-scale production. We utilized these CNPs to label subcellular structures such as 

exosomes. More importantly, these new CNPs can escape lysosomal sequestration and 

rapidly distribute themselves in the cytoplasm to release doxorubicin (doxo) with better 

efficacy than the free drug. The release of doxo from CNPs was optimal at low pH, similar to 

the tumour microenvironment. These CNPs were non-toxic in mice and reduced the tumour 

burden when loaded with doxo due to an improved pharmacokinetics profile. In summary, we 

created a new delivery system that is potentially useful for improving cancer treatments and 

opening a new window for tagging microvesicles utilized in liquid biopsies.  
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Introduction 

Nanoparticle technology is an attractive field at the forefront of research and plays important 

roles in medicine, agriculture and electronics. Nanoparticles have wide applications in 

medicinal fields as nanocarriers for drug delivery and agents for multifunctional diagnosis, 

for example [1,2]. Recently, a new class of carbon nanomaterials, including nanodiamonds 

[3] and fluorescent carbon nanoparticles (CNPs) [4], have been widely investigated due to 

their high hydrophilicity, excellent biocompatibility, good cell permeability, high 

photostability and flexibility in surface modification as a result of the presence of different 

functional groups (carboxyl, hydroxyl and amino groups), allowing the covalent conjugation 

of chemotherapeutic and targeting agents [5]. Particularly, fluorescent CNPs have wide 

applications in areas such as bioimaging, drug delivery [6–10], sensors [11–14], 

optoelectronics [15] and photocatalysis [16]. CNPs are comparable to quantum dots (QDs) 

and organic dyes [17]. QDs are semiconductor nanostructures with unique optical and 

electrical properties and great flexibility in their bright and tunable photoluminescence. The 

blinking effect is a problem with QDs that can be overcome by surface passivation or core-

shell formation [18]. QDs are composed of heavy metal precursors such as selenium (Se) and 

cadmium (Cd), which are toxic at low concentrations in the human body and environment 

[17,19]. The use of CNPs in place of QDs might overcome the above mentioned problems. 

Notably, CNPs have attracted considerable interest, as they offer potential advantages over 

the other carbon nanomaterials such as carbon nanotubes [20–22] and Halloysite nanotubes 

[23,24] including their small size, simple and inexpensive synthetic routes, high aqueous 

solubility, their fluorescence property which make them useful for cell imaging and their high 

cargo loading.  

In recent years, much progress has been made in terms of the synthesis, properties and 

applications of CNPs [17,25]. The synthesis of CNPs can be classified in two groups: 

chemical and physical methods. Chemical methods include electrochemical synthesis [26], 
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acidic oxidation [4,6,27], thermal/hydrothermal synthesis [28–31] and microwave/ultrasonic 

synthesis [12,17,28,32]. Physical methods include arc discharge [33], laser ablation [34] and 

plasma treatment [35]. Chemical oxidation was commonly used to prepare fluorescent CNPs, 

which almost always originate from carbon-based nanomaterials. This method is easier, 

avoids multi-step synthesis and introduces carboxyl and hydroxyl groups on the CNP surface, 

making the particles negatively charged and hydrophilic. As a result, a variety of fluorescent 

CNPs have been prepared using food waste [36], carbon nanotubes [37], candle soot [4], 

carbohydrates (sucrose, glucose) [30,38], active carbon [32], orange juice, polyphenol 

[39,40] and honey [41]. Although numerous synthetic approaches have been developed, those 

that are eco-friendly and inexpensive are in demand. Furthermore, large-scale synthesis and 

size-controlled CNPs remain unmet technological needs.  

In the field of drug delivery, carbon nanomaterials have gained considerable attention as 

nano-carriers due to their high surface area, enhanced cellular uptake and easy conjugation 

with therapeutics [42–45]. CNPs are spherical and composed of an sp
2 

carbon core, which 

can be conjugated with chemotherapeutic drugs and biomolecules through covalent or 

noncovalent interactions (π–π stacking or electrostatic interactions) and used for in vitro and 

in vivo drug delivery applications [43,46]. However, most of the published papers to date on 

this topic have focused on the optical properties and in vitro biocompatibility of CNPs [47–

50], and few have studied CNPs as delivery agents in depth [9,51,52]. Therefore, clinical 

application remains a challenge.  

In this report, we present a green source, “black tea”, as a suitable precursor for the synthesis 

of CNPs by nitric acid (HNO3) oxidation. This synthesis is simple and economical because of 

the selection of an inexpensive carbon source. These CNPs are non-toxic; easily synthetized 

in large-scale production with tunable optical properties up to red spectra, which can be 

utilized for multiplexing applications; and can efficiently deliver doxorubicin (doxo). The 
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biodistribution, pharmacokinetics (PK) profiles and kinetics of release suggest that CNPs-

doxorubicin (Cdoxo) is an optimal drug delivery vector for cancer therapy.  
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Experimental Section 

Materials and Instrumentation 

Reagents 

Commercially available Brooke Bond Taaza tea was utilized. HNO3 (70%) and sodium 

hydroxide (NaOH) were purchased from Sigma Aldrich (St. Louis, Missouri, US), doxo was 

obtained from Accord Healthcare Ltd. (Durham, NC, US) and daunorubicin was purchased 

from Teva Pharmaceutical Industries Ltd. (Petah Tikva, Israel). All reagents were used as 

received without further purification. Minisart
®
 syringe filters with a pore size of 0.2 µm 

were from Sartorius Stedim Biotech (Concord, CA, US), and a dialysis membrane (MWCO 

0.5-1 kDa) was purchased from Spectrum Laboratories (Rancho Dominguez, CA, US) for 

CNP purification. LysoTracker
®
 deep red probe was purchased from Life Technologies 

(Carlsbad, CA, US). Exosomes were prepared from exosome-depleted medium conditioned 

for 48 hours and purified with an AB cell culture-nanovesicle solution according to the 

instructions (AB ANALITICA, Padova, Italy) [53]. 

DLD-1 and LoVo (colon) and MDA-MB-231 (breast) and HeLa (cervical) cancer cells were 

grown as indicated by the supplier (ATCC, Manassas, VA, US). Nude and FVB mice were 

purchased from Harlan Laboratories (Udine, Italy); the procedures were approved by the 

Italian Ministry of Health n°788/2015-PR and performed in accordance with the institutional 

guidelines. Data are reported as the mean and standard error. 

Equipment 

Water was obtained from a Milli-Q water purification system (18.2 Ω; EMD Millipore, 

Billerica, MA, US). UV-Vis absorption spectra were collected using a NanoDrop 2000c 

(Thermo Fischer Scientific, Waltham, MA, US). Fluorescence spectra were collected on an 

Infinite M1000 PRO and cell viability analyzed using an Infinite 200 PRO (Tecan, 

Männedorf, Switzerland). X-ray diffraction (XRD) data were collected on a Philips X’Pert 
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vertical goniometer with Bragg-Brentano geometry. Transmission electron microscopy 

(TEM) was carried out using a Philips EM 208 microscope (Philips, Amsterdam, 

Netherlands). Fourier transform infrared (FT-IR) spectra were obtained on a NEXUS FT-IR 

spectrometer implementing a Nicolet Avatar diffuse reflectance accessory. X-ray 

photoelectron spectroscopy (XPS) was performed on a PHI Quantera SXM spectrometer 

using monochromatic Al-Kα X-ray sources at 1486.6 eV and 24.8 W with a beam diameter 

of 100.0 μm, a 1.2 V and 20.0 μA neutralizer, and FAT analyzer mode. Zeta potential (ζ) 

measurements were collected on a Zetasizer ZS90 (Malvern Instruments, Malvern, UK) using 

a 632 nm He-Ne laser as the light source. Fluorescence microscopy was carried out using a 

Nikon microscope at 20x and 40x magnification (Nikon, Chiyoda, Tokyo, Japan). The PK 

and biodistribution were evaluated by liquid chromatography-tandem mass spectrometry 

(LC-MS/MS) on a 4000 QTRAP MS/MS system equipped with a Turbo ESI source (AB 

Sciex, MA, USA). The exosome particle size was determined with an L10 NanoSight 

instrument (Malvern Instruments Ltd, UK). 

Preparation of CNPs 

CNPs were synthesized from tea in the following steps: (1) carbonization of commercial tea 

followed by (2) oxidation with HNO3. The carbonized carbon was prepared by heating the 

commercial black tea at 200 °C for approximately 3 hours, followed by evaporation of water 

and heating again at 200 °C for approximately 5 hours. The so-formed carbonized tea powder 

was cooled to room temperature, dried on rotary evaporator and stored in a glass bottle. Then, 

500 mg of the carbonized carbon was dispersed in HNO3 (0.065 mol, 5 M, 13 ml) and 

refluxed at 80 °C for 20 hours under vigorous stirring. Then, the orange solution was cooled 

to room temperature and centrifuged (4300g, 25 min, room temperature) to separate out any 

unreacted carbon. The orange supernatant was collected, neutralized by 5 M NaOH and 

filtered through a 0.2 µm Minisart
®
 syringe. To remove salts and impurities, the raw solution 

was dialyzed against Milli-Q water using a dialysis membrane (MWCO 0.5-1 kDa) for at 
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least 2 days. Finally, the obtained golden-yellow solution was dried on a rotary evaporator 

and used for further characterization (yield: 26%).  

Fluorescence imaging 

A droplet of an aqueous CNP dispersion (25 mg/ml) was imaged on a Nikon fluorescence 

microscope under different filter sets (nm), Ex 350/Em 460 (blue), Ex 490/Em 520 (green), 

Ex 550/Em 570 (red) and Ex 630/Em 670 (violet), at 20x magnification. 

CNP cellular localization 

The CNP cellular internalization was evaluated by plating HeLa cells at a density of 7.5 x 10
4
 

cells/slide. The next day, the cells were marked with 50 nM LysoTracker
®
 deep red probe 

(Thermo Fisher, MA, US) for 2 h at 37 ºC. After incubation, the cells were washed twice 

with 1X PBS and incubated for 24 h with 2 mg/ml CNPs. After incubation, the cells were 

washed twice with 1X PBS and fixed with 4% PFA for 10 min, and the slides were mounted 

with Alexa FluorSave solution (Thermo Fisher Scientific, Waltham MA, US). The images 

were obtained on a Nikon fluorescence microscope at 40x magnification using Ex 630/Em 

670 nm filters for the lysosomes and Ex 350/Em 460 nm filters for the CNPs. 

Imaging of CNP-loaded exosomes 

To load exosomes with CNPs, HeLa cells were grown until 70% confluence, treated with 2 

mg/mL CNPs for 2 h, washed and then incubated in exosome-free medium for 24 h. The 

medium was collected, and the exosomes were extracted using an AB cell culture-

nanovesicle solution. The next day, the medium was centrifuged at 103,000g and 4 °C for 80 

min, and the pellet was resuspended in 1X PBS. The exosomes were characterized by NTA 

analysis (nanoparticle tracking analysis, Malvern, UK). For imaging, the exosomes loaded 

with CNPs were spotted on a slide and analyzed with a Nikon fluorescence microscope at 

40x magnification under different filter sets (nm): Ex 350/Em 460 (blue), Ex 490/Em 520 

(green), Ex 550/Em 570 (red) and Ex 630/Em 670 (violet). 
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Doxo loading efficiency and release 

CNPs (0.5 mg/ml) were incubated with doxo (0.25 mg/mL) in 1X PBS for 2 h at room 

temperature. The unbound doxo was eliminated by centrifugation at 13000g for 10 min and 

washed twice with 1X PBS. The drug loading capacity for doxo was calculated as follows: 

(weight of loaded doxo)/(weight of CNPs). The weight of free doxo was measured on a UV-

Vis spectrophotometer from the absorbance at 450 nm based on a doxo standard curve, and 

the weight of CNPs was measured from the absorbance at 289 nm based on a CNP standard 

curve. The release of doxo and Cdoxo (50 μg/500 μL) was evaluated using a dialysis 

membrane (15,000 MWCO) dipped into 1 L of 1X PBS at pH 7.4 or pH 5.5. 

 

Toxicity, cytotoxicity and apoptosis tests 

The toxicity of the CNPs was tested in Hela, MDA-MB-231, LoVo and DLD-1 cancer cell 

lines. The cytotoxicity of the free doxo, CNPs and Cdoxo was tested in MDA-MB-231, LoVo 

and DLD-1 cancer cell lines. Toxicity and cytotoxicity were evaluated by the CellTiter-Glo
®

 

luminescence assay (Promega, Madison, Wisconsin, US) using an Infinite 200 PRO 

instrument (Tecan, Switzerland). Cells were seeded in 96-well plates (Falcon BD, San Jose, 

CA, US) at a density of 10
3
 cells/well and incubated for 24 h to allow for cell attachment. 

The cells were incubated with doxo, CNPs, and Cdoxo at the same drug concentrations for 96 

h. The experiments were performed in triplicate. Apoptosis was evaluated after 24 hours by 

fluorescence-activated cell sorting (FACS; BD Biosciences, San Jose, CA, US) utilizing the 

PE Annexin V Apoptosis Detection Kit I (BD Biosciences, San Jose, CA, US). 

In vivo CNP toxicity and efficacy 

This experiment was carried out using 8 weeks old female nude mice, which were 

administered by i.v. (intravenous) injection of 4 concentrations of CNPs diluted in PBS 1X 
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(5, 10, 20 and 40 mg/kg). The body weights of the mice were monitored for more than 45 

days. 

To evaluate the anti-tumour efficacy of Cdoxo compared to doxo, 3 x 10^
6
 MDA-MB-231 

cells diluted in DMEM w/o phenol red/30% matrigel HC (Corning, New York, US) were 

inoculated in the mammary fat pad of nude mice. 

Histopathology: The organs of the mice were collected and fixed in 10% formalin buffered 

with PBS, embedded in paraffin, sectioned at a thickness of 3 μm and stained with 

hematoxylin and eosin (H&E). The tissues were analyzed with light microscopy using 

different magnifications. 

PK and biodistribution 

The PK experiments were performed in 8 weeks old FVB mice treated with 3 mg/kg (i.v.) of 

the drug diluted in PBS 1X, and approximately 100 μl of blood was collected after 0.5, 1, 3, 

6, 24, 48, 96 and 192 hours. Blood was collected from each mouse twice: from the 

mandibular vein (live mouse) and the right ventricle of the heart (sacrificed mouse). A total 

of 12 mice were utilized. Serum samples were stored at -80 °C. For analysis of the drug 

tissue distribution, the mice were sacrificed at 3 and 24 hours, and their organs were washed 

with 10 ml of cold PBS/heparin before collection. The organs were diluted in 500 μl of 4% 

PBS/BSA and homogenized with a Qiagen TissueRuptor for 20 sec at power 4 in ice 

(Qiagen, Hilden, Germany). 

The doxo concentrations in serum and tissues were measured by LC-MS/MS. The proteins 

were precipitated with 2 volumes of cold acetonitrile containing 20 ng/ml daunorubicin as an 

internal standard. After vortexing and spinning at 13000 rpm for 15 min at 4 °C, the cleared 

supernatant was diluted with 2 volumes of 0.2% formic acid, and 10 μl of the dilution were 

injected into the LC-MS/MS system. Chromatographic separation was performed on an 

Accucore 150-C18 column (2.6 μm, 30x2.1 mm; Thermo Scientific, Waltham, MA USA) 
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equilibrated with 0.2% formic acid/acetonitrile (95:5) at 0.7 ml/min and maintained at 50 °C. 

An elution gradient B from 5% to 80% acetonitrile was applied over 5 min. A 4000 QTRAP 

MS/MS system equipped with a Turbo ESI source (AB Sciex, Framingham, MA, USA) was 

equilibrated for 3 min in positive-ion mode. The transitions of doxo and daunorubicin were 

monitored in multiple reaction monitoring mode at m/z 544.1→397.2 and 528.2→321.1, 

respectively. The spray voltage was set at 5000 V, with a source temperature of 400 °C. The 

curtain gas, nebulizer gas (gas1) and auxiliary gas (gas 2) were set at 20, 50 and 50 arbitrary 

units, respectively. The declustering potential and collision energy voltages were set at 45 V 

and 16 V, respectively, for both doxo and daunorubicin. 
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Results and Discussion 

Characterization of CNPs prepared from black tea 

The CNPs were prepared from tea by HNO3 oxidation and characterized by UV-Vis 

absorption spectroscopy, fluorescence spectroscopy, powder XRD, FT-IR spectroscopy and 

TEM. The zeta potential of the CNPs was also measured at -16.6 mV, indicating a negative 

charge on the CNP surface due to the presence of carboxylic groups. 

Figure S1 shows the UV-Vis absorption and fluorescence spectra of CNPs excited at 360 nm. 

The UV-Vis absorption spectrum contained two distinct peaks: one at 300 nm that could be 

assigned to the n-π
* 

transition of the C=O groups on the surface of the CNPs and one at 242 

nm that could be assigned to π-π
*
 transitions of the polycyclic aromatic systems (C=C) 

contained in the polyphenols of the tea [54]. The CNP solution produced a maximum 

emission peak centered at 470 nm when excited at 360 nm (Figure S1A). To investigate the 

optical properties of the CNPs, emission spectra were recorded at various excitation 

wavelengths from 300 to 570 nm; the emission peaks were red-shifted from 390 to 570 nm 

while the intensities decreased (Figure S1B, S1C). These optical properties mainly result 

from the different sizes and different distributions of emissive sites, which is generally a 

characteristic of fluorescent carbon nanomaterials [34]. The fluorescence properties of CNPs 

are always dependent on the size and the presence of organic functional groups in the carbon 

source [5]. 

We applied XRD and FT-IR analyses to identify the functional groups and the phase of the 

CNPs. The powder XRD spectrum (Figure S2) contained a broader peak at 2θ = 24.8°, 

revealing an amorphous carbon phase in the CNPs. The FT-IR spectrum (Figure 1A) 

indicated that the CNPs have many oxygen- and nitrogen-containing functional groups on 

their surface. The broad peak centered at 3294 cm
-1

 revealed O-H/N-H bonding, and the 

absorptions at 2937 and 2866 cm
-1

 could be attributed to C-H stretching vibrations. 
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Moreover, the absorption peaks at 1652 and 1752 cm
-1

 are indicative of C=O bonds. The 

absorptions at 1110 and 1195 cm
-1

 could be attributed to C-O-C bonds, and the absorptions at 

1318 and 1337 cm
-1

 confirm the presence of C-O bonds. Furthermore, the absorption peaks at 

1594 cm
-1

 could be attributed to the C=N and C=C groups of aromatic hydrocarbons, 

indicating the presence of sp
2
 hybridization, whereas the absorption peaks at 1406 and 1431 

cm
-1

 could be related to C-N bonds. These data suggest that the CNPs were functionalized 

with hydroxyl, alkyl, carbonyl, carboxylic, and amine groups derived from the organic 

molecules in the black tea and the use of HNO3.  

  

Figure 1. (A) FT-IR spectrum of CNPs; (B) C1s, N1s, and O1s XPS spectra. 

XPS analysis was used to confirm the functional groups on the CNP surface. From the XPS 

spectrum (Figure 1B), C, N and O were detected from the peaks at 285 eV (C1s), 400.2 eV 

(N1s), and 532 eV (O1s), respectively, with 62.56% carbon, 31.43% oxygen, and 6.01% 

nitrogen. The C1s peaks at 283.5, 284, 285.3, and 287.2 eV could be assigned to carbon in 

the form of C-H, sp
2
 (C=C), C-O/C-N and C=O/C=N, respectively [55–57]. The N1s peaks 
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consisted of three Gaussian peaks centered at 399, 408.8 and 405 eV, corresponding to C=N-

C, C-NH-C, and oxidized N-species such as N-O/N=O, respectively [56,57]. The O1s peaks 

could be deconvoluted into three Gaussian peaks centered at 530.4, 532.2 and 534.7 eV, 

corresponding to C-O/N-O, C=O/N=O, and COO
-
, respectively [57]. The surface components 

of the CNPs are in agreement with the FTIR results. It is well known that HNO3 oxidation 

produces hydroxyl and carboxylic groups on CNP surfaces, which makes the particles water 

soluble and negatively charged. In addition, this oxidation can also induce nitration [58]. Our 

experimental data suggest that refluxing the carbonized carbon derived from tea with HNO3 

induces partial oxidation of the carbons; introduces functional groups, such as OH, COOH, 

and NO2; and causes nitrogen doping into the CNPs. The introduction of functional groups 

imparts water solubility and a surface charge to the CNPs. This oxidation step could also be 

considered a chemical route to incorporating nitrogen into the CNPs, as observed from the 

chemical composition analysis. 

The morphology and size of the CNPs were investigated by TEM. As shown in Figure 2, the 

CNPs had a narrow size distribution and were spherical with an average diameter of 17 nm. 

  

Figure 2. (A) TEM image and (B) particle size distribution histogram of CNPs (17.3 ± 7.6 

nm). Arrows indicate CNPs. 
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CNPs were biocompatible and suitable for bioimaging of cellular and subcellular 

(exosomes) compartments 

The CNPs were reported to be not toxic in different experimental set-ups [26,59]. In vitro 

experiments showed that CNPs do not alter cell viability at concentrations up to 200 μg/ml 

[60]. A toxicity test was performed with HeLa, MDA-MB-231, LoVo and DLD-1 cells. Our 

CNPs were not toxic at up to 1 mg/ml, illustrating very high biocompatibility (Figure S3), 

and sustained further testing in in vivo experiments. To strengthen these results, an apoptosis 

test was performed, the results of which are presented in Figure S4. Cells were treated with 1 

mg/ml CNPs, and the expression of Annexin V on the surface of the cells was measured by 

FACS after 24 hours. No change in the percentage of apoptotic cells was observed in the 

CNP-treated cells over the control. 

Although the CNPs were designed and synthetized for drug delivery applications. A droplet 

of CNPs (25 mg/ml) was deposited on a cover slip under a fluorescent microscope and 

imaged under different excitation wavelengths commonly utilized for biological experiments. 

Fluorescence of the CNPs was detected in all the ranges utilized (Figure 3). For biological 

applications, a wavelength range over 600 nm is more suitable (Figure 3D) and does not 

overlap with the fluorescence of doxo, which has a maximal excitation/emission of 

approximately 490/590 nm. 

 

A 

B 

C 

D 
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Figure 3. (A-D) Fluorescence microscopy photographs of an aqueous solution of CNPs 

under different excitation filter sets: (A) 350 nm, (B) 490 nm, (C) 550 nm and (D) 630 nm. 

Scale bar: 200 μm 

Due to the increasing number of papers focused on exosome biology and the possibility of 

utilizing exosomes in liquid biopsies, the CNPs were tested for use as potential fluorescent 

probes. Exosomes are extracellular vesicles with nanometric dimensions (30-200 nm) and 

diagnostic [61] and therapeutic potential [62]. Exosomes incubated with CNPs were collected 

after 24 hours and verified by NTA analysis (Figure S5). Equal quantities of exosomes were 

evaluated under fluorescence microscopy from CNP-treated and untreated cells. A clearly 

noticeable dotted appearance of CNP-loaded exosomes can be observed in Figure 4 and data 

that is not shown here, suggesting that these CNPs can be utilized to probe exosomes for 

biological applications.  

  

Figure 4. Exosomes isolated from the cell culture medium of MDA-MB-231 cells treated 

with CNPs (2 mg/ml) for 2 h and collected after 48 h. Images were acquired with different 

excitation filter sets, as in Figure 3. Scale bar: 20 μm. 

CNPs avoided lysosomal entrapment and delivered doxo efficiently in in vitro 

experiments 
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Lysosomal degradation is a natural process by which cells eliminate unnecessary endogenous 

and exogenous materials [63]. The failure of many nanomaterials is due to their accumulation 

inside lysosomes [64]. Escaping lysosomal degradation is a desirable functional property for 

drug delivery applications. Under this scope, HeLa cells were probed with LysoTracker for 2 

hours and incubated with 2 mg/ml CNPs for 24 hours. Under fluorescence microscopy, the 

CNPs (green) had a clearly uniform distribution in the cytoplasm and nucleus, and the 

typically punctuated appearance of lysosomal accumulation (red) was not apparently 

observed (Figure 5).  

  

Figure 5. HeLa cells (A) treated with 2 mg/ml CNPs after 24 h and marked with (C) 

LysoTracker. (B) and (D) Zoom-in of (A) and (C). Scale bar: 20 μm.  

A desirable property of nanomaterials is an intrinsic ability for loading therapeutic drugs and 

a controlled release over time under physiological conditions [65,66]. To demonstrate this 

concept, the CNPs were loaded with doxo, and the kinetics of drug release was calculated 

from a dialysis experiment in PBS at 37 °C at different pH values. For drug loading, the 

CNPs were mixed with doxo at room temperature, and the drug loading was calculated to be 

approximately 60% (Figure 6A). Doxo is a weak amphipathic base with pKa= 8.3. At 

physiological pH (7.4), the protonated fraction of doxo is still 10-fold that of the free base, 

while the carboxylic acid moieties on the CNP surface are nearly completely dissociated to 

their negative carboxylate form (pKa range: 3-5) [67,68]. Thus, the doxo molecules retain 
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their electrostatic interactions with the CNPs at physiological pH. At pH 4, the carboxylic 

acid groups on the CNPs are partially dissociated, decreasing the negative charge on the 

CNPs and reducing the electrostatic interactions of the drug carrier with protonated doxo. To 

support our conclusion, CNPs were loaded with doxo at different pH levels: 4, 5.5 and 7.4 

(Figure S6). The percentage of loading positively correlated with the pH.  

The extracellular pH (pHe) of tumour tissues is acidified by the metabolism of tumour cells 

[69]. Cell survival is conditioned by maintenance of a favourable acid-base balance (pH). 

Because of cellular metabolism, which produces CO2 and lactic acid, cancer cells are 

continuously exposed to large acid-base fluxes, which would disturb the pH. In contrast to 

normal cells, most tumour cells preferentially convert glucose and other substrates to lactic 

acid, even under aerobic conditions. This phenomenon, termed “the Warburg effect”, was 

reported by Warburg and co-workers in the 1920s [70–72]. Due to increased glucose 

metabolism, tumours possess a greater capacity to pump lactic acid and protons out to the 

extracellular spaces to maintain an appropriate neutral-alkaline intracellular pH (pHi), which 

is essential for cell vitality. The inefficient removal of protons and lactic acid from 

extracellular spaces creates a reversed gradient characterized by an acidic pHe and alkaline 

pHi [73–75]. In vitro and in vivo studies revealed that tumour cells have a pHi ranging from 

7.1 to 7.6 (pHi of normal cells: 7.0 to 7.2) and a pHe of 6.2-6.9 (pHe of normal extracellular 

space: 7.3-7.4) [76]. The intravesicular pH along the endocytic pathway ranges from pH 6.0–

6.5 in early endosomes to pH 4.5–5.5 in late endosomes and lysosomes [77].  

A drug delivery system that is able to release its cargo more efficiently around the tumour 

site at low pH (approximately pH 6) represents an intelligent system to specifically target 

tumour cells [78]. To study the capacity and release of Cdoxo over different pH gradients, we 

carried out a release experiment at pH 5.5 and 7.4 to mimic the bloodstream, tumour 

microenvironments and intracellular endosome/lysosome pathway (Figure 6B) [79,80]. The 

release of doxo was derived from a log-log plot of the cumulative release versus time. 
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Noticeably, the CNPs maintained a stable interaction with doxo at alkaline pH (pH of the 

bloodstream) with a slow release profile (approximately 15 hours), compared to a fast release 

profile (approximately 1 hour) when the medium was acidified to levels of the extracellular 

space of the tumour and in subcellular compartments. This pH gradient increases the ratio of 

the tumoral/non-tumoral drug concentration, thereby elevating the therapeutic index of doxo. 

 

 

Figure 6. (A) Loading capacity of Cdoxo. The graph displays the percentage of doxo loading 

(y-axis) (B) Release of doxo from CNPs. The cumulative release of doxo was evaluated by 

measuring the fluorescence of doxo, which resides inside the dialysis membrane at each time 

point at pH 5.5 and 7.4. (C) Cytotoxic effects of Cdoxo on MDA-MB-231, DLD-1 and LoVo 

cell lines treated with increasing concentrations of doxo (blue) or Cdoxo (red), as indicated 

on the x-axis (ng/ml). *p value <0.05 (y-axis). The quantity of utilized doxo was based on 

previously calculated IC50 (middle value). 
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Subsequently, the cell viability of MDA-MB-231, LoVo and DLD-1 cells treated with Cdoxo 

was tested. Cells were treated with 3 different concentrations of free doxo or Cdoxo, and the 

cell viability was assessed after 96 hours (Figure 6C). Cdoxo exhibited better cytotoxicity 

than free doxo in MDA-MB-231 and DLD-1 cells (p value < 0.05). Based on these results, 

we further evaluated the CNPs as a drug delivery system in a mouse model of breast cancer. 

CNPs were not toxic in mice and increased the efficacy of doxo 

In vitro experiments demonstrated that our CNPs were not toxic at concentrations above the 

necessary dosage for drug delivery applications. To better predict toxicity in humans, nude 

mice were treated with a single i.v. injection of 5, 10, 20 and 40 mg/kg CNPs. Their body 

weight was monitored as an objective parameter of mice wellness. The mice were followed 

over a period of approximately 2 months. We did not observe any symptoms of stress or 

clinical illness. The body weight of the mice increased during the observational period 

(Figure 7A). After more than 6 months, the mice were sacrificed, and their tissues were 

histopathologically analyzed. No obvious signs of toxicity were observed (Figure S7). 

Supported by this encouraging data, MDA-MB-231 cells were orthotopically inoculated in 

the mammary fat pad of nude mice. After the tumours had reached an average volume of 57 

± 8 mm
3
, the mice were treated 3 times on a weekly base with 3 mg/kg Cdoxo or free doxo. 

Figure 7B demonstrates that the tumour volume of the Cdoxo-treated mice was reduced 

compared to the tumours of mice treated with free doxo (p value < 0.05). The body weight of 

the mice was similar among the groups of mice tested during the experiment (Figure 7C).  
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Figure 7. (A) Weight of mice treated with different concentrations (mg/kg) of CNPs as 

indicated. (B) Mice were treated 3 times (arrows) at 3 mg/kg Cdoxo or free doxo, and the 

tumour volume was measured (y-axis). *p value <0.05 (C) Weight of mice treated as in (B). 

T0: time at the beginning of the experiment; Tn: time on day n as indicated. Eight tumours 

were analyzed per data point.  

CNPs altered the biodistribution and prolonged the circulation time of doxo 

Data obtained from well-known and successful liposomal formulations revealed that drug 

efficacy can be increased by a longer circulation time, avoiding rapid clearance [81]. To 

investigate the potential changes in the PK profile, we administered 3 mg/kg doxo (i.v.) and 
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Cdoxo to FVB/N mice. The PK profile of doxo in blood and tissues was qualitatively similar 

when administered as the free drug or Cdoxo. Both PK profiles were characterized by fast 

first-phase elimination. However, in the late phase of elimination, up to 4 days, the 

concentration of doxo in blood remained higher when administered as Cdoxo (Figure 8A) 

compared to free doxo. This result is consistent with the increase in the mean residence time 

from 14.1 ± 2 to 20.1 ± 0.5 hours (p value < 0.01) and the apparent constant elimination from 

0.07 ± 0.01 hour
-1 

to 0.050 ± 0.01 hour
-1 

(p value < 0.05) for free doxo and Cdoxo, 

respectively. 
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Figure 8. (A) PK profile of free doxo and Cdoxo at 0.5, 1, 3, 6, 24, 48, 96 and 192 hours. In 

the insert, the time points 96 and 192 hours were zoomed in. *p value <0.05. (B) and (C) 

Biodistribution of free doxo and Cdoxo at 3 (B) and 24 (C) hours. At 3 hours, less Cdoxo was 

present in the skin. At 24 hours, increased accumulation of Cdoxo in the liver and intestine 

was observed. The y-axis is in logarithmic scale (ng/gr of drug/tissue). Li: liver, Sp: spleen, 

He: heart, Lu: lung, In: intestine, Ki: kidney, Br: brain, Sk: skin. Three mice were utilized for 

each data point. 

The tissue distribution of the drug 3 hours post-injection demonstrated a similar profile 

between Cdoxo and free doxo, except in the skin (Figure 8B). After 24 hours, the distribution 

of Cdoxo changed, with an accumulation in the liver and intestine and a reduction in the skin 

(p value < 0.05; Figure 8C). These data suggest that Cdoxo could reduce the skin toxicity 

associated with liposomal formulations of doxo and be utilized to treat gastro-intestinal 

cancers. 

Conclusions 

In this study, we prepared a new nanovector that can be used to image subcellular 

compartments such as exosomes with excellent properties for drug delivery [82]. These CNPs 

can be efficiently loaded with doxo, a widely used chemotherapeutic drug, and exhibit 

controlled release under acidic conditions, as in the tumour microenvironment. Cdoxo was 

more effective in vivo than free doxo due to a different PK profile. Hence, a simple and green 

synthesis starting from tea could produce a tunable and safe drug delivery nanocarrier with 

excellent biocompatible properties.  
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