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Neutron Skins and Halo Orbits in the sd and pf Shells
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The strong dependence of Coulomb energies on nuclear radii makes it possible to extract the latter from
calculations of the former. The resulting estimates of neutron skins indicate that two mechanisms are
involved. The first one—isovector monopole polarizability—amounts to noting that when a particle is
added to a system it drives the radii of neutrons and protons in different directions, tending to equalize the
radii of both fluids independently of the neutron excess. This mechanism is well understood and the Duflo-
Zuker (small) neutron skin values derived 14 years ago are consistent with recent measures and estimates.
The alternative mechanism involves halo orbits whose huge sizes tend to make the neutron skins larger and
have a subtle influence on the radial behavior of sd and pf shell nuclei. In particular, they account for the
sudden rise in the isotope shifts of nuclei beyond N = 28 and the near constancy of radii in the A = 40-56
region. This mechanism, detected here for the first time, is not well understood and may well go beyond the

Efimov physics usually associated with halo orbits.
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Mirror nuclei in which proton and neutron numbers N
and Z are interchanged have different energetics due to the
isospin breaking interactions (IBIs) dominated by the
Coulomb force. It affects both the spectra [mirror energy
differences (MEDs)] and the ground states [mirror dis-
placement energies (MDEs)]. A prime example of the
MED:s is found in '*Ni where the ls;/, proton orbit is
depressed by about 750 keV with respect to its neutron
analogue in '3C. This behavior is referred to as the Thomas-
Ehrman shift (TES) because it was first studied via
R-matrix theories by Ehrman [1] and Thomas [2], who
also considered the pair '"F-!"0.

The s orbits are the essential ingredients of halo physics
[3] and have a decisive influence in the spectroscopy of
nuclei at A = 16 £ 1 [4,5], which will be shown to extend
to higher masses, including the p f shell because of the halo
nature of the p orbits.

The TES can be viewed as an overbinding of orbits—
with respect to naive expectations—because their large
radii reduce the Coulomb repulsion. For the binding
energies, the naive assumption is that a closed shell core
is unperturbed by the addition of a particle. The MDEs
would then be due to the core Coulomb field acting on the
extra proton. The result is often a severe underestimate, as
in A = 41: the Nolen-Schiffer anomaly (NSA) [6] illus-
trated in Table I. While the TES is due to a proton radius
larger than expected for the extra particle, the NSA may be
thought to demand the opposite, i.e., a reduction of the
radius of the added particle, but this is ruled out exper-
imentally [9].

Though Shlomo had noticed that equalizing the total
neutron and proton radii would eliminate the anomaly [10],
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it took some time before this basically sound idea gained
traction: Hartree-Fock (HF) calculations routinely pre-
dicted proton radii in agreement with experiment and
substantially larger neutron radii [11], though experimental
evidence did not support the latter [12,13]. Then it was
shown that good proton radii were compatible with a
variety of neutron radii [14,15] and calculations appeared
in which the NSA was almost absent [16]. The NSA does
not seem to have attracted much attention lately but neutron
radii are a very popular subject whose connection with
displacement energies—hitherto somewhat neglected—is
worth examining. It follows by noting that isospin con-
servation implies that the proton rms radius p,.. = /(r2.)
of anucleus with Z > N equals the neutron rms radius of its
mirror, p,., with Z < N. Assuming a schematic Coulomb
contribution of the form C,, = 0.67Z(Z — 1)/p,, we have
(disregarding other IBI terms)

MDE = CZ+1n> - Cer< = CZ+11/< - CZn<‘ (1)

Therefore, if we know, say, MDE(!"F-70) and p,., the
proton radius of 70, we also know its neutron radius p,_.
This simple idea led to a general estimate of the neutron
skins by Duflo and Zuker (DZ) [17]. They started by fitting
the proton mean square radii to experiment through
(t=N-2)

<r72z>:pﬂ:Al/3<po_Ct‘_v<i>2>e(g/z4) (2)

+A[z2(D, —2)/ D% x n(D, — n)/D}A™3, (3)
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TABLE L

Displacement energies between the ground state of 7 = 1/2 mirror nuclei of mass A defined as

MDE = E;(Z > N) — E;(Z < N). Experimental, full IBI, Coulomb (C), and schematic Coulomb [Eq. (1), sC]
contributions are given in MeV. No core 0z® calculation with Vi,,,_; form [7] of the N3LO [8] potential with cutoff

A =20 fm".

A he JT MDE,,, MDEg, MDEc MDE,¢
15 14.67 1/2- 3.537 3.574 3.474 3.624
17 13.38 5/2F 3.543 3.388 3.377 3514
39 10.89 3/2+ 7.307 7.120 6.970 7212
41 10.61 7/2- 7.278 6.683 6.679 6.675

where n and z are the number of active particles between
the Extruder-Intruder magic numbers (Sec. IC of Ref. [18])
at N, Z=6, 14, 28, 50, ...; D, =8, 14, 22, ... are the
corresponding degeneracies. By fitting known radii for
A <60, one obtains rms deviations of about 42 mf for a
four parameter fit with 4 = 0 reduced to about 18 mf when
varying A. (Including all known radii, the rms deviation
goes down, with little change in the parameters.) In
principle, the neutron skin (in femtometers)

—p —p = g g/A

Arye = py = pr = "p e/, (4)
could be expected to come out of the fit. However, fixing ¢
to values between 0.4 and 1.2 did not alter the quality of the
fit, which is a useful reminder that the neutron radii are
independent of the proton ones. Hence, the authors resorted
to Eq. (1) using a form of the Coulomb potential close to
the exact one for oscillator orbits. We adopt the set
g=0.985, pyp=0944, 1=5.562, v=0.368, {=0.8,
rmsd = 0.0176. All units are in femtometers except g.
With these values of g and £, Eq. (4) yields the estimates of
Table II, where they are seen to agree with numbers of
diverse origin: a recent measure [19], estimates based on a
comparison with electric dipole polarizability ap [20] and
an ab initio calculation [21]. It should be noted (stressed)
that the results of Eq. (4) also square nicely with those
obtained from two other sources analyzed in Ref. [22]: they
are very close to the Gogny D18 force [23] and not far from
those of Sly4 [24]—which gives slightly bigger skins. It
appears that a general mechanism, which we sketch next, is
at play. Think of a model space in which an extra particle
(the dot in Fig. 1, taken to be a neutron) associated with
number n and isospin ¢ polarizes the system by inducing
particle-hole jumps from the closed core of particles & to

TABLE II. Comparing Ar,, from Eq. (4) with estimates (ests)
[20,21] and measure (exp) [19] (in femtometers).

48Ca 68Ni lZOSn 208Pb 128Pb
Eq. 4) 0.14 0.14 0.13 0.17 0.17
ests-exp  0.135(15) 0.17(2) 0.142) 0.16(3) 0.15(3)
Ref. [21] [20] [20] [20] [19]

the open shells of particles p 2Aw® above. While H,
represents isoscalar monopole polarizability, responsible
for an overall increase in radius, its isovector counterpart,
H,, takes care of a differential contraction dilation of the
fluids. The model could be termed the “degree zero” of the
mean field [25]:

1
Hy=eSy+ von(S, +S_), 8—5(81, €n)s
So = 1, — iy, S, =aja,+Dbjb, + he, (5)

1
H, =¢€Sy+ v, (I_U+ +1,U_ +52‘0U0>,

— 4t _ hHht + _ ht
Uo—(lpah bpb11+ahap bhbp,

U, =ajb,+ab,, U_=bja,+bja, (6)
A unitary (HF) transformation solves exactly H, but only
approximately H; because the term in ¢t U, +1,U_
demands a more refined treatment, ignored here. The
results can be visualized in Fig. 1. The shaded area
corresponds to the unperturbed Hamitonian bounded by
a parabola, while the heavy lines represent parabolic
segments with Aw, > Aiw,, the situation in which the
NSA disappears as the radii tend to equalize, i.e., reduce
the neutron skin with respect to the Aw, = hw, value. The
sign of v; determines whether radii equalize or move apart.
Within this elementary mean field approach, all orbits
behave in the same way. A more refined approach
would allow different polarizabilities for different orbits.

FIG. 1.
the text.

Illustration of the solution of Eq. (6), explained in
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Moreover, the model ignores threshold effects, i.e., cou-
pling to the continuum that could play an important role.

Nonetheless, the model has the advantage of suggesting
the computational strategy that generalizes the DZ
approach. We shall work in OZw no-core spaces with
View—k [7] precision potentials: AV18 [26], CDB [27], and
N3LO [8], which produce almost indistinguishable results
according to our checks. They incorporate effects not
treated in DZ (such as electromagnetic spin-orbit coupling)
that are fully IBIs and will make it possible to do
configuration mixing. Saturation is treated in the standard
shell model way by fixing A® at a value consistent with the
observed radius. It is here that Fig. 1 comes in. For each
nucleus, calculations are done for a different Aw for
neutrons and protons: #Am, is known through Egs. (2),
(3), and (7) for N > Z (and hence fiw, for N < Z). Then
hw, for N > Z and hw, for N < Z follow from ¢, treated as
a free parameter to reproduce the experimental MDEs or
MED:s. To relate hw, to the radii, we take Eq. (2.157) in
Ref. [28] and adapt it to get Eq. (7), where the sum runs
over occupied proton orbits in oscillator shells of principal
quantum number p, and a similar expression for neutrons,
leading asymptotically to Eq. (8):

41.47
hw, = <r—7zz>Zzi(Pi +3/2)/Z, (7)
ho, 3559 ho, 3559

eF ®

@N)' ()
The form of Aw as a function of A is obtained through a
term by term (nucleus by nucleus) evaluation of Eq. (7).
Two variants are chosen: 4 = 0 in Eq. (2) (the naive fit) and
A # 0—the correlated fit—leading to the interesting pattern
in Fig. 2. Its meaning may not be evident at first, but
clarification comes in Fig. 3—showing the isotope shifts
of the K and Ca isotopes, including recent measures [30,31]
—which makes it clear that Duflo’s A1 term has a deep
physical grounding. The abrupt raise of radii after A = 47,
i.e., the N =28 is an open problem [30,31], so far only
qualitatively explained by relativistic mean field calcula-
tions [32]. Figure 3 suggests a very simple solution: the
raise is due to the filling of huge ps, orbits. As the filling
occurs for neutron orbits, and the shift measures the
behavior of proton orbits, isovector polarizability must
be at work here: if one fluid increases in size, the other fluid
must follow suit. The operation of the 1 term does not
depend on ¢, which may take any value, but must be fairly
constant. To learn more about the nature of s5;/, and ps s,
which seem to be responsible for the elegant undulating
patterns in Fig. 2, we examine the single particle and single
hole states built on '°0 and “°Ca.

Results are given in Table III and Fig. 4. The values of {
have been adjusted so as to obtain the observed energies. In
the figure, the calculated {’s and Ar,,’s are compared with
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FIG. 2. Values of Aiw, MeV) for T =0 and 1/2 extracted
from Eq. (7) using p, from Egs. (2) and (3) with
parameters g = 0.985, p, =0.944, 1=5.562, v =0.368,
¢ = 0.8, for the correlated radii and A = 0 for naive radii. All
units are in femtometers except g.

those obtained under the Aw, = hw, (naive shell model)
assumption, expected to produce skins that are too large.
However, because of the pronounced shell effects exhibited
in the plots, for the hole states—i.e., A = 15 and 39—the
skins remain moderate or small. Let us now make a few
comments.

A = 15. Independently of the { values, hw, < hw, rules
out an isovector polarization mechanism. As there is no
simple argument to treat these orbits as “halo,” we prefer to
leave the question open.
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FIG. 3. Radiip, in femtometers from isotope shifts in the K and
Ca isotopes [29], incorporating recent measures [30,31] (labeled
“exp”) compared with estimates from Egs. (2) and (3) (param-
eters are as in Fig. 2; the label “naive” is for 1 =0). The
correlated numbers (labeled “th”) have been shifted down by
30 mf, to restore translation invariance and to allow for exper-
imental uncertainties in the extraction of radii p, from &(r2)
isotope shifts. For clarity, the K and Ca values are shifted by
+55 mf, respectively.
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TABLE IIL

MDE and MED AE for T = 1/2 mirror nuclei of mass A, #w, , in MeV and the corresponding skin

parameters and radii in femtometers. Note that the radii correspond to the N > Z nuclei; they are interchanged for
the mirror partners. Experimental and calculated AE values coincide by construction. Interaction N3LO [8] with
cutoff A =2 fm~!.

A JT AE hw, ho, ¢ Ar,, Ty r,
15 1/2- 3.537 14.55 14.62 0.358 0.025 2.507 2.532
3/2- 3.389 14.39 14.66 0.609 0.043 2.503 2.547
17 5/2F 3.543 13.62 13.38 0.906 0.056 2.641 2.697
1/2* 3.167 12.86 13.51 2.367 0.147 2.628 2.776
39 3/2%F 7.307 10.97 10.91 0.258 0.007 3.361 3.368
1/2* 7.253 10.90 10.89 0.523 0.014 3.365 3.379
41 7/2° 7.278 10.78 10.63 0.610 0.015 3.422 3.437
3/2- 7.052 10.61 10.59 1.513 0.038 3.427 3.465
1/2- 7.129 10.61 10.59 1.482 0.037 3.428 3.465
5/2° 7.351 10.75 10.61 0.702 0.018 3.424 3.442
5/2° 7.338 10.75 10.61 0.725 0.018 3.427 3.442

A = 17. A reasonable value of ¢ solves the NSA for ds ,.
The s/, orbit is truly large: its rms radius is about 1.2 fm
larger than its ds/, counterpart. There is no doubt about its
halo nature.

A = 39. Here, we find that s, /, is no longer gigantic, but
large enough to keep some memory of its halo status.

A = 41. This is the most interesting case. NSA is solved
for f;/, via a reasonable { very close to what is demanded
by the lowest observed pair of f5,, candidates, which have
only a fraction of the spectroscopic strength. Both p3/, and
pijp are accommodated by the same ¢ and have a
pronounced halo nature. Their rms radii exceed those of
the f orbits by some 0.7 fm. Interestingly, orbits of the
same [ have the same behavior.

Old problems come back under new guises: the NSA as
neutron skins, the TES as halo orbits associated with subtle
shell effects detected in isotope shifts.
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FIG. 4. Values of { and Ar,, from Table III (dots labeled “exp”™)
compared with those obtained for #Aw, = hw, from Egs. (7)
(labeled “exact”) and (8) (labeled “asymp”).

Neutron skins are difficult to measure experimentally.
Recent progress has been made [19], and their connection
to the isovector dipole polarizability ap has led to reliable
estimates [20]. Theoretically, the problem is much simpler.
It is subsumed by isovector monopole polarizability [25],
or for Skyrme-type functionals by control of the symmetry
energy [14,15]. As noted after Table II, several calculations
appear to reproduce skins well.

Halo orbits are another matter: no existing calculation
[30,31] explains the observed isotope shifts evident in
Fig. 3. We have interpreted the result as due to the increase
in size of a p orbit. We have also learned from Table III and
Fig. 4 that s,/, and p3/, are so huge that they could be
viewed as halo orbits in A = 17 and 41, but their influence
extends well beyond. We have also learned that, at A = 39,
s12 1s no longer huge. We expect to learn much about its
evolution through full MED and MDE configuration
mixing calculations now under way.

We close by proposing an alternative to the use of Eq. (3)
to represent shell effects:

41.47
2\
) = G 2

1

zi(pi +3/2+6;)/Z, )

where Aw, is now the “naive” estimate using Eq. (2) alone
and the J; corrections to the oscillator values replace the 4
term. Equation (9) could be useful in interpreting the
structure of isotope shifts as reflecting orbital occupancies
associated with given orbital radii.
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