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We discuss the thermodynamics of closed quantum systems driven out of equilibrium by a change in a
control parameter and undergoing a unitary process. We compare the work actually done on the system
with the one that would be performed along ideal adiabatic and isothermal transformations. The comparison
with the latter leads to the introduction of irreversible work, while that with the former leads to the
introduction of inner friction. We show that these two quantities can be treated on an equal footing, as both
can be linked with the heat exchanged in thermalization processes and both can be expressed as relative
entropies. Furthermore, we show that a specific fluctuation relation for the entropy production associated
with the inner friction exists, which allows the inner friction to be written in terms of its cumulants.
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With the increasing ability to manufacture and control
microscopic systems, we are approaching the limit where
quantum fluctuations, as well as thermal ones, become
important when trying to put nanomachines and quantum
engines to useful purposes [1,2]. To discuss engine per-
formance, e.g., for heat-to-work conversion, one typically
starts by considering reversible transformations that drive
the system froman equilibriumconfiguration to another one.
However, if the system is pushed faster than the thermal-
ization time, such transformations are irreversible, and can
lead outside the manifold of equilibrium states [3–5].
Nonetheless, these processes are of interest as the reversible
protocols, despite enjoying very good efficiencies, give rise
to very small output power [6]. The irreversibility of a
process is hence related to both better performance and lack
of control, leading to entropy production [7].
To analyze irreversibility and entropy production in the

quantum realm, we consider a system initially kept in
equilibrium and subject to a finite time adiabatic trans-
formation. While its initial state is prepared by keeping it in
contact with a thermal bath, the system is then thermally
isolated and subject to a parametric change of its
Hamiltonian from an initial Hi ¼ H½λi� to a final Hf ¼
H½λf� in a finite time τ. The process is defined by the time
variation of the work parameter λðtÞ, changing from
λðt ¼ 0Þ ¼ λi to λðτÞ ¼ λf.
The work w performed on the system during such a

process is a stochastic variable with an associated proba-
bility density pðwÞ [4,8,9], which can be reconstructed
experimentally [10,11] through the characteristic function
[12]. The fluctuations of work are constrained by the
Jarzynski relation [8]

he−βiwi ¼ e−βiΔF; ð1Þ
where βi ≡ βB is the initial inverse temperature, whileΔF ¼
F½λf; βB� − F½λi; βi� is the free energy difference between
two equilibrium configurations (at the same temperature)
corresponding to the initial and final Hamiltonian. This
fluctuation relation encodes the full nonlinear response of a
system to a time-dependent change of its Hamiltonian.
Through the use of the Jensen’s inequality, this relation
implies that hwi ≥ ΔF. This, in turn, leads to the intro-
duction of the so-called average irreversible work [13],
hwirri ¼ hwi − ΔF ≥ 0 . Loosely speaking, hwirri gives a
measure of the irreversibility introduced by performing
the unitary transformation Uðτ; 0Þ, generated by the
Hamiltonian H½λðtÞ� between t ¼ 0 and t ¼ τ.
The situation is sketched in Fig. (1), where the point i

corresponds to the initial state ρi ¼ e−βiHi=Z½λi; βi�, while
the point τ corresponds to the state ρτ ¼ Uðτ; 0ÞρiU†ðτ; 0Þ.
Notice that this latter point does not lay on the manifold of
equilibrium states (it could do so only in the limit τ → ∞,
in which the transformation would become quasistatic).
It has been shown in Ref. [14] that hwirri is given by the

distance between the actual final state ρτ and the (hypo-
thetical) equilibrium state ρB ¼ e−βBHf=ZðBÞ, evaluated
through the quantum relative entropy

hwirri ¼
1

βB
Dðρτ∥ρBÞ: ð2Þ

The irreversible work has been used to learn about the
amount of irreversibility of a given process in a variety of
cases, ranging from simple harmonic systems [15], to spin
chains [16,17], and ultracold gases [18].

PRL 113, 260601 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

31 DECEMBER 2014

0031-9007=14=113(26)=260601(5) 260601-1 © 2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.113.260601
http://dx.doi.org/10.1103/PhysRevLett.113.260601
http://dx.doi.org/10.1103/PhysRevLett.113.260601
http://dx.doi.org/10.1103/PhysRevLett.113.260601


By using the definition of free energy, F ¼ U − TS,
where U ¼ trfρHg is the internal energy, while S denotes
the thermodynamic entropy (here evaluated as S ¼
−trfρ ln ρg for equilibrium states, at points i, A, and B),
one can show that hwirri is related to the (average) heat
required to let the system thermalize, starting from the state
ρτ, by keeping it in contact with a heat bath at temperature
TB ¼ β−1B (see also [17]):

hwirri ¼ TBðSB − SiÞ − hQth
τ→Bi; ð3Þ

where hQth
τ→Bi ¼ trfðρB − ρτÞHfg is the energy the system

takes in the thermalization process leading it from the state
ρτ to ρB [19]. Thus, the irreversible work is related to both
(i) the heat and the entropy change for the thermalization
process τ → B, and (ii) the distance between the equilib-
rium state ρB and the actual one, ρτ.
Inner friction.—In the context of finite time thermody-

namics, one is often led to compare the i → τ process with
the reversible adiabatic transformation i → A (rather than
with the isothermal i → B). Indeed, adiabatic transforma-
tions enter the Carnot and the Otto cycles and have been,
therefore, largely studied so far [20]. In particular, when
analyzing finite time adiabatic transformations performed
on thermally isolated quantum systems, it is quite natural to
introduce the concept of inner friction. This is defined as
the nonadiabatic work; i.e., as the difference between the
actual work performed on the system and the ideal one,
done along an ideal reversible adiabatic transformation
[21–24]. This difference comes in when the system is
unable to adiabatically follow the control protocol, typi-
cally because some (inner or intrinsic) degrees of freedom
do not commute with the control Hamiltonian.
As is the case for the irreversible work, we will show that

inner friction too is related to a distance between the states

attained through the hypothetical reversible and the actual
unitary transformations, respectively. Furthermore, we will
show that inner friction (and, in particular, the entropy
production associated to it) can be described through a
stochastic variable fulfilling a thermodynamic fluctuation
relation.
Explicitly, in a reversible and quasistatic adiabatic trans-

formation, the energy levels of the system experience a
change as H½λi� is slowly modified into H½λf�, but their
occupation probabilities stay the same [25], so that, for

every eigenstate jεðfÞm i ofHf, the population is still given by

the initial value PðiÞ
m ¼ expf−βiεðiÞm g=Z½λi; βi�. If the energy

eigenvalue is changed from εðiÞm to εðfÞm as λðtÞ goes from
λi to λf, this implies that also the temperature has

changed. Its final value is such that PðiÞ
m ¼ PðAÞ

m ; that is

expf−βiεðiÞm g=Z½λi; βi� ¼ expf−βAεðfÞm g=Z½λf; βA�. The
requirements for a reversible adiabatic process are indeed
very tight as this relation has to hold for any adiabatically
evolved eigenstate; that is, for every m. This, in turn,
implies that all energy gaps of the system have to change by
the ratio βi=βA [28,29].
Under such conditions, the work performed on the i → A

transformation is given by

hwi→Ai ¼ UA − U i ≡
X
m

PðiÞ
m

�
εðfÞm − εðiÞm

�
: ð4Þ

This is, once again, different from the average work
performed during the actual (unitary and finite-time)
process i → τ. The difference between the two,

hwfrici ¼ hwi − hwi→Ai; ð5Þ

has been called inner friction as it is due to unwanted
transitions that one would typically associate with heat.
Indeed, by its definition and as shown by Eq. (10) below,
the inner friction is precisely the “excess heat” the system
has taken and that it would release to a thermal bath at
inverse temperature βA.
We now show that, similarly to Eq. (2) for the irrevers-

ible work, hwfrici is given by the distance between the actual
final state ρτ and the (hypothetical) equilibrium state
ρA ¼ e−βAHf=ZðAÞ, evaluated through the quantum relative
entropy

hwfrici ¼
1

βA
Dðρτ∥ρAÞ: ð6Þ

Indeed, by Eq. (4), one gets

hwfrici ¼ hwi − hwi→Ai ¼ trfρτHfg − UA

¼
X
m

εðfÞm ½hεðfÞm jρτjεðfÞm i − PðAÞ
m �; ð7Þ

reversible isothermal

reversible adiabatic

thermalization

Unitary transformation

ββ
B
=β

iβ
A

i

Α Βτ
λf

λi

.

.

...
λ

FIG. 1 (color online). Sketch of the transformations considered.
The full black circles represent equilibrium states ρi ¼ Z−1

i e−βiHi

ρA ¼ Z−1
A e−βAHf , and ρB ¼ Z−1

B e−βBHf . The empty blue one,
instead, is the state at time τ, ρτ ¼ Uðτ; 0ÞρiU†ðτ; 0Þ.
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while

Dðρτ∥ρAÞ ¼ trfρτ ln ρτg − trfρτ ln ρAg
¼

X
m

PðiÞ
m lnPðiÞ

m − hεðfÞm jρτjεðfÞm i lnPðAÞ
m

¼
X
m

lnPðAÞ
m ½PðiÞ

m − hεðfÞm jρτjεðfÞm i�

¼
X
m

βAε
ðfÞ
m ½hεðfÞm jρτjεðfÞm i − PðAÞ

m �; ð8Þ

where we used PðiÞ
m ¼ PðAÞ

m . These two relations, taken
together, demonstrate Eq. (6).
Being given by a relative entropy, hwfrici is thus always

greater than zero by the Klein’s inequality [30].
Furthermore, similarly to what has been done in

Ref. [14], one can find a better (geometric) lower bound
expressed in terms of the finite Bures length:

βAhwfrici ≥
8

π2
L2ðρτ; ρAÞ; ð9Þ

where, for any two density operators, L is given in
terms of the fidelity F between those states, Lðρ1; ρ2Þ ¼
arccosf ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Fðρ1; ρ2Þ
p g, with

F ðρ1; ρ2Þ ¼
h
tr
n ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ1
p

ρ2
ffiffiffiffiffi
ρ1

pq oi
2
:

The inner friction is hence bounded from below by the
geometric distance between the actual density operator ρτ at
the end of the process and the corresponding equilibrium
operator ρA, as measured by the Bures angle L.
This gives a precise meaning to the idea that, when

performing an adiabatic transformation in a finite time, the
amount of work that “gets lost” is larger when the system is
brought far and far away from equilibrium.
Going back to the thermalization process τ → A, we

have that the average heat taken by the system to thermalize
at TA ¼ β−1A is given by

βAhQth
τ→Ai ¼ −βAhwfrici ¼ −Dðρτ∥ρAÞ; ð10Þ

which easily compares with the analogous expression for
hQth

τ→Ai reported in Eq. (3), as Si ¼ SA for an adiabatic
process [31].
The heat exchange in a thermalization process is a

quantity of fundamental interest as, through the Landauer
principle, it is linked to information processing, storing, and
erasing protocols, as well as the information-to-energy
conversion [32]. Indeed, since any attempt at exploring
the fundamental energetic limits of information processing
would need to measure such a heat, this subject has been
studied in various contexts [33].
Comparing the definitions of the two average heat

exchanges, one obtains hQth
τ→Ai − hQth

τ→Bi ¼ UA − UB,

which gives an explicit relation between irreversible work
and inner friction:

hwirri − hwfrici ¼ ðUA − UBÞ − TiðSA − SBÞ; ð11Þ

or, stated differently, hwirri þ FB þ TBSi ¼ hwfrici þ FA þ
TASi [34].
Fluctuation relation.—For a reversible and infinitely

slow i → τ process, the actual final state ρτ would
coincide with the equilibrium state ρA, with no net
entropy change, as Si ¼ SA. This latter equality implies
that βAUA − βiU i ¼ βAFA − βiFi.
In the actual finite time process, instead, the entropy

production is nonzero, as unwanted transitions between
adiabatic energy eigenstates may occur, as signaled by
hwfrici. We can fully characterize the entropy production
due to these diabatic transitions by defining an auxiliary
entropic variable s, obtained (as by now usual) by a two-
measurement protocol in which energy is measured at the
beginning and at the end of the process. Given the two

outcomes (say εðiÞn and εðfÞm , respectively), we can build the
stochastic variable

s ¼ βAε
ðfÞ
m − βiε

ðiÞ
n ;

which is distributed according to the probability density

pðsÞ ¼
X
n;m

PðiÞ
n PðτÞ

n→mδðs − βAε
ðfÞ
m þ βiε

ðiÞ
n Þ; ð12Þ

with PðiÞ
n ¼ Z−1

i e−βiε
ðiÞ
n and PðτÞ

n→m ¼ jhεðfÞm jUðτ; 0ÞjεðiÞn ij2.
The average value of s gives hsi ¼ βAtrfρτHfg − βiUi,

which, for a reversible quasistatic transformation, with
ρτ ≡ ρA, would give the sought combination of internal
energies: βAUA − βiU i. Furthermore, a fluctuation relation
similar to Eq. (1), can be obtained:

he−si ¼
X
n;m

PðiÞ
n PðτÞ

n→me−ðβAε
ðfÞ
m −βiε

ðiÞ
n Þ

¼ ZA

Zi
≡ e−ðβAFA−βiFiÞ: ð13Þ

This is a special case of a more general relation derived by
Tasaki [35], which is of particular relevance here due to its
relation with hwfrici. Indeed, by use of Jensen’s inequality,
this implies that

hsi ≥ βAFA − βiFi; ð14Þ

which shows that the average entropy production in the
actual process is always larger than zero

hΣi ≔ hsi − ðβAFA − βiFiÞ ≥ 0:

This latter quantity is easily shown to be related to the inner
friction and to the corresponding relative entropy
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hΣi≡ βAhwfrici≡Dðρτ∥ρAÞ: ð15Þ

In analogy to what has been done by Jarzynski in
Ref. [8], where the cumulants of the work distribution
have been related to the free energy difference FB − Fi, we
can show that the cumulants Cn of the distribution for
the variable s are related to the combination of free
energies βAFA − βiFi as [36]

−ðβAFA − βiFiÞ ¼
X
n¼1

ð−1Þn
n!

Cn: ð16Þ

Finally, this implies that the inner friction can be expressed
as a combination of the cumulants of order larger than 2:

hΣi ¼ βAhwfrici ¼
C2

2
−
C3

6
þ…; ð17Þ

where C2 ¼ hs2i − hsi2 is the variance, C3 ¼ hs3i−
3hs2ihsi þ 2hsi3, and so on.
Discussion.—We have shown that it is meaningful to

consider the closeness to an ideal adiabatic transformation of
an actual unitary evolution of a generic quantum system,
driven out of equilibrium by changing in time a work
parameter λ entering its Hamiltonian. The comparison of
theworkdoneon the system in the two cases naturally leads to
the concept of inner friction, which is related to the heat the
system would release to a thermal bath, if thermalizing at the
final temperature β−1A . Inner friction also comes out naturally
when considering the statistics of the entropy irreversibly
produced during the actual process, which satisfies a fluc-
tuation relation analogous to the Jarzynski equality. Indeed,
the average excess entropy, produced due to the irreversible
nature of the actual process, precisely coincideswith the inner
friction (divided by the final temperature), which, therefore,
can be expressed as a cumulant series.
Inner friction has been previously considered in the

literature through simple microscopic models of thermal
engines, where the working substance is composed of
interacting spin dimers [22] or of a harmonic oscillator
[37]. In the former, the friction comes from interaction; in
the latter it comes from the intrinsic noncommutativity at
different times of the oscillator Hamiltonian whose fre-
quency is being varied. Further irreversible sources of noise
and friction can be added artificially to the oscillator, such
as frequency noise or phase noise [38].
Strategies against inner friction have been considered

mainly under the generic names “shortcuts to adiabaticity”
[39] [where control sequences λðtÞ are designed such that
the irreversibility at the end of the adiabatic branch is
minimized] and “quantum lubrication” [40] [where the
coherences of ρτ in the jϵðfÞi basis are minimized through
an additional dephasing noise, thus minimizing Dðρτ∥ρAÞ;
see Eq. (8)].
It must be stressed though, that to the best of our

knowledge, the irreversibility caused by inner friction

had never been associated to a distance from an equilibrium
state, nor to any fluctuation theorem.
As a final remark, wewould like to emphasize once again

the assumption on which our treatment relies, namely, the
definition of βA. The quantum adiabatic theorem [25,27]
guarantees that a very slow transformation would lead from

the initial state ρi ¼ Z−1
i

P
ne

−βiε
ðiÞ
n jεðiÞn ihεðiÞn j to a final state

with the same population and new eigenstates,

ρA ¼ Z−1
i

P
ne

−βiε
ðiÞ
n jεðfÞn ihεðfÞn j. We assumed this state to

be a thermal equilibrium one at inverse temperature βA. As
mentioned above, this is a tight requirement that cannot
always be fulfilled. There are, however, relevant cases in
which there is no such problem: that of a harmonic oscillator
(or of a harmonically trapped gas) and that of a two level
system (or, more generally, a collection of noninteracting
spins) whose frequency is parametrically changed during the
process. For these systems, βA can always be defined, as well
as for any other quantumsystemundergoinga transformation
for which all of the initial energy gaps scale by the same
factor. In all of these cases, our analysis ismeaningful and the
comparison of an actual unitary evolution with a reversible
and quasistatic adiabatic transformation is well defined.
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