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Abstract
Cajal–Retzius (CR) cells are early generated neurons, involved in the assembly of developing neocortical and hippocampal
circuits. However, their roles in networks of the postnatal brain remain poorly understood. In order to get insights into these
latter functions, we have studied theirmorphological and synaptic properties in the postnatal hippocampus of the CXCR4-EGFP
mouse, where CR cells are easily identifiable. Our data indicate that CR cells are nonuniformly distributed along different
subfields of the hippocampal formation, and that their postnatal decline is regulated in a region-specific manner. In fact, CR
cells persist in distinct areas of fully mature animals. Subclasses of CR cells project and target either local (molecular layers) or
distant regions [subicular complex and entorhinal cortex (EC)] of the hippocampal formation, but have similar firing patterns.
Lastly, CR cells are biased toward targeting dendritic shafts compared with spines, and produce large-amplitude glutamatergic
unitary postsynaptic potentials on γ-aminobutyric acid (GABA) containing interneurons. Taken together, our results suggest
that CR cells are involved in a novel excitatory loop of the postnatal hippocampal formation, which potentially contributes to
shaping the flow of information between the hippocampus, parahippocampal regions and entorhinal cortex, and to the low
seizure threshold of these brain areas.
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synaptic connectivity
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Introduction
Cajal–Retzius (CR) cells are early born neurons that populate the
marginal zone of the developing neocortex and hippocampus
(for review, see Soriano and Del Río 2005). At early stages, CR
cells have been highlighted as the main cellular source of the
glycoprotein reelin (D’Arcangelo et al. 1995; Ogawa et al. 1995;
Derer et al. 2001; but see Alcántara et al. 1998; Pesold et al. 1998,
1999 for reelin expression in γ-aminobutyric acid-ergic (GABAer-
gic) interneurons of the postnatal cortex), which is essential for es-
tablishing the correct architecture of neocortical andhippocampal
circuits (D’Arcangelo et al. 1995; Del Río et al. 1997; Supèr et al.
1998; Ceraniket al. 2000; see alsoFrotscher 1998). Althoughvarious
articles have reported the persistence of CR cells in the postnatal
hippocampus of several species at more mature stages (rats: Dra-
kew et al. 1998; mice: Alcántara et al. 1998; Supèr et al. 1998; pigs:
Abraham et al. 2004; humans: Abraham and Meyer 2003), a de-
tailed analysis of their fate is stillmissing, and the signals encoded
by their synaptic connections remain unclear.

Recent physiological data have shown that mouse CR cells of
thepostnatal hippocampusare integrated in localnetworks viaGA-
BAergic synaptic input from specific interneurons (neurogliaform
and O-LM cells, Quattrocolo and Maccaferri 2013) and that their
optogenetic stimulation activates α-amino-3-hydroxy-5-methyl-
4-isoxazolepropionic acid (AMPA)- and N-methyl-d-aspartate
(NMDA)-type glutamate receptors both on GABAergic interneurons
and CA1 pyramidal cells (Quattrocolo and Maccaferri 2014).

However, structural data have also suggested that CR cells pro-
ject to distant regions and contribute to the bidirectional synaptic
dialog between the hippocampus and the entorhinal cortex (EC)
(Ceranik et al. 1999). Although the issue of the synaptic input–out-
put relationship of CR cells with local and distant networks is es-
sential to understand their functions in the developing and
mature hippocampus, several key points remain unresolved.

First, neither the spatial distribution nor the postnatal persist-
ence of CR cells of the hippocampal formation has yet been stud-
ied quantitatively. Second, it is still unclear whether hippocampal
CR cells constitute a structurally homogenous population of neu-
rons and all participate in both local and long-range circuits. In
fact, it is now established that CR cells arise from discrete areas
in the telencephalon (Takiguchi-Hayashi et al. 2004; Bielle et al.
2005; Yoshida et al. 2006; Gu et al. 2009, 2011; Tissir et al. 2009)
and colonize the developing marginal zone, which will later de-
velop into the outer molecular layer of the dentate gyrus (OML)
and stratum lacunosum-moleculare (SLM), or layer 1 (L1) in other
cortices. Although neocortical CR cells of different ontogenetic
origin appear homogenous in their basic structure and electro-
physiological properties (Sava et al. 2010), nothing is known, cur-
rently, about the homogeneity/heterogeneity of hippocampal CR
cells with respect to their local/long-range synaptic connectivity.
Third, the ultrastructure of the postsynaptic target domains of
hippocampal CR cells remains elusive. Thus, the main target
structures of CRcell axons remain to be identified. Lastly, although
the optogenetic stimulation ofCRcellsmay triggerfiring in postsy-
naptic GABAergic interneurons (Quattrocolo andMaccaferri 2014),
the strength of their unitary excitatory postsynaptic potentials
(uEPSPs) remains unknown. This is important to establish
whether CR cell-dependent control of GABAergic input onto pyr-
amidal cells requires the synchronous activity of a large versus a
small number of presynaptic neurons.

Herewe have taken advantage of a reportermouse expressing
enhanced green fluorescent protein (EGFP) in hippocampal CR
cells, the CXCR4-EGFP mouse (Marchionni et al. 2010; Anstötz
et al. 2014), to directly address these issues.

Materials and Methods
All experimental procedures described here were performed in
accordancewith the National Institute of Health (NIH) guidelines
for the Care and Use of Laboratory Animals, following North-
westernUniversity Institutional Animal Care andUseCommittee
(IACUC), by the Animal Research Committee of the Research Cen-
tre Jülich GmbH and approved protocols and complied with the
guidelines laid out in the EU directive regarding the protection
of animals used for experimental and scientific purposes.

Fluorescence Microscopy

To analyze the density and distribution pattern of CR cells in the
hippocampal formation we took advantage of the CXCR4-EGFP
reporter mouse where these neurons were fluorescently labeled
and thus easily detectable (see Marchionni et al. 2010; Anstötz
et al. 2014). CXCR4-EGFP mice (n = 25) aged postnatal day (P) 8
to P60 were deeply anesthetized using isoflurane (3–4% in air).
The level of anesthesia was assessed by monitoring the pedal
withdrawal reflex, and by pinching the tail or ear. Following
deep anesthesia, mice were perfusion-fixed through the heart
using 4% phosphate-buffered paraformaldehyde (0.1 M PB, pH
7.4). After fixation, brains were removed from the skull and
post-fixed in the same, but fresh fixative overnight at 4°C. Brains
were then cut in the horizontal plane at a thickness of 50 µm
with a vibratome (Leica VT 1000, Leica Microsystems, Nussloch,
Germany), collected in 0.1 M PB and finally embedded in water-
based Moviol (Hoechst AG, Frankfurt AM, Germany) on glass
slides.

Fluorescence microscopic images were obtained with an
Olympus BX61 (Olympus, Hamburg, Germany) and a Kyence
BX-9000. For Extended Focal Imaging multiple Z-stacks were ob-
tained and in-focus areas merged in Adobe Photoshop®.

Confocal microscopy images were captured using a Leica SP5
with HyD detectors. Single- ormultichannel fluorescence images
were saved individually for analysis and merged together for co-
localization studies and figures using Adobe Photoshop®. Final
figures were made using Adobe Illustrator®.

Electrophysiology and Biocytin-Filling

Slice Preparation
CXCR4-EGFPmice pups aged P6–P21 (n = 30) were deeply anesthe-
tized using isoflurane, decapitated and the brain was quickly
extracted. Transverse hippocampal slices (350–400 µm in thick-
ness) were prepared usingmethods similar to the ones described
by Anstötz et al. (2014). Slices were cut in ice-cold “cutting” artifi-
cial cerebrospinal fluid (ACSF) using a Leica VT 1000 vibratome.
The composition of the ACSF was (in mM): 130 NaCl, 24 NaHCO3,
3.5 KCl, 1.25 NaH2PO4, 1 CaCl2, 2 MgCl2, 10 glucose saturated with
95% O2–5% CO2 at pH 7.4. After their preparation, slices were
transferred to a storage chamber at 30–33°C for at least 30 min
and then allowed to return to room temperature before use. Dur-
ing recordings, slices were superfused by “recording” ACSF of the
following composition (inmM): 130NaCl, 24NaHCO3, 3.5 KCl, 1.25
NaH2PO4, 2 CaCl2, 1 MgCl2, 10 glucose saturated with 95% O2–5%
CO2 at pH 7.4.

Visual Identification of CR Cells in the Hippocampus

Slices were observed in the recording chamber under an upright
microscope (Olympus, Japan). Fluorescence of EGFP-expressing
CR cellswas excited by an X-Cite Series 120 light source (Exfo, On-
tario, Canada) and visualized using a VE1000 camera (DAGE MTI,
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Michigan City, IN, USA). Hippocampal CR cells in the SLM or OML
of the dentate gyrus were visually identified at ×600 magnifica-
tion first by fluorescence imaging and subsequently by infra-
red-differential interference contrast microscopy by their
location, the size and shape of their somata and the appearance
of a thick stem dendrite originating from one pole of the soma.

Electrophysiological Recordings and Data Analysis

Pipetteswere pulled fromborosilicate thin glass capillarieswith a
final resistance of ∼3–5 MΩ, filled with filtered intracellular solu-
tion of the following composition (in mM): 105 K-methylsulfate,
10 NaCl, 20 KCl, 4 ATP-Mg, 0.3 GTP-Na3, 16 KHCO3 equilibrated
with 95% O2–5% CO2 at pH 7.3. For subsequent morphological
analysis, 1 mg/ml biocytin (Sigma-Aldrich, New York, USA) was
added routinely to the internal solution.

During recording and biocytin-filling (∼15–20 min) the mem-
brane properties and firing characteristics of CR cells were exam-
ined in the voltage- and current-clamp configuration. Recordings
were carried out using a Multiclamp 700B amplifier (Molecular
Devices, Sunnyvale, CA, USA). Series resistances were balanced
via a bridge circuit in current-clamp mode. Data were filtered at
3 kHz and digitized at 10–20 kHz using a Digidata A/D board and
the Clampex 9 program suite (Molecular Devices). All recordings
and measurements were carried out at 29–31°C.

Paired Recordings

Simultaneous recordings from presynaptic CR cells and postsy-
naptic GABAergic interneurons were performed to test for func-
tional connectivity in (n = 146) double recordings in slices
obtained from P11–P23 CXCR4-EGFPmice. Interneurons were ini-
tially distinguished fromCRcells in the living slice by their lack of
EGFP expression (Quattrocolo and Maccaferri 2013), by larger so-
mata and presence of multiple dendrites originating from the
soma. Current steps of brief duration (5 ms) and sufficient ampli-
tude to trigger action potentials were injected in the CR cell at a
100-ms interval to evaluate paired-pulse plasticity. This protocol
was repeated every 10 s. Postsynaptic responses were averaged
after being aligned on the presynaptic spikes (Marchionni and
Maccaferri 2009) to correct the effect of action potential jitter.
Averaged postsynaptic responses (from ∼20 traces) were ob-
tained and analyzed from 5 connected pairs. General properties
of the postsynaptic response (peak amplitude, 20–80% rise
time, and 100–37%decay time, paired-pulse ratio)were estimated
using the Clampfit program (Molecular Devices). Values are pre-
sented as mean ± SE.

Biocytin-Filling and Histological Procedures

During single and paired recordings CR cells and their prospect-
ive target neurons were filled with biocytin (∼15 min) to reveal
their morphology. Slices were fixed in a 0.1 M PB (pH 7.4) solution
containing either 4% paraformaldehyde (for light microscopy,
LM) or 4% paraformaldehyde and 0.1% glutaraldehyde (for elec-
tron microscopy, EM) at 4°C for at least 24 h. They were then
either processed for LM- and/or EM as described earlier (Anstötz
et al. 2014). In brief, after incubation inABC-Elite solution (Sigma-
Aldrich, Germany) overnight, slices were preincubated in 3′3-dia-
minobenzidine (DAB; Sigma-Aldrich) and visualized by adding
0.025% H2O2 to the DAB solution. The reaction was stopped
when dendritic and axonal processes were clearly visible under
LM examination. After several washing steps in 0.1 M PB and
brief postfixation in osmium tetroxide (1–2 min), sections were

embedded in Moviol (Hoechst AG, Frankfurt AM, Germany) and
coverslipped for LM. For EM, slices were longer osmicated (0.5%
OsO4 in 0.1 M PB; 30 min), dehydrated in an ascending series of
ethanol, followed by propylene oxide (2×, 2 min each), 2mixtures
of propylene oxide and Durcupan (2:1 and 1:1, 1hr each) and then
transferred to pure resin overnight. The next day slices were fi-
nally flat-embedded in fresh Durcupan (Fluka, Neu-Ulm, Ger-
many) and polymerized at 6°C for 2 days.

Selected blocks containing biocytin-filled CR cells (n = 6) were
trimmed and ultrathin sections (thickness 50 ± 5 nm, silver to
light gray interference contrast) were cut through the dendritic
and axonal domain using an ultramicrotome (Leitz Ultracut,
Hamburg, Germany). Ultrathin sections were counterstained
with uranylacetate (10–15 min) and lead citrate (3–5 min) accord-
ing to Reynolds (1963) and examined with a Zeiss Libra 120 EM
(Fa. Zeiss, Oberkochen, Germany) equipped with a bottom-
mounted Proscan 2 K digital camera and the SIS Analysis soft-
ware. Images were taken at different magnifications and further
processed using Adobe Photoshop® and Adobe Illustrator® soft-
ware packages.

Morphological Reconstructions and Analysis of Biocytin-
Filled Hippocampal CR Cells

Only neurons that had no obvious truncation of their dendritic
and axonal profiles were used for qualitative and quantitative
analysis of their morphology (n = 63). Neurons were photo-
graphed at various magnifications (Olympus BX61 microscope
equipped with fluorescence and SIS Analysis software) to docu-
ment their dendritic morphology and axonal projection pattern.
All cells matching the selective criteria were reconstructed using
the NEUROLUCIDA software (MicroBrightfield Europe; Magde-
burg, Germany) equipped to an Olympus BX61 microscope.
These reconstructions provided the basis for further quantitative
morphological analysis of the following parameters: (1) total
length of axonal collaterals; (2) maximal horizontal field span
of axonal collaterals; (3) axonal endings (following theNEUROLU-
CIDA software terminology to define terminal points); (4) total
length of the dendritic tree; (5) dendritic endings and (6) horizon-
tal somadiameter (pole-to-pole). Thefield spanwas corrected for
curvature using the borders of the dentate gyrus as a reference.
For all data, means ± standard deviation (SD), maximum and
minimum values are given. Statistics were performed using
IBM SPSS Statistics Ver. 22 (IBM Corp, Armonk, USA).

Axonal and Dendritic Polar Plots and Density Maps

The values for polar plots were generated from the NEUROLUCI-
DA reconstructions of individual hippocampal CR cells using the
NEUROEXPLORER software (MicroBrightfield Europe; Magdeburg,
Germany). All neurons were aligned such that the hippocampal
fissure was upward. From these values, a normalized average
polar plot was obtained for the dendritic and axonal domains.
The plots were then generated using Adobe Illustrator®.

In addition, 2-dimensional (2D) maps of dendritic and axonal
“segment-length density”were constructed using the computer-
ized 2D reconstructions (for details, see Anstötz et al. 2014). For
proper alignment of the cell-type specific density all recon-
structed CR cells were projected in a 2D plane and centered to
their axonal initial segment. For the “region-specific density”
plots cells were aligned into a scheme of a hippocampal slice
(horizontal plane) with respect to the relative soma and arboriza-
tion position. Then axonal and dendritic segment-length was
measured in a 50 × 50 µm Cartesian grid, yielding into a raw
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densitymap. The data of “region-specific density” plotswere nor-
malized using the average, region-specific CR cell densities of 25
slices. Continuous 2D density functions were constructed using
bicubic interpolation in Mathematica 7 (Wolfram Research,
Champaign, IL, USA).

Quantification of CR Cell Density and Distribution
CXCR4-EGFP mice aged P8-P60 were prepared as described above
(n = 3 per age). All quantifications are based on 50-µm thick hori-
zontal slices (n = 8 per mouse and age, as described above).
Between different brains and ages the same level of the hippo-
campal formation was used for comparison.

For analysis, z-stacks with 5-µm interval were taken using a
Kyence BX-9000 microscope equipped with a Nikon Apo 20 ×
0.75NA lens. Each z-stack was analyzed individually using NEU-
ROLUCIDA such that all CR cells were marked and layer borders
outlined. For the region-specific counts, 3 regions of interest
were defined: the area along the hippocampal fissure (HF) cover-
ing both the OML and SLM, the pial surface of L1 in the subicular
complex/EC and pial surface of the dentate gyrus (OMLip).

Cell density was calculated for each region according to the
same number of bins in every slice (6 bins for the HF region, 3
for the OMLip, and 2 for L1).

Conversion of EGFP Into an Electron Dense Reaction
Product

To investigate the EGFP-labeled CR cells at the EM level, EGFP
was converted into a stable electron dense DAB-reaction
product. Four CXCR4-EGFP mice aged P18–24 were deeply an-
esthetized with Narkodorm® (60 mg/kg body weight) and trans-
cardially perfused as already described above. Vibratome
sections (100 µm in thickness) in the horizontal plane were sub-
sequently cryoprotected in 0.1 M PB-buffered 10% and 20%
sucrose for 1 h and transferred and stored overnight in PB-buf-
fered 30% sucrose at 4°C. Sectionwere freeze thawed in liquid ni-
trogen and after several washing steps in 0.1 M PB blocked in 1%
bovine serum albumin (BSA) in 0.1 M PB for 2 h. This was fol-
lowed by incubation in the primary rabbit monoclonal antibody
anti-GFP (1:300; Millipore, Hamburg, Germany) diluted in 0.1 M
PB containing 0.1% BSA overnight at 4°C. After several washing
steps in 0.1 M PB sections were transferred into the secondary
antibody, biotinylated anti-rabbit for the detection of the EGFP
(1:200; Vector Lab., Darlingham, USA) diluted in 0.1 M PB con-
taining 0.1% BSA for 2 h at room temperature. After several
brief washing steps in 0.1 M PB sections were transferred to
0.05 M Tris-buffered saline (TBS; pH 7.4) and incubated in ABC-
Elite for 2 h. For the detection of EGFP-labeled CR cells they
were reacted in DAB (0.5 mg/mL diluted in 0.05 M TBS) and
0.03% H202 for 15 min in the dark. The reaction was stopped in
0.05 M TBS. After osmium treatment (0.5% in sucrose-buffered
0.1 M PB for 15–30 min) sections were further processed for EM
and analyzed as already described above.

Reelin, vGlut, and vGAT Immunohistochemistry

The anesthesia and perfusion of the animals (n = 10) was done as
already described above. The immunohistochemistry was car-
ried out on free-floating 50-µm thick vibratome sections. After
several brief rinses in 1× TBS containing 1% Triton-X 100
(TBST), sections were transferred into 70% formic acid (diluted
in double-distilled water for 5 min) and subsequently washed 3
times in 1× TBST. Then sections were preincubated in PBS con-
taining 10% NGS/0.5% Triton X-100 for 1 h. After several brief

washing steps, sections were incubated with the primary anti-
bodies:mouse anti-reelin G10 1:400 (Abcam, Cambridge, UK), rab-
bit anti-vGluT1, rabbit anti-vGluT2, rabbit anti vGAT 1:800 each
(SynapticSystems, Göttingen, Germany), rabbit anti-cleaved cas-
pase 3 (Cell Signalling, Frankfurt/M, Germany) diluted in 1% BSA/
TBST overnight at 4°C. After several brief washing steps in 1×
TBST (1 min each) sectionswere incubated in the secondary anti-
body Alexa 568 goat anti-rabbit or Alexa 633 goat anti-mouse
1:800 each (Invitrogen, Darmstadt, Germany) diluted in 1% BSA/
TBST for 2 h in the dark. Finally, sections were washed several
times in 1% TBST, counterstained with 4′,6-Diamidin-2-pheny-
lindol (DAPI; 1:10000 diluted in PBS), mounted on glass slides,
embedded in Moviol and coverslipped. Sections were examined
and documented using a Kyence BX-9000 and Leica SP5
microscope.

Results
Density, Distribution Pattern, and General Features of
EGFP-Expressing Hippocampal CR Cells

The density and distribution pattern of CR cells were analyzed in
horizontal sections through the hippocampal formation using
CXCR4-EGFP mice ranging between postnatal days (P) 8–P60.
Here, CR cells are fluorescently labeled and thus easily identifi-
able (Fig. 1A). In fact, within both the hippocampal SLM and the
OML of the dentate gyrus, EGFP expression is confined exclusive-
ly to CR cells (Fig. 1A, B1–B3, C; see also Marchionni et al. 2010;
Quattrocolo and Maccaferri 2013). Therefore, despite the pres-
ence of EGFP in the dentate gyrus (reflecting the expression of
CXCR4 on the membrane of neural stem cells and in their pro-
geny; see Bhattacharyya et al. 2008), and in stratum oriens (SO)
and stratum radiatum (SR) of the hippocampus proper, the
CXCR4-EGFP mouse is a very useful tool to investigate the local-
ization, density, and distribution of hippocampal CR cells
throughout postnatal development.

In addition to their EGFP expression, CR cells appearing struc-
turally healthy (i.e., without signs of degeneration), were always
immunopositive for reelin (n = 543, Fig. 1C), although this protein
was also found in GABAergic interneurons of the SLM and OML
(Fig. 1C).

In general, CR cells were heterogeneously distributed through
the hippocampal formation (Figs 1A, B1–B3, 2A,B). Based on their
locations, we distinguished 3 classes of CR cells (Fig. 2A) as belong-
ing to: (1) the region along theHFcovering both SLMand theOMLof
thedentate gyrus, (2) theOLMip of thedentate gyrus and (3) L1 of the
subicular complex and (occasionally) EC. Overall, the highest dens-
itieswereobservedalong theHF (10.7 ± 0.3 cells per 5000 µm2at P15,
in particular close to the pole region, see Fig. 2B). Lower densities
were observed in the OLMip and L1 (2.6 ± 0.2 cells per 5000 µm2

and 3.7± 0.4 cells per 5000 µm2, respectively, n = 3 animals).

The Developmental-Dependent Decline of CR Cell
Numbers is Region-specific

A possible explanation for the observed difference is that CR cell
density could also depend on the presence of nonuniform, re-
gion-specific, developmental processes. Thenumberofneocortical
CR cells declines dramatically around P14 and appears to be regu-
lated by caspase-3-dependent apoptotic processes (Chowdhury
et al. 2010; Anstötz et al. 2014). When we quantified CR cell dens-
ities in animals of different postnatal ages (P8–P60, Fig. 3A1-A2,
B), consistently the highest values were found along the HF region,
when compared with the OMLip and L1. In addition, CR cells of
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theHF regionpersisted inmature animals (P30–P60) at values com-
parable with those observed in the OMLip and L1 of much younger
animals (P8-P15; Fig. 3B). Near the HF, CR cell density was de-
creased by ∼85% from P8 (13.8 ± 1.0 cells per 5000 µm2) to P60
(2.1 ± 0.2 cells per 5000 µm2). Interestingly, similar decline kinetics
were observed in the OMLip (∼80% reduction), whereas L1 of the
subicular complex and EC displayed a time course more similar
to that observed in the neocortex (∼98% reduction, see Chowdhury
et al. 2010; Anstötz et al. 2014). In the OMLip, CR cell density

decreased from 2.6 ± 0.2 cells per 5000 µm2 to 0.5 ± 0.1 cells per
5000 µm2 at P8 and P60, respectively. In L1, their density was re-
duced from 4.6 ± 0.5 cells per 5000 µm2 at P8 to 0.1 ± 0.0 cells per
5000 µm2 at P60.

In conclusion, the HF region appears to be an area where CR
cells remain an integral part of its mature circuits (Fig. 3B). It is
important to note that the numerical decrease of CR cell density
cannot be fully accounted by the growth of the developing struc-
tures and by the resulting cellular dilution (Fig. 3C).

Figure 1. Distribution of CR cells in the hippocampal formation. (A) Low-power fluorescent microscopic image showing the distribution of EGFP expressing CR cells in a

horizontal brain slice of a P18mouse hippocampus (blue: DAPI counterstaining). EGFP-positive CR cells are located throughout the entire OML and SLM as indicated by the

white arrowheads. The hippocampal fissure is marked by the dashed line. Note the auto-fluorescence for the GFP spectrum within the stratum oriens (SO), stratum

pyramidale (SP), stratum radiatum (SR), inner molecular layer (IML), granule cell layer (GCL), and hilus (Hil). Further abbreviations for hippocampal subregions: cornu

ammonis (CA1) and CA3 subregions, subicular complex (Sub), molecular layer (ML), entorhinal cortex (EC), and layer 1 (L1). Subregions demarked by red rectangles are

shown at higher magnification in B1–B3. Scale bar 200 µm. (B1–B3) Higher magnification fluorescence images at the border between the OML of the dentate gyrus and

SLM (dashed line) near the pole region (B1), the OML/ML border (B2), and the OML/IML of the dentate gyrus (B3; see areas within the red rectangles in A). Note the

differences in the density and distribution of CR cells within the selected areas some of which are marked by white arrowheads. For abbreviations see Figure 1A. Scale

bar 100 µm. (C) Series ofmultichannelfluorescence images of a CRcell (white arrowhead) and aGABAergic interneuron (asterisk) as shownbyDAPI counterstaining. In the

next panel the CR cell is labeled by EGFP (arrowhead) but not the GABAergic interneuron (asterisk). Although both neurons express the extracellular matrix protein reelin,

GABA immunoreactivity is found only in the interneuron as indicated by the cytosolic signal and the merged image. Scale bar 25 µm.
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In the neocortex, the disappearance of CR cells has been sug-
gested to be driven by caspase 3-dependent apoptotic processes
(Chowdhury et al. 2010; Anstötz et al. 2014). In the hippocampus,
CR cells displaying signs of degeneration were also observed as
early as P15 (Fig. 3D1-D2). Interestingly, however, degenerating
cells were almost immunonegative for reelin (Fig. 3D1) and, sur-
prisingly, they did not appear to express cleaved-caspase 3
(Fig. 3D2).

Structural Properties of CR Cells: Somatodendritic
Configuration, Axonal Arborization, and Density of
Synaptic Varicosities

In order to analyze the structural properties and synaptic con-
nectivity of CR cells, 121 EGFP-positive neurons both in the SLM
and in the OML (Fig. 4A–E, range: P6-P21) were intracellularly
filled with biocytin. From that sample, 68 CR cells met our criteria

for post hoc LM analysis, quantitative reconstructions and subse-
quent EM. The somata of the recovered neurons had ovoid to
elongated shape (Fig. 4A–E) with a mean horizontal diameter of
12.6 ± 2.3 µm (see Table 1), some of which bore somatic spines
(Fig. 4B1). CR cells were typically characterized by a prominent
horizontally oriented thick stem dendrite originating from one
pole of the soma (Fig. 4A–E). The majority of stem dendrites
had a significant trend being oriented toward the HF, independ-
ently of their origin in SLM or the OML (Figs 4A, B1, B2, C,D, 6A).
Some could be followed over long distances (Fig. 4C); with a
mean total dendritic length of 226.9 ± 133.3 µm (minimum:
10.0 µm; maximum: 550.6 µm; see also Table 1). In most cases
the stem dendrite gave rise to several secondary and tertiary
side branches of various length (Fig. 4B2,C,E)mainly running par-
allel to the stemdendrite (Fig. 4C). Occasionally, CR cells formed a
complex, sometimes vertically oriented, terminal tuft at themost
distal portion of the stem dendrite (Fig. 4B2, C,E). The majority
(95%, 63/68 cells) of CR cell dendrites were densely covered with
spine-like, filopodial protrusions (Fig. 4B–E, inset in E). However,
rare neurons with a smooth stem dendrite without any appen-
dages and only short side branches were also found (5%, not
shown). The dendritic domain of CR cells was mainly confined
to the layer of origin of their somata (Fig. 5A, white dots in 5B1–
B2) with only a small fraction (7.3%) of dendrites crossing the hip-
pocampal fissure to either invade the OML (Figs 4C, 5A, 5B1) or
SLM (Figs 4D, 5A, 5B2). However, the distribution profile of the
dendritic domains of all biocytin-filled neurons covering a rela-
tively large area of the SLM or OML (Fig. 5B3) suggested that CR
cells receive dense, layer-specific synaptic input. In addition,
some dendritic branches terminated in large varicosities with a
growth-cone like structure (Fig. 4F).

The main axons of CR cells (Figs 5A, 5C1–C3, 6B, 7A,B) nearly
always emerged from the opposite pole of the soma (Figs 4B–E,
6B), and formed a relatively dense network in either the SLM or
OML (Fig. 5A, C1-C3). In addition, we observed CR cells with indi-
vidual long-range axonal collaterals projecting along the hippo-
campal fissure (Figs 5A, 7A, 8C1) into various subregions of the
hippocampal formation (Figs 5A, 8C1-C3). Along its course, the
main axon gave rise to several collaterals (Fig. 7A,B) of different
length and orientation (Figs 5A, 6B). Occasionally, these collat-
erals would trespass (Figs 5A, 7C) and terminate outside their
layer of origin (Figs 5A, 8C1).

CR cells possessed a relatively high density of varicosities per
axonal length (Fig. 7D,E). On average, we measured 24.1 varicos-
ities per 100 µm axonal length. Interestingly, no significant differ-
enceswere found in the distance between consecutive varicosities
in proximal versus distal portions of the axon (Fig. 7E). The result-
ing uniformhighdensity of varicosities along the axonmay reflect
a high degree of functional connectivity with postsynaptic target
cells such as GABAergic interneurons (Quattrocolo andMaccaferri
2014) and, possibly, pyramidal and granule cells.

Next, we tested the hypothesis that varicosities were indeed
synaptic boutons by performing immunolabeling experiments
for the presence of vesicular glutamate transporters. In all
axonal segments examined, varicosities were immunopositive
for vGluT2 (Fig. 7F1, F2), but immunonegative for vGluT1 or
vGAT. This result is consistent with previous work on CR cells
of the embryonic brain (Ina et al. 2007), and supports the inter-
pretation that axonal varicosities are indeed glutamatergic
presynaptic terminals (Quattrocolo and Maccaferri 2014). In con-
trast, growth cone-like structures observed at the end of some
axonal collaterals were immunonegative for vGluT2 (Fig. 7G1–G2)
and all other vesicular transporters tested (vGluT1, vGAT, not
shown).

Figure 2. Density and distribution pattern of CR cells in the hippocampus. (A)

Distribution of EGFP-labeled CR cells in a horizontal slice through the

hippocampal formation at P15. CR cells are highlighted by different colors

indicating their areas of location (blue dots: HF region, red asterisks: OMLip of

the dentate gyrus, yellow rectangles: L1 of the subicular complex/entorhinal

cortex). Split indicates the pial fusion point. White triangles mark the different

counting areas along the HF. Pole indicates the termination of the hippocampal

fissure in the CA3 subregion. Scale bar 250 µm. (B) Summary line histogram of

the density of CR cells along the various regions of the hippocampal formation

color coded as in A. Note the steep increase and plateau in the number of CR

cells along the HF (blue line) and the steady decline in L1 (yellow line) and

OMLip (red line).
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Analysis of CR Cell Structure Reveals 3 Putative Neuronal
Populations

The projection pattern and targeting of biocytin-filled CR cells
(P6–P21) allowed us to classify recovered neurons in 3 main sub-
classes (Figs 5, 8).

Thefirst population, whichwe termed “local nonprojecting CR
cells” (n = 24), included neurons with axons confined within their
layer of origin. This type was found both in the OML and in SLM,
often running parallel towards the HF. Axonal collaterals often
covered nearly the entire extension of the OML or SLM (Figs 5A,
C1–C3, 8A1, A2) and termination sites could be identified within
the prospective layer (Fig. 8A1 inset). Overall, axons had a mean
maximum field span of 548.3 ± 238.8 µm (minimum: 156.0 µm;
maximum: 999.8 µm; see also Table 1) and an average total length
of 1552.3 ± 875.0 µm.

The second group, “local-projecting CR cells” (n = 22), was
comprised of neurons with an axonal arborization mainly con-

fined to the layer of origin eitherwithin the SLMorOML. However,

individual collaterals crossed the HF and projected into the adja-

cent stratum (Figs 5A, 8B1, B2). After crossing, these collaterals

would either terminate or turn back into their layer of origin,

sometimes with a dense axonal field around the somata. These

axons had ameanmaximum field span of 450.4 ± 187.9 µm (min-

imum: 128.1 µm; maximum: 831.0 µm; see also Table 1) and an

average total length of 1722.8 ± 1165.7 µm.
The third subtype (n = 22) contained neurons with long-range

axonal collaterals, which projected beyond the adjacent layer,
often to distant target regions of the hippocampal formation
(Figs 5A, 8C1, 8C2). Therefore, these cells were referred to as
“long-range projection CR cells.” Collaterals originating from

Figure 3.Developmental-dependent decline of CR cells in the hippocampal formation. (A1,A2) Multichannel fluorescent images showing the distribution of EGFP-labeled

CR cells at the HF (dashed line; left panel), which are all reelin-positive (middle panel) and themerge image (right panel, with added DAPI counterstain) at P15 (A1) and at

P45 (A2). Scale bar 50 µm. (B) Bar histograms showing the time course of CR cell density decline along the HF region (left panel), at the OMLip of the dentate gyrus (upper

right panel), and L1 (lower right panel). Note the different time course of CR cell loss in the 3 subregions. (C) Upper panel: summary graph of the developmental growth of

the HF-OMLip border length between P8 and P60. Lower panel: average density loss of CR cells per day during the samedevelopmental time points shown in B before (black

dots and curve) and after correction for hippocampal growth (red dots and dashed curve). (D1) Multichannel fluorescent images demonstrating early state apoptosis of an

EGFP-labeled CR cell with the typical signs of degeneration (pyknotic nucleus and condensed cytoplasm). Notice the lack of reelin immunoreactivity. (D2) Another

example of an apoptotic EGFP-labeled CR cells. Note the lack of cleaved caspase 3 immunoreactivity in the CR cell. Scale bar D1–D2 25 µm.
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these neurons were seen to project and terminate in the subicu-
lum (Sub), presubiculum (PreSub), parasubiculum (ParaSub) and
occasionally in L1 of the EC (Figs. 5A, 7C, 8C1, C2). These axons
had a mean maximum field span of 777.2 ± 311.8 µm (minimum:
272.9 µm;maximum: 1486.5 µm; see also Table 1) and an average
total length of 2445.0 ± 1305.8 µm.

Interestingly, no significant differences in the distribution of
these cell types were found between CR cell with their somatic
origin in SLM and OML. Furthermore, no shift in the proportion
of the specific CR cell subtypeswas observed at different develop-
mental stages.

Intrinsic Electrophysiological Properties and Firing
Patterns

Despite the previously described categorical subdivisions based
on the projection of the axon, the membrane properties and fir-
ing patterns of all CR cells appeared similar (insets of Fig. 8A1–
C1). We could not find any obvious heterogeneity in CR cells
with axons of very different lengths. As shown in Figure 9A–D,
the injection of hyperpolarizing current pulses revealed large

voltage responses, often with a typical sag, consistent both
with the high membrane input resistance of these neurons
(Marchionni et al. 2010) andwith their expression of the hyperpo-
larization-activated current (Kilb and Luhmann 2000). In add-
ition, low amplitude depolarizing current pulses were able to
trigger trains of action potentials of decreasing amplitudes even-
tually reaching depolarization block, as previously described
both in the hippocampus (Marchionni et al. 2010, 2012; Quattro-
colo and Maccaferri 2013, 2014) and in the neocortex of this
mouse line (Anstötz et al. 2014).

Postsynaptic Target Structures of Hippocampal CR Cells
in CXCR4-EGFP Mice

As already mentioned, CR cells in the SLM and OML showed a
high density of synaptic varicosities expressing VGluT2 along
their axon collaterals (Fig. 7D–F). This suggested that these varic-
osities are indeed presynaptic boutons. To further corroborate
this interpretation, their structure was examined at the EM
level (n = 8 cells; Fig. 10). OLM and SLM varicosities were easily
identified by the dark DAB-reaction product in biocytin-filled

Figure 4. Dendritic morphology of hippocampal CR cells. (A) Fluorescence micrograph showing the density and distribution pattern of EGFP-CR cells close to the HF as

indicated by the dashed line. Note that the stem dendrites of CR cells are mainly oriented toward the hippocampal fissure regardless of the somatic orientation. Scale

bar 50 µm. (B–E) Heterogeneity of the dendritic arborization of CR cells, despite the characteristic bipolar morphology with the stem dendrite emerging from one pole

of the soma and the axons from the opposite pole. Note the differences in length and complexity of the dendritic trees of sample cells and the variable density in

spine- and/or filopodial-like appendages (compare B,D and E with B2 and C) on the dendritic arborization. Notice also the presence of somatic spine-like structures

(B1). (F) High magnification of a dendrite with a growth-cone like structure at its tip. Scale bar in B–E 25 µm, in F 2 µm and 10 µm in the inset in E.
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Table 1 Structural and functional parameters of hippocampal CR cells investigated

Name Layer of
origin

Projection type Soma
diameter
(µm)

Total length
dendrites
(µm)

Dendritic
endings

Total
length
axons
(µm)

Axonal
field span
(µm)

Axon
endings

Post
natal
age

Rm

(GΩ)
Holding
current at
−60 mV
(pA)

40_23910E OMLsp Nonproj. 16.1 367.90 3 329.0 276.50 2 14 4.3 −8.79
10_101012A OMLsp Nonproj. 12.0 188.30 5 494.6 343.50 2 15 1.7 −22.90
45_DEC-16-

2010A
OMLip Nonproj. 13.9 297.80 3 574.5 181.30 5 11 1.4 −26.37

2_DEC162010E OMLsp Nonproj. 11.4 302.50 8 1178.0 337.40 7 11 1.2 −14.71
53_10_DEC_3A OMLsp Nonproj. 13.7 294.00 1 1331.1 529.20 3 15 1.2 −34.11
8_101014D OMLsp Nonproj. 14.1 355.10 4 1368.0 576.10 5 17 4 −13.86
51_101102C OMLsp Nonproj. 12.0 244.10 3 1386.2 471.60 7 15 2.2 −9.01
72_DEC172010A OMLsp Nonproj. 13.8 302.40 10 2206.9 971.90 12 12 2.2 −14.93
48_10DEC01E OMLip Nonproj. 12.9 191.60 3 2212.4 619.20 18 13 1.2 −32.10
56_101013E OMLsp Nonproj. 12.5 33.70 1 2344.8 655.00 10 16 1.6 −18.05
43_10_DEC_3C OMLip Nonproj. 12.3 340.70 3 2928.2 855.30 9 15 3 −11.52
71_DEC172010H OMLsp Nonproj. 10.2 174.70 8 3208.5 999.80 15 12 2.3 −17.40
2_DEC162010F OMLsp Nonproj. 12.4 88.00 1 3562.4 933.50 15 11 2.9 −13.98
33_21910B SLM Nonproj. 13.7 223.70 8 177.7 156.00 1 12 1.7 −24.32
67_101014A SLM Nonproj. 15.3 113.30 4 708.7 269.10 5 17 1.7 −16.48
37_101021D SLM Nonproj. 16.2 90.00 1 710.3 518.60 2 16 2.7 −15.10
35_20910G SLM Nonproj. 9.5 305.80 6 862.2 375.90 4 11 1.4 −22.61
44_DEC092010C SLM Nonproj. 12.8 74.90 1 1067.9 299.70 6 14 2.2 −17.71
5_101015D SLM Nonproj. 11.8 388.10 5 1085.2 355.90 4 18 1.6 −29.50
64_101007F SLM Nonproj. 14.9 323.30 15 1495.3 731.90 13 14 1.6 −28.28
66_101013E SLM Nonproj. 9.2 405.90 6 1839.0 785.70 10 16 1.5 −18.05
14_101008G SLM Nonproj. 17.0 161.70 5 1901.5 576.40 7 15 2.1 −14.60
62_20910A SLM Nonproj. 12.5 550.60 10 2085.4 664.90 4 11 1.8 −18.67
54_DEC-16-

2010C
SLM Nonproj. 17.7 298.40 8 2198.3 674.50 9 11 1.3 −28.63

26_10927H OMLsp Local proj. 13.0 161.40 1 401.3 225.30 4 20 1.3 −8.58
9_101012E OMLsp Local proj. 11.2 264.90 1 571.2 413.40 3 15 2.3 −23.05
6_101022B OMLsp Local proj. 14.3 230.40 8 728.6 272.60 3 17 2 −10.81
65_100810A OMLsp Local proj. 13.8 67.40 1 825.7 340.00 3 15 2 −19.61
6_101022A OMLsp Local proj. 15.5 57.20 2 923.6 402.10 3 17 1.7 −23.17
45_DEC-16-

2010B
OMLsp Local proj. 13.2 55.70 1 975.4 321.20 4 11 1.5 −38.91

16_101007A OMLsp Local proj. 13.8 227.90 6 983.4 223.50 4 14 2.1 −14.07
33_21910A OMLsp Local proj. 11.1 319.40 2 1203.0 245.30 5 12 2.9 −12.70
61_101015E OMLsp Local proj. 13.6 17.30 1 1395.1 589.50 5 18 1.8 −29.04
69_10929B OMLsp Local proj. 17.5 29.60 1 1818.6 474.70 7 14 1.5 −15.38
59_101021A OMLsp Local proj. 12.2 74.60 1 1927.2 496.20 9 16 1.6 −26.05
1_DEC162010G OMLsp Local proj. 15.6 88.20 2 2132.4 451.20 9 11 2.6 −10.43
69_10929A OMLsp Local proj. 16.2 156.30 8 2395.5 719.70 9 14 1.7 −10.09
60_DEC172010C OMLsp Local proj. 15.0 73.80 1 3255.1 629.90 11 12 1.7 −18.22
73_DEC152010A OMLsp Local proj. 19.0 270.90 14 3612.9 532.50 25 18 1.3 −26.13
49_101103A OMLsp Local proj. 10.4 178.80 2 3914.4 831.00 11 16 1.5 −25.06
7_101013A SLM Local proj. 10.2 534.20 19 468.9 128.10 4 16 2.3 −6.03
23_10929E SLM Local proj. 14.1 285.50 9 533.1 253.50 3 14 2.5 −14.69
26_10927G SLM Local proj. 12.6 40.40 1 866.1 390.20 6 20 2.3 −5.43
75_20930G SLM Local proj. 9.2 295.60 9 1456.7 479.00 4 15 2.2 −21.99
74_10DEC1D SLM Local proj. 11.7 315.10 11 3122.7 695.00 13 13 1.6 −20.58
63_20910C SLM Local proj. 14.4 408.50 9 4391.2 794.50 24 11 1.4 −23.21
57_101020C OMLsp Long-range proj. 11.8 413.70 18 1237.8 465.10 4 15 2.2 −27.08
46_101014E OMLsp Long-range proj. 11.6 265.60 4 1399.5 333.10 10 17 1.6 −11.85
52_101020A OMLsp Long-range proj. 10.9 82.70 1 1446.8 427.80 8 15 1.8 −18.58
47_10_DEC_1A OMLip Long-range proj. 14.1 351.30 1 1476.6 272.90 3 13 1.2 −53.49
12_101011E OMLsp Long-range proj. 17.8 165.60 5 1551.0 633.70 7 14 1.3 −16.86
25_10929G OMLsp Long-range proj. 12.3 135.30 1 1993.3 683.50 8 14 3.2 −7.24
75_20930F OMLsp Long-range proj. 11.7 277.40 4 2164.6 745.80 6 15 1.7 −18.26
71_DEC172010G OMLsp Long-range proj. 10.9 90.60 2 2488.7 952.60 8 12 1.4 −19.57
5_101015C OMLsp Long-range proj. 12.1 361.80 8 3115.8 918.40 6 18 1.9 −21.46
60_DEC172010D OMLsp Long-range proj. 14.9 409.60 2 3134.0 1486.50 15 12 2.1 −0.35

Continued
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(Fig. 10A; n = 43) and EGFP-DAB-labeled varicosities (Fig. 10A2, B1,
B2; n = 63). In the majority of cases they were characterized by
the presence of vesicles of various size, and formed connections
with a clearly identifiable synaptic cleft and postsynaptic density
(Fig. 10A2,B1,B2). In 91.8% of the varicosities in the OML and
93.2% in SLM an active zone (the structural equivalent for a
functional transmitter release site) with the postsynaptic target
structure was established (Fig. 10C1,C2) which further supports
the functionality of these varicosities. In both layers, themajority
of synaptic contacts originated from en passant axons and were
established on dendritic shafts (∼85%, n = 100) of variable size
(Fig. 10A1,A2,B2). Alternatively, they were found on spines
(Fig. 10B1). This result suggests that CR cells target dentate
gyrus granule cells in the OLM in addition to GABAergic inter-
neurons and pyramidal cells in SLM (Quattrocolo and Maccaferri
2014).

Paired Recordings Reveal Unitary EPSPs Generated by CR
Cells on Interneurons

Using optogenetic stimulation, Quattrocolo andMaccaferri (2014)
recorded the synaptic output of channelrhodopsin-expressing
CR cells onto both hippocampal GABAergic interneurons and
pyramidal cells. However, this technique suffers from the limita-
tion that optogenetically evoked responses are the result of the
activation of an unknown number of presynaptic CR cells. There-
fore, the impact of a unitary connection on themembrane poten-
tial of the postsynaptic neuron remains unresolved.

To readdress this issue, we took advantage of paired record-
ings, which allow the measurement of the postsynaptic effect
generated by a single neuron. Froma sample of 146 simultaneous
recordings from CR cells and SLM, functional synaptic connec-
tions were found in 5 cases. In one case, we could fully recover
the anatomyof both the presynaptic CR cell and the postsynaptic

interneuron (Fig. 11A1–A3, B). Two putative light microscopically
identified synaptic contacts were observed on different distal
dendritic branches of the GABAergic interneuron (Fig. 11A2-A3).
In the remaining 4 experiments only partial anatomical recovery
was achieved. Postsynaptic interneurons were located close to
the hippocampal fissure (n = 3 cells with multipolar dendritic ar-
borization) orwithin the fissure itself (one cell: only the soma and
the beginning of multiple dendritic trunks were recovered). The
axonal branches of the 3 partially recovered interneurons were
either restricted to SLM (n = 1) or could be found both in SLM
and OML (n = 2).

Functionally, action potentials triggered by brief current injec-
tion in the presynaptic CR cells generated uEPSPs in GABAergic
interneurons (Fig. 11C1–C2). Analysis of the averaged uEPSPs for
these 5 connections (Fig. 11C2) revealed a peak amplitude of 3.2
± 1.0 mV, a 20–80% rise time of 3.2 ± 1.2 ms and a 100–37% decay
time of 28.4 ± 4.9 ms. Additionally, both the presence of failures
(on average ∼20% in 4 connections; in the smallest uEPSP they
could not be easily identified and therefore were not quantified)
and of very large individual responses (reaching several milli-
volts, see Fig. 11C1) were observed. Application of the AMPA re-
ceptor antagonist 2,3-Dihydroxy-6-nitro-7-sulfamoyl-benzo[f ]
chinoxalin-2,3-dion (NBQX, 20 µM) completely abolished the
postsynaptic effect, thus indicating that uEPSPs at resting mem-
brane potentials were mediated by AMPA-type glutamate recep-
tors (n = 3 pairs). This result confirms indisputably the excitatory
nature of CR cells and fits well with the evidence that CR cells
powerfully drive feed-forward GABAergic input to hippocampal
pyramidal neurons (Quattrocolo and Maccaferri 2014). The large
amplitude of individual events raises the intriguing possibility
that this can be accomplished by very few CR cells, potentially
even a single one. Examination of the responses to paired-pulse
stimulation (Fig. 11D1,D2) revealed the presence of short-term
depression in most connected pairs. Current steps of brief

Table 1 Continued

Name Layer of
origin

Projection type Soma
diameter
(µm)

Total length
dendrites
(µm)

Dendritic
endings

Total
length
axons
(µm)

Axonal
field span
(µm)

Axon
endings

Post
natal
age

Rm

(GΩ)
Holding
current at
−60 mV
(pA)

64_101007E OMLsp Long-range proj. 12.4 202.90 4 3590.6 862.40 13 14 1.7 −18.30
3_101021F OMLsp Long-range proj. 11.0 162.50 5 3603.2 1050.00 22 16 2 −17.73
70_DEC-09-

2010E
OMLip Long-range proj. 10.6 166.90 1 3843.8 1138.70 15 14 1.4 −26.81

54_DEC-16-
2010D

OMLsp Long-range proj. 13.5 60.40 22 4218.8 933.60 9 11 2.6 −11.34

36_15910C OMLsp Long-range proj. 15.6 72.00 2 6675.2 1327.30 29 6 1.3 −23.58
42_DEC082010E SLM Long-range proj. 8.5 450.10 2 927.7 496.80 5 15 2.7 −16.38
11_101012D SLM Long-range proj. 14.6 497.80 20 1238.1 498.00 4 15 3.5 −7.63
52_101020B SLM Long-range proj. 10.6 266.00 7 1312.9 651.00 4 15 2.7 −18.18
31_23910C SLM Long-range proj. 13.3 200.70 3 1348.3 462.50 4 14 1.9 −10.09
68_101021E SLM Long-range proj. 8.8 316.00 4 1924.6 680.60 9 16 3.1 −7.59
58_101020E SLM Long-range proj. 9.4 202.10 2 2030.8 929.10 9 15 3.6 −13.28
57_101020D SLM Long-range proj. 10.1 10.00 1 3068.6 1147.90 10 15 2.6 −6.60
Mean 12.97 226.92 5.16 1896.31 590.66 8.1 14.3 2.03 −18.34
SD 2.3 133.26 5.0 1211.1 289.9 5.7 2.4 0.7 8.7
Max 19.0 550.60 22.0 6675.2 1486.5 29.0 20.0 4.3 −0.4
Min 8.5 10.00 1.0 177.7 128.1 1.0 6.0 1.2 −53.5

Note: Quantitative and qualitative parameters based on NEUROLUCIDA reconstructions and electrophysiological examination of hippocampal CR cells (n = 68). The

projection type was determined by the individual axonal arborization. All numerical values are summarized by mean-, SD-, maximum- and minimum- values. SLM,

stratum lacunosum-moleculare, OMLsp and OMLip, supra- and infrapyramidal blade of the outer molecular layer of the dentate gyrus, respectively.
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duration (5 ms) and sufficient amplitude to trigger action poten-
tials were injected in the CR cell at a 100-ms interval to evaluate
paired-pulse plasticity. The overall paired-pulse ratio (amplitude
of the second uEPSP over the first uEPSP) was 0.77 ± 0.11.

Discussion
In this study, we have described several novel results concerning
the structural and functional properties of hippocampal CR cells.

Figure 5.Dendritic and axonal distribution pattern of hippocampal CR cells. (A) Summary plot of all reconstructed CR cellsmerged into a scheme of the hippocampus. The

somatodendritic domain of CR cells located in the OML is given in red and that of CR cells in the SLM in orange. The axonal domains are given in blue (OML) and green

(SLM), respectively. Note the variability and complexity of the axonal arborizationwith different projections, covering the entire OML and SLM. Notice also the presence of

individual collaterals crossing the hippocampal fissure and projecting to various regions of the hippocampal formation. (B,C) Quantitative analysis of the dendritic (B1–B3)

and axonal (C1–C3) domains (same color code for OML- and SLM-CR cells as in A as shown in a contour plot indicating the density of either the dendritic and axonal

segments with respect to their position in the hippocampus. Note that the dendritic domains (B1,B2) are mainly restricted to the layer of the origin of somata (white

dots). OML-CR-cell axons (C1) show a relative homogenous density pattern within their layer of origin with projections into the SLM. CR cell axons of the SLM (C2)

show their highest density near the hippocampal fissure also exceeding the layer border and projecting into distant regions, but not covering the medial part of the

OML. Panels B3 and C3 show the dendritic (yellow) and axonal (cyan) distribution pattern of all reconstructed CR cells. The white contour around the density

distributions indicates the 95% of the total density in the distribution. Voxel size 503 µm3; Scale in A–C bar 250 µm.
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First, both their density and developmental regulation in the hip-
pocampal formation are region-specific. Second, although CR
cells can be classified into 3 distinct subclasses upon their axonal
projection patterns, their basic excitability appears homogenous.
Third, CR cell output synapses are biased toward targetingmostly
dendritic shafts, and less frequently spines. Last, we have pro-
vided unequivocal evidence that hippocampal CR cells are exci-
tatory neurons and may generate large-amplitude uEPSPs in
postsynaptic GABAergic interneurons.

Developmental Regulation of CR Cell Densities in the
Hippocampal Formation

Our data highlight a profound difference in the postnatal regula-
tion of hippocampal versus neocortical CR cell densities. While
neocortical CR cells virtually disappear at around P14, they per-
sist at higher levels in the hippocampus. Work by Chowdhury
et al. (2010) in the Ebf2-GFP mouse has described stable density
levels of CR cells between P3 and P7, with a dramatic decrease be-
tween P7 and P14. Mature final levels (<3.5% of the initial P3-P7
values) were reached after the fourth postnatal week in the neo-
cortex. In contrast, our data show that between P8 and P15, the
densities of CRcell of theHFarea andOMLip do not decline as dra-
matically. Furthermore, both regions appeared to preserve ∼15–
20% P8 density values in mature animals at P60. In contrast, L1
of the subicular complex/EC showedmore similarities to the neo-
cortex, and a near disappearance of CR cells was observed in fully
mature mice (∼2% of P8 values).

Although we have found that developmentally related struc-
tural growth does contribute to the decline of CR cell densities, its
role appears minor. In fact, we have found in every region of the
hippocampal formation evidence for degenerating CR cells. Sur-
prisingly, this type of degeneration appears to be independent of
caspase 3 activation, which, in contrast, has been reported in CR
cells of the neocortex (Chowdhury et al. 2010; Anstötz et al. 2014).
Therefore, our results suggest that a different type of pro-
grammed cell death regulates the disappearance of neocortical
versus hippocampal formation CR cells. Intriguingly, caspase-in-
dependent programmed cell death has been shown to occur dur-
ing brain development in caspase-3 and caspase-9 knockout
animals, andwas reported to affect specific neuronal populations
with a delayed onset when compared with wild-type animals

(Oppenheim et al. 2001). Although more work is required to de-
fine the signals that lead to a specific activation of caspase 3 in
the neocortex versus hippocampal formation, the lack of caspase
3-related apoptosis could partly explain the persistence of CR
cells in the latter structure.

Layer and Regional Specificity of Hippocampal CR Cells

The long postnatal persistence of CRcells in thehippocampal for-
mationhighlights their conventional roles as neurons integrating
and relaying information to their prospective synaptic targets.
Our results show that CR cellsmay be subdivided into distinct po-
pulations on the basis of the local versus projecting characteris-
tics of their axons. In particular, we have identified CR cells with
complete layer-restricted location of both their somatodendritic
and axonal domain. This exquisite specificity suggests local
functions, i.e., mostly depending on layer-specific input and pro-
ducing synaptic output affecting the same layer. In general
terms, this subclass of hippocampal CR cells, similarly to their
counterparts in the neocortex, can be thought as a type of “gluta-
matergic interneuron” acting either within the HF or OMLip
region. In contrast, the observation of CRcellswith axons project-
ing to different layers or even to distant regions of the hippocam-
pal formation suggests the possibility ofmore complex functions.
To our knowledge, our discovery of local-projecting CR cells
(whose axons crosses the hippocampal fissure and travel from
the SLM to OML or vice versa) is the first evidence of an intrinsic
glutamatergic hippocampal connection that does not flow
according to the classical direction of the trisynaptic circuit
(Andersen et al. 1966). In fact, this type of nonclassical intrahippo-
campal connectivity has been described only for GABAergic (Sik
et al. 1994; Ceranik et al. 1997), but never for glutamatergic connec-
tions. It is interesting to note that the synaptic inputs to SLM and
OML (Steward and Scoville 1976; but see also Kitamura et al. 2014)
originate predominantly from distinct cellular populations in the
EC and terminate to different layers in the dentate gyrus and
hippocampus proper, whichwould suggest a high degree of paral-
lel (and separate) processing by the 2 networks. The presence of
local-projecting CR cells could provide a cellular substrate for an
early integrationof these inputs at their entry in thehippocampus.

Last, CR cells with long-range axons (long-range projecting CR
cells) that target distant subregions were identified reaching as

Figure 6.Quantitative analysis of the dendritic and axonal arborization of hippocampal CRcells. (A,B) Polar plots of the dendritic (red, left panel) and axonal domains (blue,

right panel) of all CR cells investigated given as a radial bar histogram with 3° intervals. The dashed lines indicate mean values; gray areas mark the 95% confidence

intervals. Maximum values are indicated by the light red and blue region within the histogram, respectively.
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Figure 7.Axonal arborization and synaptic bouton density of hippocampal CRcells. (A) Biocytin-filled CRcell with an axon thatprojects via theHF (indicated by the dashed

line). Scale bar 25 µm. (B) Axonal branching pattern of another biocytin-filled CR cell with a local, but complex axon confinedwithin theOML of the dentate gyrus. Scale bar

25 µm. (C) EGFP-fluorescence image of 2 CR cellswithin the subicularmolecular layer. Note the dense axonal plexus around the neuronswith several individual collaterals

(marked byasterisks) crossing themolecular layer border (dashed line) to project and terminate in the Sub. Scale bar 20 µm. (D) High density of axonal varicosities (marked

by asterisks) along an individual axonal collateral of a biocytin-filled CR cell. Scale bar 20 µm. (E) Summary plot of the intervaricosity distance along CR cell axons as a

function of distance from the soma. Dashed line represents the linear fit (r2 = 7.03 × 10−4; f(x) = 3.05 × 10−4x + 4.15). (F1)Multichannelfluorescent images of synaptic boutons

(marked by arrowheads) of a EGFP-labeled axonal collateral (top panel), vGluT2 immunohistochemistry (middle panel), and themerged image (lower panel). Note that all

varicosities areVGluT2 positive. Scale bar 10 µm. (F2) similar to F1 for a different axon, but shownat highermagnification. Scale bar 2 µm. (G1) Series of 3 lowpower images

of an axonal collateral terminating in a growth cone-like structure (marked by an asterisk). Note that synaptic boutons (marked by arrowheads) express vGluT2

immunoreactivity, which is not found in growth cone-like structures. Scale bar 5 µm. (G2) False-color EGFP fluorescence of a different growth cone-like structure

shown at higher magnification. Scale bar 2 µm.
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far as the Sub, preSub, paraSub, and even the EC. This is consist-
ent with a previous study using retrograde tracing in newborn
rats (Ceranik et al. 1999), and expands the significance of this con-
nection to later postnatal stages. It is interesting to note that
these long-range target regions host neurons that in vivo may
display the firing properties of grid cells (Hafting et al. 2005;
Boccara et al. 2010, reviewed by Moser et al. 2008). While the
basic properties of place cells of the hippocampal formation
seem to be already present in immature animals at their first
navigational experience, grid cells develop later and appear
roughly at the third postnatal week in rats (Langston et al. 2010;
Wills et al. 2010, 2012). We suggest that long-range glutamatergic

input from hippocampal CR cells may activate postsynaptic re-
ceptors of the AMPA- and NMDA-type onto target neurons in
the Sub, preSub, paraSub, and EC, thus contributing, at early de-
velopmental stages, to the hippocampal-originated excitatory
drive that is required by grid cells (Bonnevie et al. 2013). At pre-
sent time, however, the cellular targets of long-range projecting
CR cells remain unknown and future work is needed to confirm
our hypothesis, which remains speculative. If this were the
case, however, this circuit could provide a direct functional link
between the firing of place cells in the hippocampus proper and
distant grid cells. The bursting pattern of hippocampal place cells
could easily generate facilitating excitatory postsynaptic

Figure 8. NEUROLUCIDA reconstructions of biocytin-filled hippocampal CR cells. Representative examples of reconstructed hippocampal CR cells filled with biocytin.

Their somatodendritic configuration is given either in red or orange, and the axonal domain in blue or green to distinguish between the 2 neurons. The framed area

shows the termination of an individual axonal collateral ending in a growth-cone like structures. The characteristic firing patterns of one of the reconstructed

neurons is also shown in the corresponding color. (A1) Hippocampal CR cells with somata located in the SLM and OML with a local, nonprojecting axonal

morphology. One of its axonal collaterals (framed white area) terminates in the SLM. (B1) Two CR cells, one with its somatodendritic domain (red) in the OML but with

a projection of the majority of axonal collaterals (blue) crossing the hippocampal fissure terminating in the SLM. The other CR cell has its somatodendritic domain in the

SLM (orange) but with 2 axonal domains (green), one in the SLM and the other in the OML. One of the green axonal collaterals (framed white area) terminates with a tuft-

like structure in the OML. (C1) Two CR cells both with a somatodendritic domain located in the SLM with individual long-projecting axons to distant regions of the

hippocampal formation with an individual axonal collateral with a basket-like termination (framed white area, inset) in the Sub/EC area. Note the relative small

somatodendritic domain (red) of the CR cell with the large axonal arborization (blue) to the EC and OML. Scale bars in A1–C1 are 250 µm for the main figures and

500 ms and 50 mV for all electrophysiological recordings. (A2–C2) Summary diagrams of the axonal density and distribution pattern of local, nonprojecting CR cells

(A1), CR cells with local and projecting collaterals to the SLM or OML (B1) and those with long-range projections (C1). The white closed contours determine 50% of the

maximal axonal density, the dashed contours 5%, respectively. The red dot represents the position of the aligned somata. Note the marked differences in the axonal

density and distribution pattern between the 3 populations. Scale bar for A2–C2 250 µm.
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potentials in O-LM GABAergic interneurons and lead them to
threshold (Ali and Thomson 1998). O-LM cells, in turn, have
been suggested to powerfully excite CR cells (Quattrocolo and
Maccaferri 2014). Therefore, we propose that the activation of
CR cell projections following bursting in hippocampal place
cells (O’Keefe and Dostrovsky 1971; Ranck 1973) might regulate
synaptic excitation/plasticity in developing grid cells. This is es-
pecially intriguing as hippocampal CR cells are still present in the
rodent hippocampal formation at later postnatal stages (Supèr
et al. 1998; this study) associated with the abrupt maturation of
grid cell properties (Wills et al. 2012). An experimentally testable
prediction would be that animals with reduced numbers of CR
cells (Meyer et al. 2004; Yoshida et al. 2006; Tissir et al. 2009)
would suffer functional alteration or delayed development of
grid cell neurons.

Postsynaptic Target Domains of CR Cells

In addition to confirming the presence of CR cell-originated syn-
aptic boutons that do not form synaptic contacts (Marchionni
et al. 2010),we provide EM-based structural evidence that thema-
jority of varicosities represent functional transmitter release
sites and that hippocampal CR cells contact both dendritic shafts
and spines, although the majority were found on dendritic
shafts.While synaptic contacts terminating on spines are usually
taken as evidence of excitatory synaptic transmission onto
pyramidal cells, boutons terminating on shafts are usually in-
terpreted as evidence of transmission onto GABAergic inter-
neurons. Although this interpretation fits very well with
physiological data suggesting a connectivity bias favoring inter-
neurons versus pyramidal cells, it needs to be taken into account
that excitatory synapses onto pyramidal cell dendritic shafts are
extremely rare in SO and SR, but may occur, albeit in limited
numbers, in the SLM (Megías et al. 2001). In addition, there is
clear evidence from excitatory intralaminar and translaminar
synaptic connections in the neocortex that shaft synapses may
be excitatory in nature (Markram et al. 1997; Feldmeyer et al.
1999, 2006). In any case, the presence of synapses on spines
reinforces the physiological evidence of a monosynaptic

glutamatergic input from CR cells to hippocampal pyramidal
neurons (Quattrocolo and Maccaferri 2014). The observation of
CR cell excitatory boutons close to dendritic shafts could also
be the structural correlate of a synaptotrophic effect (Cline and
Haas 2008)mediated by CR cells, as glutamate released onto den-
drites has been shown to have the ability to trigger the formation
of spines (Kwon and Sabatini 2011). Thus, CR cell boutons form-
ing synaptic contacts on dendritic shafts of pyramidal cellsmight
have an “instructing” developmental role and contribute to the
structural maturation of their dendritic tree. Such a role was al-
ready emphasized for neocortical CR cells axons by positioning
and anchoring terminal tufts dendrites of pyramidal cells in
layer 1, thus partially contributing to the establishment of the
cortical column (Radnikow et al. 2002; Anstötz et al. 2014). This
may result in an integrated synaptic activity of developing pyr-
amidal cells by the activation of Ca2+ spikes in pyramidal cells
across columns, thereby contributing to the establishment of
early cortical domains.

Figure 9. Firing pattern of hippocampal CR cells does not change with axonal

length. (A–D) The typical firing pattern and membrane responses to various

current steps (−50 pA to 10 pA in 5 pA steps and then 55 pA, 1-s duration) is

shown for CR cells of various axonal lengths, which is plotted in the bottom

inset. Note the similarity of the traces, despite the large difference in axonal

length. Scale bar is 500 ms and 50 mV.

Figure 10. Synaptic output of CR cells onto hippocampal neurons. (A1,A2) En

passant synaptic boutons (sb) of a biocytin-filled CR cell axonal collateral (dark

labeling in A1) and an EGFP-converted axon terminal (A2, dark DAB-labeled

structure) on postsynaptic target dendrites (de) in the SLM. (B1,B2) Two

representative examples of synaptic boutons (sb) detected by an EGFP-antibody

terminating on a spine (sp, B1) and a small caliber dendrite (de, B2) in the OML.

In all panels the active zones at the pre- and postsynaptic apposition zone are

marked by arrowheads. Labeled synaptic boutons were identified also by the

dense accumulation of synaptic vesicles. Scale bars in A1–B2 0.25 µm. (C1,C2)

Bar histograms showing the proportion of axonal boutons establishing a

synaptic contact with the postsynaptic target structures in the SLM (gray

columns) and OML (white columns).
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Control of Interneuronal Activity by CR Cell-dependent
Excitatory Input

Here we provide the first direct evidence of an excitatory mono-
synaptic CR cell–GABAergic interneuron connection based on
paired recordings. This is especially important as previous at-
tempts to find such a connection in the neocortex, (Soda et al.
2003), or hippocampus (Marchionni et al. 2010) had been unsuc-
cessful. While unitary connections between GABAergic inter-
neurons to CR cells are experimentally relatively easy to find
(Quattrocolo and Maccaferri 2013), the degree of connectivity

observed between CR cells to GABAergic interneurons appears
much lower (∼3.4%). This probably depends on the much denser
axonal arborization of interneurons, which makes it more likely
that several axonal branches may be in close proximity to the
tested postsynaptic CR cell. In contrast, as shown here, the dens-
ity of the axonal arborization formed by CR cells decreases rapid-
ly with distance. Therefore, despite a high density of synaptic
boutons for axonal length, the probability of finding a connected
postsynaptic interneuron is lower. Nevertheless, it is quite intri-
guing to observe that out of 5 recorded uEPSP, 4 showed ampli-
tudes of several millivolts (reaching >5 mV responses in single

Figure 11.Morphology and basic functional properties of a CR cell to a GABAergic interneuron synaptic connection. (A1) Lightmicrograph of a biocytin-filled, synaptically

coupled pair between a presynaptic CR cell and a postsynaptic GABAergic interneuron (IN). Both cells were located in the SLM close to the HF (dashed line). Note the CRcell

axon (marked by asterisks) running parallel to an interneuron dendrite establishing 2 putative light microscopically identified synaptic contacts, marked by arrowheads,

and numbers. Slice obtained from a P17 mouse. (A2,A3) High-power light microscope images of the 2 putative light microscopically identified synaptic contacts of the

presynaptic CR cell axon (blue) with the postsynaptic interneuron dendrite (orange) as indicated by arrowheads. The putative contact area is highlighted in red. (B)

NEUROLUCIDA reconstruction of the synaptically coupled pair shown in A1. The somatodendritic configuration is given in red (CR cell) or orange (IN) and the axonal

domain in blue or green, respectively. The putative synaptic contacts are marked by white arrowheads and numbers. Scale bars in A1 25 µm, (A2–A3) 5 µm and B

50 µm. (C1) Paired recording between a presynaptic CR cell and a postsynaptic interneuron with the somata on the hippocampal fissure. Current injection triggers a

spike in the CR cell (top trace), which generates a uEPSP in the interneuron (middle traces). Notice the variability of the response and the presence of a failure. Notice

also that individual response may be very large and reach amplitudes of ∼10 mV. The bottom traces show the unitary response recorded in regular ACSF (control) and

after the addition of NBQX (20 μM). (C2) Summary plots showing the basic properties (peak amplitude, 20–80% rise time and 100–37% decay time) of the uEPSPs

recorded in 5 connected pairs. (D1) Paired-pulse modulation of CR Cell uEPSPs. The upper trace shows 2 action potentials triggered at 10 Hz in the presynaptic CR cell,

whereas the lower trace shows the postsynaptic response. Notice the presence of a mild depression. (D2) Summary graph of paired-pulse modulation (peak of the

second uEPSP over the peak of the first EPSP: pp ratio) for the 5 connections tested. Notice the presence of short-term depression in most uEPSPs.
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sweeps). This suggests that only few CR cells are required to con-
trol the activity of postsynaptic interneurons, and explains the
powerful disynaptic GABAergic input observed onto pyramidal
cells following CR cell optogenetic stimulation (Quattrocolo and
Maccaferri 2014). In addition, these data prove unequivocally
the glutamatergic nature of CR cells. This is important because
the use of reelin expression as a CR cell-specific marker (in the
absence of any other specificmorphological/physiological charac-
teristics) has generated severemisinterpretations of experimental
results in the postnatal hippocampus (Yu et al. 2014), due to the
presence of reelin-expressing GABAergic interneurons (for ex-
ample, neurogliaform cells, see review, by Armstrong et al. 2012).

Conclusions
In summary, our findings reveal that CR are an integral part of the
developing and mature hippocampal formation, and thus con-
tribute importantly both to its local and long distance excitatory
synaptic connectivity. Although the postsynaptic targets (i.e.,
GABAergic, excitatory neurons, or both) of CR cell at distant re-
gions remain to be determined inmore detail, the presence of an-
other excitatory loop within the hippocampal formation is likely
to add a new level of instability potentially supporting epilepti-
form activity. Indeed, it is intriguing that CR cell numbers in
the hippocampal formation of patients suffering from temporal
lobe epilepsy are increased (Blümcke et al. 1999). Whether this
should be regarded as a causal factor that contributes to seizures
because of direct excitatory output onto glutamatergic neurons
versus a plastic response attempting to increase excitatory
drive to GABAergic neurons remains to be determined.
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