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1. Introduction

Growth factors (GFs) have been investigated for the purpose of alveolar bone regeneration in
periodontal, reconstructive and pre-prosthetic surgery, often with a view to rehabilitation with
dental implants. Results are promising, and research is currently focusing on developing an
effective delivery system capable of ensuring a controlled and localized GF release and activity.
In fact, one of the main issues relating to GFs concerns how to control their effects over time
so as to guarantee their effective action in the various phases of bone healing. This chapter
provides a review of the literature on GFs used for bone regeneration in dentistry, emphasizing
the most recent developments relating to local delivery systems.

2. Mechanism of action of growth factors (GFs)

Growth factors (GFs) are protein molecules that have a role in controlling biological processes,
such as cell growth, proliferation, differentiation and repair. GFs cannot pass through a cell’s
membrane; they must bind to high-affinity cell receptors in order to take effect. Many GFs
stimulate several cell populations, while others are less versatile and specific to a particular
cell line.

In dentistry, numerous GFs have been investigated in terms of their effect on hard and soft
tissue healing and regeneration.

© 2013 Sivolella et al.; licensee InTech. This is an open access article distributed under the terms of the
Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



Whatever the tissue involved, the healing process always involves a series of molecular,
biochemical and cellular events that can be grouped into three overlapping phases: inflam‐
mation, proliferation, and remodeling.

Inflammation begins spontaneously straight an after injury has occurred and lasts for 1 to 4
days. It is characterized by clotting in the wound, the release of signal molecules to recruit
immune cells, and the release of specific enzymes (matrix metalloproteinases, MMPs) that
clean the wound. The proliferative phase takes place between 4 and 21 days after wounding,
when fibroblasts are stimulated to invade the site of the wound and produce extracellular
matrix components. Highly-vascularized granulation tissue is formed and the gap is closed.
The final remodeling phase can take up to a year, during which time the immature scar is
converted into a stable, less vascularized tissue that exhibits good mechanical proprieties,
followed by the growth of regenerated tissue.

GFs have been used in dentistry in all these phases. The most often studied GFs are probably
the bone morphogenetic proteins (BMPs), discovered by Urist, who found that protein
mixtures obtained from demineralized, lyophilized segments of bone were responsible for
bone formation after implanting in rabbit muscle tissue [1].

BMPs are multifunctional cytokines that belong to the transforming growth factor-β (TGF-β)
superfamily. They are not only involved in direct ectopic bone formation (hence their name of
bone morphogenetic proteins), they also modulate several developmental processes, prompting
numerous authors to suggest other names: for instance, Reddi suggested that they be should
be called body morphogenetic proteins, given their extensive roles in various tissues [2].

Over 20 BMPs with various functions have been identified in humans. They have a major role
in embryogenesis and in the maintenance and repair of many skeletal and non-skeletal tissues
in adults [3]. BMP-1 is actually not considered a member of the BMP family, but a misnamed
protein with chordinase and procollagen proteinase activities, implicated in pattern formation
during the development of a number of organisms [4]. BMPs are mainly related to bone and
cartilage formation, though BMPs 8b, 10 and 15 have no role in these processes, and BMPs 12,
13 and 14 are called cartilage-derived morphogenetic proteins (CDMPs) because they induce
chondrogenic phenotypes rather than osteogenesis [2,5], whereas a definite bone-inducing role
during bone formation has been observed for BMPs 2, 4, 6, 7 and 9 [6].

BMPs play a pivotal part in skeletal morphogenesis and repair, promoting the differentiation
of mesenchymal cells into osteoblasts and inducing new bone formation. BMPs are involved
in regulating mesenchymal cell differentiation and proliferation by stimulating intracellular
signaling pathways. BMP signals are transmitted by the plasma membrane receptors to the
nucleus through multiple signaling pathways that can be divided into two groups, the Smad
and non-Smad pathways [3,7]. At the cell surface, BMP ligands bind with BMP receptors,
triggering specific intracellular pathways that activate and influence gene transcription. Of the
three types of receptor for the TGF-β superfamily, only types I and II appear to have significant
roles in BMP binding and signaling. Five type I receptors (ALK1 [Acvrl1], ALK2 [ActRI], ALK3
[BRIa], ALK4 [ActRIb] and ALK6 [(BRIb]), and three type II receptors (BRII, ActRIIa, and
ActRIIb) have been identified [8], plus a short form of BRII [9]. Type III TGF-β receptors have
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also been shown to have a role in BMP signaling, by mediating epithelial to mesenchymal cell
conversion [10].

Canonical Smad-dependent TGF-β first binds to receptors type I and type II, and then signals
are transduced to their Smads. Activated Smads form a complex with Smad4 and cross the
nuclear membrane into the nucleus, where they regulate the expression of transcriptional
factors and transcriptional coactivators that are important in osteoblasts (Dlx5, Runx2 and
Osx). It has recently been demonstrated that, following TGF-β induction, the Smad and the
p38 MAPK pathways converge on the Runx2 gene to control mesenchymal precursor cell
differentiation [11].

As for the isolation of BMPs, after Urist’s experiments, BMPs were obtained from the bones of
various species, including rabbit, cow and human. Nowadays, BMPs are produced and
purified using DNA recombinant technology and essentially two expression systems, in
mammalian cells or bacteria [6]. Recombinant human BMP-2 (rhBMP-2) and recombinant
human BMP-7 (rhBMP-7) are currently the only proteins in the group to been approved by the
US Food and Drug Administration (FDA) for clinical use in humans, which explains why they
are clearly the most extensively evaluated BMPs [12].

Another GF of interest in dentistry is the growth and differentiation factor (GDF), the structure
of which closely resembles some BMPs, so it could be included in the BMP family. GDF-5 is
also known as BMP-14, or cartilage-derived morphogenetic protein 1, because it induces
chondrogenic phenotypes rather than osteogenesis [6]. GDF-5 gene mutations give rise to
different types of dysplasia and can result in the autosomal recessive syndromes of brachypod
in mice and Hunter-Thompson or Grebe-type chondrodysplasia in humans, involving a loss
of joints in both humans and mice [13-15]. Francis-West and colleagues [14] showed that GDF-5
can modulate the initial stages of chondrogenesis by increasing cell adhesion, and can increase
chondrocyte proliferation in the later stages of skeletogenesis.

The osteoinductive potential of GDF-5 has been found smaller than that of other members of
the BMP family, though numerous studies have confirmed its crucial role in skeletal morpho‐
genesis. Several in vitro experiments have demonstrated that rhGDF-5 stimulates osteogenic
differentiation and promotes angiogenic activity by increasing vascular endothelial growth
factor gene expression in fat- or bone-marrow-derived stromal cells. The osteoinductive
activity of rhGDF-5 has also been examined in numerous in vivo model systems [13].

Another GF extensively investigated for clinical applications is the platelet-derived growth
factor (PDGF), which is synthesized by platelets, monocytes, macrophages, endothelial cells
and osteoblasts. This is a dimeric molecule consisting of disulfide-bonded, structurally similar
A- and B-polypeptide chains that combine to form homo- and heterodimers. The biologically
most potent of these PDGFs is PDGF-BB, which has been thoroughly investigated. The PDGF
isoforms exert their cellular effects by binding to and activating two structurally related protein
tyrosine kinase receptors, called the alpha-receptor and the beta-receptor [16,17].

PDGF is stored in the alpha granules of circulating platelets and is released during blood
clotting in the event of soft or hard tissue injury. Once it has been released from the platelets,
PDGF binds to specific cell surface receptors and promotes rapid cell migration (chemotaxis)
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and proliferation (mitogenesis) at the site of injury. In particular, in vitro and in vivo studies
have demonstrated that PDGF is a potent chemotactic and mitogenic factor for gingival and
periodontal ligament fibroblasts, cementoblasts and osteoblasts [18].

Since the first animal study conducted by Lynch and co-workers [19], extensive in vitro,
preclinical and clinical studies have been performed using PDGF, alone or in combination with
other GFs, for incrementing bone vertically and horizontally, and for treating periodontal and
peri-implant defects. The positive outcomes of these studies provide strong evidence of the
safety and predictably of rhPDGF combined with specific scaffolds in periodontal and peri-
implant regeneration, suggesting promising clinical applications [18,20,21].

Although a large body of preclinical and clinical data has been obtained for only a few GFs,
others have nonetheless been assessed for possible applications in clinical practice.

The activity and osteoinductive potential of fibroblast growth factor (FGF) have been the object
of various studies [22-24]. FGF signaling reportedly interacts with BMP signaling in bone
formation, showing a synergic action on osteogenesis [11].

Few studies have considered the use of parathyroid hormone (PTH) as a factor for modulating
bone augmentation and healing [25]. PTH binding activates PTH1R to stimulate several
downstream effectors and also drives the internalization of the PTH1R(PTH type I receptor)-
TGFβRII (TGF-β type II receptor) complex, which attenuates both TGF-β and PTH signaling
on bone development. The transcriptional factor/cAMP response element binding protein
(CREB) mediates PTH signaling in osteoblasts, and the PTH-CREB signaling pathway serves
as an effective activator of BMP-2 expression [11].

Transforming growth factor-β (TGF-β) [26-27], vascular endothelial growth factor (VEGF) [24],
and insulin-like growth factor (IGF) [28] are also the object of studies regarding the biological
properties of these bioactive molecules.

3. Clinical application of GFs in dentistry

Given the biological properties of GFs, a major focus of research has concerned the clinical
application of the osteoinductive proteins,  such as some BMPs, for enhancing new bone
formation. Bone loss involving the teeth may be secondary to diseases such as periodonti‐
tis, cystic diseases or tumors, or the consequence of trauma. Alveolar bone augmentation
procedures  are  often needed for  the  purpose of  inserting dental  implants  for  prosthetic
rehabilitation.

Missing teeth can be replaced with prostheses supported on dental implants, which can only
be inserted in patients with an adequate alveolar ridge height and/or thickness, so bone
augmentation procedures enable implant treatments in cases in which it would otherwise not
be an option. Bone augmentation procedures can be performed prior to implant placement (in
a two-stage procedure), or during the same surgical procedure (one-stage procedure), using
numerous materials and techniques.

Regenerative Medicine and Tissue Engineering716



Various options have been described [29], including: autogenous bone grafts, allografts,
xenografts, alloplastic grafts, barrier membranes for guided bone regeneration (GBR), growth
factors (and BMPs in particular), platelet-rich plasma (PRP), inlay grafting, onlay grafting,
ridge expansion, and distraction osteogenesis.

Tonetti et al. [30] described various techniques that have been developed to correct inadequate
vertical and horizontal bone volumes, such as guided bone regeneration (GBR), sinus lift and
onlay bone grafting.

Bone augmentation techniques have also been promoted as a means for treating periodontal
and peri-implant diseases in an effort to regenerate lost periodontal or peri-implant soft and
hard tissues [31-32].

Autogenous bone grafts are still considered the gold standard for bone repair in most cases,
though there are some restrictions in their use in clinical practice because of the morbidity of
the harvesting procedures and the limited amount of bone available. Many authors have
consequently been studying the biocompatibility and effectiveness of other materials as
potential substitutes for autogenous bone grafts.

The most recent and promising approach consists in applying osteoinductive growth factors
to promote new bone formation (protein therapy) [33], providing a new alternative to autog‐
enous grafts and other bone substitutes.

Combining growth factors with osteoinductive scaffolds may facilitate a faster and more
significant enhancement of new bone formation thanks to the delivery of the growth factors
at the site of the graft, and because their three-dimensional stability provides protection during
the gradual replacement of the graft with newly-formed bone. Numerous materials have been
used in combination with GFs, including inorganic bovine bone, porous hydroxyapatite and
demineralized human bone matrix.

Numerous pre-clinical and clinical studies have looked into how GF implantation influences
bone augmentation and implant osteointegration, focusing particularly on recombinant
human BMP-2 (rhBMP-2), rhBMP-7 and recombinant human growth and differentiation
factor-5 (rhGDF-5), combined with a variety of biomaterials used as scaffolds and delivery
systems.

Although the potential value of GFs in alveolar bone regeneration and augmentation has been
highlighted by numerous authors [6,31,34-35], it is still difficult to assess the different biological
potential of each growth factor, because few analyses have compared different growth factors
under identical in vivo conditions [24].

There is still much to learn about osteogenic growth factors: only a handful of growth and
differentiation factors have been the object of clinical evaluation [6,18,25] and further studies
are needed to identify predictable clinical outcomes.

3.1. Pre-prosthetic surgery for the purpose of dental rehabilitation with implants

Several surgical techniques and materials - including the use of GFs - have been introduced
with a view to increasing bone volume in order to enable the placement of dental implants.
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The systematic literature review conducted by Jung and coworkers [25] assessed the clinical,
histological and radiographic outcomes after BMP-2, BMP-7, GDF-5, PDGF, and PTH had been
used for localized alveolar ridge augmentation. Altogether, 74 studies met the authors’
inclusion criteria, including 6 on the outcome of BMP-2 for localized alveolar ridge augmen‐
tation in humans; the remainder were pre-clinical studies involving BMP-2, BMP-7, GDF-5,
PDGF, and PTH. For all the GFs other than BMP-2, no human studies met the inclusion criteria.
Concerning the animal studies, most of those on BMP-2 (43 out of 45) showed a positive effect
of this growth factor. Six of 8 studies reported a positive effect of BMP-7. The one animal study
on GDF-5 spoke of a statistically significant increase in bone volume. Five of 10 studies
involving the use of PDGF also reported a statistically significant increase in bone volume.
Four animal studies identified a significantly greater bone regeneration in cases treated with
PTH than in controls. In the six human studies, BMP-2 influenced local bone augmentation,
with a dose-dependent increase in bone volume. The dose of BMP-2 delivered seemed to have
an impact on treatment outcome, local bone regeneration being greater for higher BMP-2 doses
[36-38], with a smaller decrease in bone height at extraction socket sites [39]. Four of these six
human studies were designed as randomized-controlled clinical trials (RCT) [37-40], the other
two as prospective cohort studies [36,41]. The locally-applied dose of BMP-2 ranged from 0.5
to 1.75 mg/ml, or 0.12 to 3.4 mg/patient, respectively. An absorbable collagen sponge (ACS)
was used in five studies, while Jung et al. [40] used a demineralized bovine bone matrix
(DBBM) as a carrier. The treatments included sinus floor augmentation [38,41], extraction
socket preservation [36-37,39], augmentation of localized ridge defects [36], and lateral ridge
augmentation combined with simultaneous implant placement [40].

The 16-week open-label study conducted by Boyne and coworkers [41] assessed the safety and
efficacy of implanting BMP-2 delivered on an absorbable collagen sponge (rhBMP-2/ACS) for
two-stage maxillary floor sinus augmentation. The dose of rhBMP-2 ranged from 1.77 to 3.40
mg per patient. Significant bone growth was documented by computed tomographic (CT)
scans in all evaluable patients (11/12), with an overall mean response of 8.51 mm in height
(±4.13 mm). Histology on core bone biopsies obtained when the dental implant was inserted
confirmed the good quality of the bone induced by rhBMP-2/ACS.

In a more recent RCT, Boyne and colleagues [38] found no statistically significant differences
in terms of the increase in ridge height, as measured using CT scans, between their treatment
and control (bone graft) groups, and even a narrower ridge width in the former after using
BMP-2/ACS in two-stage maxillary floor sinus augmentations.

Bianchi et al. [37] investigated the efficacy of different concentrations of rhBMP-2 in regener‐
ating bone in alveolar defects in the anterior maxilla, reporting a positive outcome in terms of
bone volume augmentation.

Another RCT [39] compared the efficacy of rhBMP-2 in two different concentrations, delivered
on ACS, with placebo ACS alone in 80 patients requiring local alveolar ridge augmentation
for buccal wall defects (> or =50% buccal bone loss around the extraction socket) immediately
after tooth extraction of the maxillary bicuspids. They found no statistically significant effects
of BMP-2 on the treatment outcome when a lower dose was used, but a statistically significant
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positive effect of a higher dose (1.50 mg/ml rhBMP-2/ACS). In addition, bone density and
histology revealed no differences between newly-induced and native bone.

Finally, Jung et al. [40] tested whether adding rhBMP-2 to a xenogenic bone substitute mineral
could improve guided bone regeneration in the case of bone defects requiring lateral bone
augmentation procedures and simultaneous implant placement. Following implant insertion
(baseline), the peri-implant bone defect height was measured from the implant shoulder to the
first implant-bone contact. The authors reported a positive, but statistically insignificant effect
of BMP-2 on the amount of newly-formed bone (37±11.2%) compared with the control group
(30± 8.9%). On the other hand, they found more mature lamellar bone (76±14.4% versus
56±18.3%) and a greater area of bone-to-graft contact (57±16.2% versus 30±22.6%) at the BMP-2-
treated sites.

Various methods have been described for increasing bone volume before or at the time of
positioning implants [25], one of the best-documented of these methods being GBR for intra-
oral bone augmentation. To overcome some of the drawbacks of this technique, e.g. a long
treatment time, the difficulty of predicting any vertical bone augmentation, the risk of infection
after membrane exposure, research has concentrated on the use of bioactive molecules that
induce local bone formation. Using the GBR technique, the width and height of the alveolar
ridge is increased in areas of insufficient bone volume by applying barrier membranes, alone
or in combination with bone grafts or substitutes.

Misch [42] published a human case series of atrophic posterior mandible augmentation prior
to implant insertion, using recombinant human BMP-2 2/absorbable collagen sponge
(rhBMP-2/ACS) and titanium mesh. All the 10 implants involved in the study, inserted after a
6-month healing period, became integrated and were restored with single crowns.

Many in vivo studies used critical-size supra-alveolar peri-implant defect models and other
bone augmentation methods simultaneously with implant insertion. In an animal study,
Sigurdsson et al. [43] found that defect sites implanted with rhBMP-2⁄ACS showed signs of a
statistically significant and clinically relevant vertical alveolar bone augmentation by com‐
parison with controls (ACS). Although the titanium implant was osseointegrated after a 16-
week healing interval, the BIC (bone-to-implant contact) was lower than in resident bone, as
was to be expected; the newly-induced bone was often in a thin layer on the implant surface,
probably due to the unpredictability of ACS in providing adequate space for new bone
formation.

Wikesjö and colleagues [44] subsequently used a critical-size supra-alveolar peri-implant
defect model to study the efficacy of an ePTFE GBR device in supporting rhBMP-2⁄-induced
bone formation in dogs. The space-providing macro-porous membrane was characterized by
the ability to prevent the compression of the rhBMP-2/ACS construct, while allowing for
vascularization via the gingival connective tissue. The authors compared GBR alone with
rhBMP-2(0.4 mg)⁄ACS and rhBMP-2(0.4 mg)⁄ACS combined with GBR. Histometric analysis
on block biopsies after an 8-week healing interval revealed the best results in the third sample,
i.e. the GBR-rhBMP-2⁄ACS combination, which revealed bone formation filling the dome-
shaped GBR device, with a vertical bone gain at the turned implants averaging 4.7 ± 0.2 mm,
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and an induced bone area of 9.6 ± 0.7 mm2, generating a highly-significant correlation between
the induced bone area and the space provided by the GBR device. This study highlighted the
crucial importance of providing space in order to obtain clinically significant benefits from a
BMP construct.

Jung et al. [45] ran a randomized-controlled clinical trial with a split-mouth design, in which
implants were placed in sites exhibiting lateral bone defects and patients were randomly
selected for treatment with demineralized bovine bone mineral and bioresorbable collagen
membrane, with (test) or without (control) the addition of rhBMP-2. After an average healing
period of 6 months, a reentry operation was performed for abutment connection and prosthetic
reconstruction. At the 3-year follow-up, all 34 implants in all 11 patients were clinically stable
and radiologically osseointegrated. At the 5-year follow-up, 32 implants were stable and
functioning, while 2 were not re-examined because the patient had moved away. The survival
rate of the implants examined at 3 and 5 years was therefore 100% for both the test and the
control sites. The periapical radiographs of the test and control sites also showed no peri-
implant radiolucency at the 3- and 5-year follow-up examination, demonstrating healthy peri-
implant tissues with minimal marginal bone loss, and only minor prosthetic complications
were recorded. In short, both the test and the control sites revealed excellent clinical and
radiological outcomes after 3 and 5 years, with no statistically significant differences in any of
the parameters examined (though the authors emphasized the need for a larger group of
patients in future studies).

In a micro-CT study in dogs, Al-Hazmi and co-workers [20] assessed the efficacy of using
PDGF-BB and xenografts, with or without collagen membranes, for GBR around immediate
implants with buccal dehiscence defects. They concluded that using PDGF and xenografts
resulted in greater BBT (buccal bone thickness), BBV (buccal bone volume), VBH (vertical bone
height) and BIC (bone-to-implant contact) when used alone rather than in combination with
a collagen membrane. Their results are consistent with the report from Simion et al. [46], who
said that barrier membranes may interfere with the chemotactic effect of GFs on periosteal
pluripotential mesenchymal cells.

Further studies are nonetheless warranted to investigate the influence of barrier membranes
on the periosteal pluripotential mesenchymal cells [20].

Most of the clinical studies on rhPDGF have focused on periodontal and peri-implant regen‐
eration, and only a few human studies have investigated ridge preservation for implant
placement in extraction socket defects [47], or three-dimensional ridge augmentation [48].

In a pilot study, Nevins et al. [47] tested whether mineralized collagen bone substitute (MCBS)
combined with recombinant human platelet-derived growth factor-BB (0.3 mg/mL) could
generate enough viable bone in buccal wall extraction defects to enable implant placement.

In a more recent clinical study, Nevins and colleagues [49] focused on human buccal plate
extraction socket regeneration with recombinant human platelet-derived growth factor BB or
enamel matrix derivative. Buccal plate resorption is a critical issue when it comes to implant
placement. They compared four groups: A (mineral collagen bone substitute [MCBS] scaffold
alone), B (MCBS with recombinant human platelet-derived growth factor BB [rhPDGF-BB; 0.3
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mg/mL]), C (MCBS with enamel matrix derivative [EMD]), and D (a combination of EMD with
bone ceramic). Grafting was done at the time of extraction, advancing the buccal flap for
primary closure. Histology on trephine core biopsies of the implant site performed 5 months
later, at the time of implant placement, identified new bone healing around the biomaterial
scaffolds with no statistically significant differences between the four treatment groups. There
was a histomorphometric trend towards a greater quantity of new bone in the rhPDGF-BB-
treated group, with the most favorable ridge morphology for the purposes of an optimal
implant placement at reentry surgery.

Simion et al. [48] reported on two human cases of patients who underwent three-dimensional
ridge augmentation using a xenograft combined with rhPDGF-BB. In the first patient, a
deproteinized bovine block infused with rh-PDGF was attached to the alveolar crest with two
screws to obtain a horizontal ridge augmentation. The second patient underwent a vertical
ridge augmentation procedure involving deproteinized bovine bone particles embedded in a
collagen matrix soaked in rhPDGF-BB. Three titanium dental implants were placed in each
patient 5 months later with excellent clinical and histological outcomes, mean that rhPDGF-
BB in combination with a deproteinized bovine graft has promise in applications for regener‐
ating large three-dimensional alveolar defects in humans.

3.2. Dental implant surface coatings with GFs

Another interesting approach to enhancing alveolar ridge augmentation with a view to dental
implant placement involves using implants coated with GFs.

Wikesjo and colleagues [35] reviewed the literature on implants coated with a bone-inductive
factor capable of stimulating local bone formation and osseointegration. They concluded that
rhBMP-2 can be delivered successfully for the purposes of inducing local bone formation and
osseointegration by using screw-type endosseous oral implants with titanium oxide surfaces
with open pores as a carrier. They also found that purpose-designed implant surfaces coated
with rhBMP-2 resulted in the formation of Type II bone and significant osseointegration
without any need for biomaterials or devices for GBR.

In an in vivo animal model, Susin et al. [50] used the critical-size supra-alveolar peri-implant
defect model to assess the potential of a purpose-designed porous titanium oxide implant
surface coated with rhBMP-7 for inducing alveolar bone formation and enhancing osseointe‐
gration. The animals received implants coated with rhBMP-7 at 1.5 or 3.0 mg/ml randomized
to the contralateral jaw quadrants. The authors found clinically relevant bone formation and
osseointegration with no statistically significant differences in terms of bone formation
between the sites treated with rhBMP-7 at 1.5 or 3.0 mg/ml. Histology showed an increase in
the height and area of the bone, and the newly-formed bone exhibited the same characteristics
as the contiguous resident bone. Their observations support the significant clinical value of
rhBMP-7 in inducing bone regeneration, but the authors made the point that higher concen‐
trations were associated with some local side effects.
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Other authors [e.g. 51-52] have investigated in vivo the potential of an rhGDF-5 coating on an
oral implant with a porous titanium oxide surface for stimulating local bone formation,
including osseointegration and vertical augmentation of the alveolar ridge.

Polimeni and co-workers [51] examined a bilateral critical-size, 5 mm, supra-alveolar peri-
implant defect model in dogs. Six animals received implants coated with 30 or 60 µg rhGDF-5,
and another six animals received implants coated with 120 µg rhGDF-5 or left uncoated
(controls). The implants coated with rhGDF-5 displayed only limited peri-implant bone
remodeling in the resident bone, as measured using fluorescent bone markers, with the 120
µg dose coinciding with a more advanced remodeling than the 60 and 30 µg doses. These
results suggest a dose-dependent osteoinductive and/or osteoconductive effect of rhGDF-5-
coated oral implants. Leknes et al. [52] performed an in vivo study in dogs that consisted in
placing different kinds of implant in the alveolar ridge of the posterior mandible following the
surgical extraction of the premolars and reduction of the alveolar ridge. Six animals were
treated with implants coated with rhGDF-5 in doses of 30 or 60 µg/implant in contralateral jaw
quadrants, while six received implants coated with rhGDF-5 at 120 µg/implant or uncoated
implants (for control purposes), using a split-mouth design. The radiographs showed a dose-
dependent formation of mineralized tissue significantly greater than around the uncoated
implants, the greatest increase corresponding to the implants coated with 60 µg and 120 µg of
rhGDF-5, and amounting to approximately 2.2 mm in both cases at 8 weeks. The authors also
reported no adverse events, such as peri-implant bone remodeling, implant displacement, or
seroma formation.

The above-mentioned studies indicate that these GFs have great potential for stimulating
clinically relevant local bone formation, though it should be emphasized that further studies
are essential to address their most appropriate dosage, carriers, and applications, as well as
the long-term prognosis of GF-coated titanium implants.

3.3. Maxillary sinus lift procedure

Sinus floor elevation with immediate or delayed dental implant placement is a well-known
technique for dental rehabilitation in cases of severe atrophy of the posterior maxilla due to
the extension and pneumatization of the maxillary sinus. Many materials, such as autografts,
xenografts, and synthetic bone substitutes, have been shown to achieve acceptable clinical
results when used in maxillary sinus floor augmentations [53]. The use of GFs with various
carriers and dosages has recently been investigated in combination with sinus augmentation
procedures too.

Ho and colleagues [54] assessed the efficacy of various bioimplants used in maxillary sinus lift
procedures with the lateral window approach in a rabbit model. They compared particulated
autogenous bone, demineralized bone matrix (DBM), DBM combined with purified BMP-7
(BMP-7/DBM bioimplants), and bioimplants consisting of a poloxamer gel with BMP-7 in two
different doses. In their animal model, BMP-containing bioimplants had produced more new
bone and a greater new bone surface area at 2 weeks than autografts, but the advantage of
these bioimplants subsequently seemed to be lost, since the differences between the bioim‐
plants and the autografts had disappeared by 8 weeks. The authors concluded that BMP-
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containing bioimplants prompt a more rapid bone formation, possibly offering a greater
implant stability earlier in the healing period, and therefore enabling clinicians to place
osseointegrated implants in augmented maxillae sooner after grafting.

In a clinical study, Boyne and colleagues [38] compared different concentrations of rhBMP-2
(0.75 and 1.5 mg/mL), delivered on an absorbable collagen sponge (ACS) carrier, with bone
grafts to identify a safe and effective concentration of rhBMP-2 for use in maxillary sinus floor
augmentation procedures. Judging from density measurements on CT scans obtained before
and 4 months after treatment, and 6 months after functional loading of the dental implants,
and from core biopsies obtained at the time of placing the dental implant, they established that
the 1.5 mg/mL dose of rhBMP-2/ACS was more appropriate in a pivotal, randomized,
multicenter study to compare rhBMP-2/ACS with conventional bone graft for staged maxillary
sinus floor augmentation to support dental implants for long-term functional loading.

These data prompted a randomized, parallel evaluation of rhBMP-2/ACS and autogenous
bone grafts for two-stage maxillary sinus floor procedures [55]: 160 individuals with less than
6 mm of native bone height in the posterior maxilla were randomized for treatment with 1.5
mg/mL rhBMP-2/ACS or an autograft. Height and density measurements were obtained on
CT scans, and core biopsies obtained at the time of dental implant placement underwent
histological examination. A significant amount of new bone had formed by 6 months postop‐
eratively in both treatment groups, but there was a significant difference in the density of the
newly-induced bone at the 6-month follow-up, which was denser in the bone graft group than
in the group treated with rhBMP-2/ACS. Six months after dental restoration (functional
loading), however, the bone induced in the rhBMP-2/ACS group was significantly denser than
in the bone graft group. No major differences emerged between the two groups in terms of the
histological parameters. 17% of the patients in the autograft group experienced long-term
parasthesia, pain, or gait disturbance relating to the bone graft harvest. Adverse reactions
frequently recorded in the rhBMP-2/ACS group related to excessive facial swelling, and this
edema was attributed to the chemotactic cellular recruitment to the site of rhBMP-2 implan‐
tation and neovascularization of the grafted area; although it was severe, this edema did not
adversely affect the outcome. This study confirmed the efficacy and safety of rhBMP-2/ACS
by comparison with bone grafting for sinus floor augmentation, given the morbidity, cost, and
increased surgical time associated with the harvesting of autogenous bone.

Kao and coworkers [56] measured the bone formation after a lateral window sinus augmen‐
tation with recombinant human BMP-2/ absorbable collagen sponge (rhBMP-2/ACS) in
combination with Bio-Oss by comparison with the results achieved with a Bio-Oss graft alone.
Histology demonstrated that less new bone formed in patients treated with rhBMP-2/ACS +
Bio-Oss than in those treated with Bio-Oss alone, pointing to a negative effect on bone
formation of combining rhBMP-2 with Bio-Oss for maxillary sinus augmentation.

Gruber and coworkers [57] studied a GF closely related to the BMP family - the recombi‐
nant human growth and differentiation factor-5 (rhGDF-5) - in an in vivo study involving
the  use  of  different  materials  in  sinus  floor  augmentation  procedures  in  Goettingen
miniature pigs. They demonstrated that associating rhGDF-5 with β-tricalcium phosphate
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(β-TCP) enhanced bone formation by comparison with the results obtained using the β-
TCP carrier material alone.

In a further study using a split-mouth study design, the same authors [13] compared rhGDF-5-
coated β-TCP with particulated autogenous bone grafts combined with the scaffold material
(β-TCP). In each minipig, the sinus floors were augmented (simultaneously inserting the dental
implants) with β-TCP mixed with autogenous cortical bone chips on one side, and using β-
TCP coated with two different concentrations of rhGDF-5 on the contralateral side. Histology
and histomorphometric analyses demonstrated that rhGDF-5-coated β-TCP not only enhanced
new bone formation, but also - by comparison with a combination of β-TCP and autogenous
bone chips - induced a significant increase in VD (volume density) and BIC (bone-to-implant
contact) in the augmentation material.

Stavropoulos et al. [58] ran a prospective, multicenter, randomized clinical trial to examine the
histological outcome of maxillary sinus lifting with rhGDF-5/β-TCP or β-TCP and autogenous
bone (β-TCP/AB) composite. Thirty-one patients requiring unilateral maxillary sinus floor
augmentation with a residual alveolar bone height <5 mm were treated using a lateral window
approach. Cylindrical biopsies were harvested with a trephine bur during implant site
preparation 3 or 4 months after sinus floor augmentation (three groups (a) rhGDF-5/b-TCP
and a 3-month healing period, (b) rhGDF-5/b-TCP and a 4- month healing period, and (c) b-
TCP/AB and a 4-month healing period). Histological and histometric analyses showed that
sinus augmentation with rhGDF-5/β-TCP resulted in new bone in comparable amounts and
of similar quality to the bone obtained with a β-TCP/AB composite graft, suggesting that
rhGDF-5/β-TCP could eliminate the need for AB grafting in sinus lift procedures.

Though these favorable regenerative findings are encouraging, further studies are needed to
ascertain the influence of GFs on the amount and quality of new bone formation, and on the
implant survival rate after sinus lift procedures.

3.4. Periodontal regeneration

Periodontitis is a widely prevalent inflammatory disease of the tissues supporting the teeth,
characterized by a progressive loss of bone and attachment.

The ultimate goal of periodontal therapy is the regeneration of periodontal tissues, which
consists in stimulating new cementum formation, new alveolar bone apposition, and a
functionally-oriented periodontal ligament reconstruction. Various techniques have been
suggested for promoting periodontal tissue regeneration, using different bone graft materials
that have gained clinical acceptance in the treatment of periodontal defects.

To overcome the weaknesses of conventional regenerative procedures, the predictability of
which may be limited to selected case types, using GFs with biocompatible scaffolds to
promote tissue regeneration may represent a new and promising periodontological approach.

After preliminary in vitro experiments, extensive in vivo preclinical studies have been per‐
formed to assess the potential and safety of using various GFs, alone or in combination, to treat
periodontal defects.
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A recent animal study by Oortgiesen et al. [23] investigated the regenerative potential of an
injectable macroporous calcium phosphate cement (CaP) combined with BMP-2 or fibroblast
growth factor-2 (FGF-2) in intrabony defects. After 12 weeks, only the CaP revealed limited
effects on both periodontal ligament (PDL) and bone healing, while a good response in terms
of bone healing was also seen with CaP/BMP-2 and CaP/FGF-2. The best PDL healing scores
coincided with the combined CaP/FGF-2 treatment, suggesting that associating a topical
application of FGF-2 with an injectable CaP might be a promising treatment for the purposes
of periodontal regeneration.

Ishii and colleagues [22] investigated the effect of the combined use of basic FGF-2 and beta
tricalcium phosphate (β-TCP) on root coverage in a dog model, finding that FGF-2/β-TCP
enhanced the formation of new bone and cementum without any significant root resorption.

Kitamura et al. [59] undertook a multi-center, randomized, double-blind, placebo-control‐
led,  dose-finding  study  on  the  potential  of  local  applications  of  FGF-2  in  periodontal
regeneration. Modified Widman periodontal surgery was performed, during which 200 µL
of the investigational formulation containing 0% (vehicle alone), 0.2%, 0.3%, or 0.4% FGF-2
was  administered  to  2-  or  3-walled  vertical  bone  defects  in  253  adult  patients  with
periodontitis.  The  primary  outcome  was  the  percentage  of  bone  fill  visible  on  radio‐
graphs 36 weeks after administering the treatment. All the doses of FGF-2 were significant‐
ly superior to the vehicle alone (p < 0.01) in terms of the percentage of bone fill, and this
percentage  peaked  in  the  0.3%  FGF-2  group.  No  significant  differences  were  observed
between  the  four  groups  in  terms  of  the  regained  clinical  attachment  (CAL),  with  all
patients  scoring around 2  mm (this  was  judged to  be  due to  the  different  healing pat‐
terns between the FGF-2 groups and the ‘vehicle alone’ group). Conventional periodontal
surgery  (which  corresponds  to  the  ‘vehicle  alone’  group)  usually  gives  rise  to  long
junctional epithelial attachments, but manual probing cannot precisely distinguish fibrous
from epithelial attachments, so the difference in healing pattern cannot be reflected in the
CAL regained by the  different  treatment  groups.  This  limitation could have been over‐
come  by  histology,  but  this  was  not  done  for  ethical  reasons.  No  clinical  safety  issues
emerged  in  this  study.  These  results  support  the  efficacy  and  safety  of  topical  FGF-2
applications for periodontal regeneration in humans.

When implanted in furcation defects exposed surgically or by inflammatory processes in Papio
ursinus, recombinant human osteogenic protein-1 (hOP-1) or BMP-7 tends to induce cemen‐
togenesis with the insertion of de novo generated Sharpey’s fibers. Long-term studies on P.
ursinus after hOP-1 implantation show a highly-organized periodontal ligament space with
periodontal ligament fibers cursing from the newly-formed and mineralized cementum to the
regenerated alveolar bone, with a multitude of supporting capillaries throughout the perio‐
dontal ligament space [60].

In an experimental study by Teare et al. [27], binary applications of hOP-1 and hTGF-β(3) were
implanted in Class II furcation defects of the mandibular molars of Chacma baboons (P.
ursinus) to induce periodontal tissue regeneration. Sixty days after implantation, the animals
were killed and histological and histomorphometric studies led the authors to conclude that
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hOP-1 and hTGF-β(3) in Matrigel(®) matrix induced substantial periodontal tissue regenera‐
tion and cementogenesis.

In their review, Ripamonti et al. [61] emphasized the induction of bone formation by the
osteogenic proteins of the TGF-beta superfamily in the nonhuman primate, P. ursinus.

In a recent study in beagle dogs, Kim and co-workers [62] compared a candidate β-tricalcium
phosphate (β-TCP) carrier technology with the absorbable collagen sponge (ACS) benchmark
for supporting rhGDF-5-stimulated periodontal wound healing/regeneration in intrabony
periodontal defects. Both solutions stimulated the formation of functionally-oriented perio‐
dontal ligament, cellular mixed-fiber cementum, and woven/lamellar bone, but bone regen‐
eration (height and area) was significantly greater for the rhGDF-5/β-TCP construct. The
structural integrity of the β-TCP carrier preventing compression while providing a framework
for bone ingrowth may account for these results.

A phase IIa randomized controlled clinical and histological pilot study was conducted to assess
rhGDF-5/β-TCP for periodontal regeneration [63]. Twenty chronic periodontitis patients
participated in the study, each with at least one tooth scheduled for extraction with a probing
depth (PD) ≥6 mm and an associated intrabony defect ≥4 mm following basic periodontal
therapy. Participants (one defect/patient) were randomized to receive open flap debridement
(OFD) + rhGDF-5/β-TCP (n = 10) or OFD alone (control; n = 10). Both protocols resulted in
statistically significant clinical improvements. Descriptive statistics showed a greater reduc‐
tion in PD after OFD with rhGDF-5/β-TCP than after OFD alone (3.7 ± 1.2 versus 3.1 ± 1.8 mm;
p = 0.26), as well as less gingival recession (0.5 ± 0.8 versus 1.4 ± 1.0 mm; p < 0.05) and a greater
CAL gain (3.2 ± 1.7 versus 1.7 ± 2.2 mm; p = 0.14) at the deepest aspect of the defect. Block
biopsies of the defect sites were collected 6 months after surgery and prepared for histology.
Five biopsies (1 rhGDF-5/β-TCP; 4 OFD) were deemed unsuitable for histological or histo‐
metric evaluation. Bone regeneration height (2.19 ± 1.59 versus 0.81 ± 1.02 mm; p = 0.08) and
PDL (2.16 ± 1.43 versus 1.23 ± 1.07 mm; p = 0.26), cementum (2.16 ± 1.43 versus 1.23 ± 1.07 mm;
p = 0.26) and bone regeneration area (0.74 ± 0.69 versus 0.32 ± 0.47 mm2; p = 0.14) were greater
at sites treated with rhGDF-5/β-TCP compared to controls. These differences failed to reach
statistical significance, however, and the authors said that further studies on larger samples
will be needed to verify these findings.

The potential of PDGFs for promoting new bone formation and/or periodontal wound healing/
regeneration has been examined in a variety of pre-clinical animal models. In vivo experimental
studies have been performed using PDGF-BB alone or in combination with other GFs, such as
insulin-like growth factor (IGF), and shown that these growth factors promoted new bone,
cementum and periodontal ligament formation in vivo.

The first human clinical trial testing the effect of rhPDGF/rhIGF-I in periodontal defects was
reported by Howell and colleagues [64] with promising results.

Early human clinical studies used rhPDGF-BB combined with bone allografts. An alternative
is to use a synthetic system, such as β-tricalcium phosphate (β-TCP). Since rhPDGF applica‐
tions have proved clinically effective in the treatment of intrabony defects, this growth factor
has also been considered for the treatment of soft tissue recession defects [18].
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Jayakumar and coworkers [65] ran a double-blind, prospective, parallel, active-controlled,
randomized, multi-center clinical trial on the efficacy and safety of rhPDGF-BB with β-TCP in
human intraosseous periodontal defects. Fifty-four patients with periodontal osseous defects
were randomly grouped for treatment with rhPDGF-BB/β-TCP or β-TCP alone. A total number
of 50 defects in 25 patients in the rhPDGF-BB/β-TCP group and 25 in the β-TCP group were
ultimately available for statistical analysis. The radiographic parameters considered were
linear bone growth (LBG) 6 months after surgery and percent bone fill (% BF), both of which
were found significantly higher in the rhPDGF-BB/β-TCP group than in the β-TCP group.
There also emerged a significantly higher area under the curve for clinical attachment level
gain from 0 to 6 months, and a greater reduction in PD at the third and sixth month than after
β-TCP treatment alone. The implantation of rhPDGF-BB/β-TCP for the treatment of intraoss‐
eous periodontal defects was safe and well tolerated, and resulted in clinically and statistically
significant improvements in bone formation parameters and soft tissue outcomes.

Preliminary investigations thus indicate that GFs have great potential for improving perio‐
dontal regeneration, but randomized clinical trials must be conducted to gain a better under‐
standing of the role of GFs in periodontal treatments, focusing particularly on establishing the
safety and efficacy of their application.

4. Growth factor delivery systems

The great potential of GFs in bone regeneration has been discussed by numerous authors
[6,31,34-35]. BMP-2 and BMP-7 have a marked effect on bone and cartilage growth and the
maintenance of homeostasis during bone remodeling [66]. One of their limitations, on the other
hand, seems to be the unpredictable nature of the resulting tissue regeneration in vivo. It has
been suggested that the clinical efficacy of recombinant human forms of BMPs (rh-BMPs)
depends on the carrier system used to ensure an effective delivery of adequate protein
concentrations to the site being treated [67]. BMPs are soluble proteins and, delivered in a
buffer solution, they undergo rapid degradation, leading to an insufficient bioavailability.
Other factors, such as protein competition, enzymatic activity, temperature, pH and salt
concentration, may also influence the total amount of active protein available immediately
after its administration [68].

In 2007 Giannoudis et al. [69] came up with the “Diamond Concept” to describe the conditions
needed for osteogeneration, i.e. mechanical stability at the site of the defect, and osteogenic
cells combined with osteoinductive growth factors and a suitable carrier or delivery system.

The main purpose of the delivery system is to ensure adequate protein concentrations at the
defect site for as long as it takes to enable the regenerative cells to migrate, proliferate and
differentiate [33].

A localized, controlled release is also necessary to prevent any unwanted and uncontrol‐
led ectopic bone formation in non-bony body tissues [70]. Supra-physiological concentra‐
tions resulting from imperfect GF release kinetics have been correlated with severe clinical
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complications,  including  generalized  hematomas  in  soft  tissues  and  peri-implant  bone
resorption.  Other potential  concerns theoretically include carcinogenicity and teratogenic
effects [70].

Few authors have investigated the influence of GF release kinetics on bone regeneration.
In physiological bone repair, some growth factors (such as BMP-2) are expressed mainly
during the  early  inflammatory phase.  Others  are  up-regulated during the  chondrogenic
and  osteogenic  phases,  and  have  a  biphasic  expression  pattern  or  are  constitutively
expressed [33]

In vivo studies demonstrated that higher BMP-2 retention times were more osteoconduc‐
tive [71], and that prolonged BMP-2 delivery enhanced the protein’s osteogenic efficacy by
comparison with a shorter-term delivery of an equivalent dose in a rat model [72]. Release
should preferably be sustained over time, either in large single doses or in multiple smaller-
dose applications. In evaluating the timing of the protein release, it is important to consider
the dynamic nature of the healing zone, which depends on the type, location and appear‐
ance of the defect, the patients’ age and gender, their hormone and nutritional state, and
any diseases, as well as other parameters influencing release rate, including the protein’s
size and conformational changes,  solubility,  polymer/scaffold composition/geometry, and
molecular weight [33].

Dose and concentration parameters are available for orthopedic clinical applications, where
different anatomical sites require different therapeutic doses depending on the degree of
vascularization, defect size and the number of resident responding cells. Supraphysiological
dosages range from 0.01 mg/ml in small animal models (e.g. rats) to 0.4 mg/ml in rabbits, to
more than 1.5 mg/ml in non-human primates [33].

Growth factor release from a delivery system may be diffusion-controlled, chemical or
enzymatic reaction-controlled, solvent-controlled, or controlled by a combination of these
mechanisms. Diffusion-controlled release is governed by the protein’s solubility and diffusion
coefficient in the aqueous medium, protein partitioning between the aqueous medium and the
material of the delivery system, protein loading and the diffusional distance. Chemical or
enzymatic reaction-controlled systems include erodible systems, in which the protein is
physically immobilized in the carrier matrix and released as the carrier undergoes degradation
and dissolves. In solvent-controlled systems, the protein is embedded in a carrier matrix and
a diffusional release occurs as a consequence of the rate-controlled penetration of the solvent
(water) in the system [33].

Several GF delivery systems and carriers have been suggested for use in bone regeneration
applications in an effort to find the optimal strategy for optimizing their clinical effectiveness
and minimizing complications.

Delivery systems and carriers used for bone GFs should meet general requirements (Table 1)
such as biocompatibility, predictable biodegradability, and the ability to provoke appropriate
inflammatory responses. They must also have the following features: easy and cost-effective
to manufacture; stability; easy handling and storage [33].
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Biocompatibility

Predictable biodegradability

Low immunogenicity and antigenicity

Enhancement of cellular vascularization and attachment

Affinity with BMPs and bone

Maintenance and enhancement of BMP bioactivity

Malleability and ease of manufacture

Safety, stability, sterility, availability and cost-effectiveness

Regulatory agency approval for the clinical application of interest

Controlled protein release at an effective dose for the appropriate period of time

Table 1. General requirements for BMP delivery systems

Carrier materials have been generally divided into four classes (Table 2): natural-origin
polymers (collagen, hyaluronic acid, gelatin hydrogel complex, alginates and chitosan);
inorganic materials (synthetic bone grafts, hydroxyapatite, calcium phosphates and bioactive
glasses); synthetic biodegradable polymers (polylactic acid PLA, polyglycolide PLG, and their
polymers PLGA, cholesterol-bearing pullulan nanogel CHPA), and composites (combinations
of materials from the above different classes) [33].

To date, only BMP-2 and BMP-7 have been approved by the US Food and Drug Administration
for human use in specific orthopedic applications, delivered using absorbable collagen
sponges [33].

4.1. Collagen

Collagen is the protein most abundant in the connective tissue of mammals and the main non-
mineral component of bone. It has been prepared in powders, membranes, films and implant‐
able absorbable sponges, as well as in aqueous forms. Although it is versatile and easy to
manipulate, the manufacture of collagen carriers is highly sensitive to several factors (includ‐
ing mass, soaking time, protein concentration, sterilization, buffer composition, pH and ionic
strength) that directly affect rhBMPs binding [73]. Absorbable collagen sponges (ACS) have
been evaluated in numerous in vivo models and clinical trials [6, 38,74-76]. In patients requiring
staged maxillary sinus floor augmentation, rhBMP-2/ACS safely induced adequate bone
formation for the purpose of placing and functionally loading endosseous dental implants [38].
The use of rhBMP-2/ACS without any concomitant bone grafting materials in critical-size
mandibular defects prompted an excellent regeneration in a case review of 14 patients [75].
On the other hand, a recent study by Kao et al. demonstrated a more limited bone formation
after a lateral-window sinus augmentation procedure involving rhBMP-2/ACS combined with
Bio-Oss than when Bio-Oss was used alone [56].

Although they do away with the need to harvest autologous bone (with the associated pain),
the use of animal-derived collagens is limited by their xenogenic nature: anti-type I collagen
antibodies reportedly developed in almost 20% of patients treated with rhBMP-2/ACS [6]. In
addition, collagen sponges are usually sterilized with ethylene oxide prior to soaking the
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sponge in the BMP solution, and this can affect the GF release kinetics or the protein’s
bioactivity [73].

4.2. Alginate and chitosan

Alginate is a non-immunogenic polysaccharide used in a wide range of tissue engineering
applications for its gel-forming properties. Alginate hydrogels allowing for a controlled,
prolonged release of BMPs have only been studied in the preclinical phase, with promising
results in vitro [72,77]

Chitosan is a cationic glucopolymer well known for its biological, chelating and adsorbing
properties, and has been used as a BMP-2 carrier in a rat critical-size mandibular defect model,
with positive results on histological and histomorphometric analysis [78].

4.3. Hyaluronic acid

Hyaluronic acid is a naturally-occurring biopolymer that plays a significant part in wound
healing. It has been associated with an improved bone formation in mandibular defects by
comparison with collagen sponges, when both were used to carry rhBMP-2 [79].

Class Types Advantages Disadvantages

Natural polymers Collagen (gels, nano fibers,

scaffolds and films)

Fibrin glue

Alginate and chitosan

Biocompatible,

biodegradable, soluble in

physiological fluids,

natural affinity with BMPs

Immunogenicity

(xenogenic), pathogen

transmission, sensitivity to

sterilization process

Inorganic materials Synthetic bone grafts

CPC (calcium phosphate

cement)

Bioactive glasses,

hydroxyapatite, hyaluronic

acid, tricalcium

phosphates, metal,

ceramics and calcium

sulfate

Osteoconductive, affinity

with BMPs

Brittle, difficult mold, some

formulations are

exothermic

Synthetic polymers PLLA and PGLA and their

copolymers

CHPA

Easy to process and

sterilize, flexible to tailor

and reproducible,

excellent chemical and

mechanical properties

Inflammatory response,

localized pH drop and

limited biological function

Composites Collagen-HA and titanium

PLLA

Depending on the

combination of the

different materials’

characteristics

Complex to manufacture

Table 2. Major classes of carrier materials
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4.4. Hydroxyapatite

Hydroxyapatite (HAP) is well known for its osteoconductivity and has been widely used as a
bone substitute material in clinical practice since the 1970s because of its ability to bond directly
with bone [80]. Synthetic HAP comes in ceramic or non-ceramic, cementable forms, and has
been evaluated as a scaffold and a controlled-release carrier, demonstrating lack of resorption
and limited bone induction [6]. It has been combined with tri-calcium phosphates, collagen
and other materials to form rigid, resorbable, porous carriers, in which case delivery and bone
formation were generally found better than when HAP was used alone [81,82].

4.5. Synthetic biodegradable polymers

Unlike natural polymers and collagen, synthetic polymers pose no problem of immunogenicity
or risk of disease transmission.

The most commonly-used polymers are polylactic acid (PLLA) and polyglycolic acid (PLGA).
Bioresorbable PLLA/PLGA copolymers have been found superior to collagen when used to
deliver rh BMP-2 to mandibular defects in the rat [83].

4.6. Bone grafts and derived composite materials

Bone grafts act as scaffolds for the ingrowth of vessels and bone-forming cells. During this
osteoconductive bone regeneration process, the scaffold allows for bone to grow on its surface
and inside the pores in the material. Given the biological limitations of other osteoconductive
materials and the donor site morbidity after bone harvesting, the combination of osteocon‐
ductive scaffolds with osteoinductive proteins, such as BMPs, has been a major focus of
research. [13,84]

Bone substitutes for use in dental and maxillofacial surgery are classified in three groups
according to their origin. Allogenic bone grafts are derived from human donors, xenogenic
bone grafts from other species (mostly bovine, but also equine, porcine and coralline), and the
last group comprises the synthetically-produced materials. Synthetic bone grafts aim to imitate
the natural bone’s structure. The most widely used are the calcium phosphates, including
hydroxyapatite, tri-calcium phosphates (TCP) and composites of the two. By means of a
thermal treatment (sintering) and subsequent cooling they can be transferred into ceramics
with a very solid but porous structure and a rough surface closely resembling human bone.

Recent studies have reported successful bone regeneration after grafting on periodontal
defects, using sinus floor elevation techniques, and in post-extraction socket defects using TCP
carriers [58,65, 85].

Clinical studies reporting results of GFs delivery systems in oral surgery are revised in Table 3.

Some authors have also investigated the application of GFs to dental implant surfaces to
stimulate local bone formation and osteointegration. In preclinical studies, functionalized
titanium implant surfaces coated with rhBMP-2 have been shown to be able to stimulate bone
formation around implants [35, 86]
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References Study

design

Total

number of

patients

Protein Carrier Application Main findings

Jung et al. 2003

[40]

RCT 11 rhBMP-2 Xenogenic

bone (Bio-Oss)

Maxillary implant

placement

rhBMP-2 has the potential to predictably improve

and accelerate guided bone regeneration

therapy

Boyne et al. 2005

[38]

RCT 48 rhBMP-2 ACS Maxillary sinus floor

elevation

rhBMP-2/ACS safely induced adequate bone for

the placement and functional loading of dental

implants

Herford and

Boyne 2008

[75]

Case

review

14 rhBMP-2 ACS Mandibular defect Bone formation could be identified

radiographically after 5 to 6 months

Van den Bergh

et al. 2000

[76]

3 rhBMP-2 Type I collagen Maxillary sinus floor

elevation

Potential for initiating bone formation in the

human maxillary sinus within 6 months after a

sinus floor elevation, but its behavior is currently

not sufficiently predictable in this application

Kao et al., 2012

[56]

Clinical

trial

rhBMP-2 ACS and

xenogenic

bone

Sinus floor elevation Less bone formed in patients treated with the

rhBMP-2/ACS/xenogenic bone device

Alonso et al.

2010

[89]

RCT 16 rhBMP-2 Collagen Alveolar defect

closure in cleft lip and

palate patients

Satisfactory bone healing at 6 months and

reduced morbidity

Stavropoulos et

al. 2011

[63]

RCT 20 rhGDF-5 β-TCP Regeneration of

periodontal defects

Greater alveolar regeneration, differences not

statistically significant

Nevins et al.

2011

[49]

Cohort

study

rhPDGF Mineral

collagen

scaffold

Socket preservation No statistically significant differences were

observed

Stavropoulos et

al. 2011

[58]

RCT 31 rhGDF-5 TCP Sinus floor elevation Comparable amount and similar quality of bone

formation as in controls

Jayakumar et al.

2011

[65]

RCT 54 rhPDGF TCP Regeneration of

periodontal defects

Increased bone formation and soft tissue healing
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References Study

design

Total

number of

patients

Protein Carrier Application Main findings

McAllister et al.

2010

[85]

RCT 12 rhPDGF β-TCP Socket preservation Similar histological findings at 3 months

Triplett et al.

2009

[55]

RCT 160 rhBMP-2 ACS Sinus floor elevation Induced bone was significantly denser, no

marked differences in histological parameters.

Table 3. Clinical studies on GF delivery systems applicable in oral surgery

4.7. Gene delivery methods

The potential applications of gene therapy have recently expanded to include the local
treatment of bone defects. Gene transfer methods may circumvent many of the weaknesses of
protein delivery to soft tissue wounds. The application of growth factors or soluble forms of
cytokine receptors by means of gene transfer offers a greater sustainability than the use of a
single protein application. Gene therapy may make growth factors more readily bio-available.

Gene transfer is accomplished by using viral and non-viral vectors. Examples of viral vectors
are retroviruses, adenoviruses (Ads), and adeno-associated viruses (AAV), and non-viral
vectors include plasmids and DNA polymer complexes.

Some authors have studied gene delivery via adenoviral or liposomal vectors carrying
information for encoding recombinant human GFs combined with a collagen matrix in animal
models [87,88].

5. Conclusion

The role of growth factors for alveolar bone regeneration in dentistry is a recent field of
research, with a relative paucity of clinical studies. Findings seem to demonstrate a positive
effect of GFs on intraoral hard and soft tissues healing, and the bone regeneration associated
with implant therapy represents one of the main scenarios of interest. For the time being,
however, the application of GFs in this field is limited by the dubious results, complications
and side effects encountered so far. In particular, one of the main problems seems to be the
relationship between the GF delivery and the timing of the healing process. Among the
delivery systems tested to date, only collagen matrices have correlated with successful clinical
results, albeit with some limitations. Other potential delivery systems have been studied only
in a few animal models, and the currently available data are not enough for any final conclu‐
sions to be drawn. The development of dedicated and more “sophisticated” GF delivery
systems is probably the most interesting area of research for the future.
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