
Comm. Algebra, 43 (1), 197-211, 2015, http://dx.doi.org/10.1080/00927872.2014.897563.

Factorization of integer-valued polynomials with square-free

denominator

Giulio Peruginelli

Dedicated to Marco Fontana on the occasion of his 65th birthday

Abstract

We describe an algorithm to compute the different factorizations of a given image
primitive integer-valued polynomial f(X) = g(X)/d ∈ Q[X], where g ∈ Z[X] and
d ∈ N is square-free, assuming that the factorizations of g(X) in Z[X] and d in Z are
known. We translate this problem into a combinatorial one.
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1 Introduction

It is well known that the ring of integer-valued polynomials Int(Z) = {f ∈ Q[X] | f(Z) ⊂ Z}
is far from being a unique factorization domain. We know that the ring Int(Z) is atomic
(every non-zero non-unit of Int(Z) admits a factorization into irreducibles) and every non-
zero non-unit has only has only finitely many factorizations into irreducibles (see [7]). In
particular, this implies that Int(Z) is a bounded factorization domain (the length of the
different factorizations of a given element is bounded, see [2, Prop. VI.3.2]). Moreover,
in [3] it is shown that the ring has infinite elasticity, where the elasticity of a domain is
defined as the supremum of the set of ratios between length of factorizations of non-zero
non-units. We recall that the length of a factorization is the number of irreducible elements
which appear in the factorization itself. Two factorizations into irreducibles of an element
x in a commutative ring R, say x = r1 · . . . · rn and x = s1 · . . . · sm, are essentially the
same if n = m and after possibly re-indexing, ri is associated to si, for i = 1, . . . , n (that
is, there exists a unit ui ∈ R such that ri = uisi). Otherwise the two factorizations are
essentially different (see [7]).
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More recently, in [7] the following result is proved. Given a finite set S = {n1, . . . , nr}
of (non necessarily distinct) positive integers greater than 1, there exists an integer-
valued polynomial f(X) with r essentially distinct factorizations into irreducibles of length
n1, . . . , nr, respectively. Hence, there are elements in the ring of integer-valued polynomials
which admit distinct factorizations into irreducibles of arbitrary lengths.

We propose here a new method to describe the essentially different factorizations into
irreducibles of a given integer-valued polynomial, under the assumption that the denomi-
nator is square-free (we will treat the general case in a future work). We remark that in all
the examples produced in [7] to exhibit polynomials with prescribed sets of lengths, only
polynomials with square-free denominator appear (in [7, Thm. 10] there is a polynomial
with more than one prime in the denominator, in all the other results there is just one
prime factor in the denominator). So, a treatment of this case has a certain interest. We
begin by recalling some classical definitions.

Definition 1.1. The content of a polynomial g(X) =
∑

k=0,...,n akX
k ∈ Z[X] is defined

as the g.c.d. of its coefficients ak. We denote the content of g(X) by c(g). A polynomial
g ∈ Z[X] is called primitive if its content is equal to 1. Given f ∈ Int(Z), we denote
by d(f) the fixed divisor of f , that is the g.c.d. of the set of values {f(n) |n ∈ Z}. An
integer-valued polynomial f(X) is said to be image primitive if its fixed divisor is equal
to 1. Let p ∈ Z be a prime. If g ∈ Z[X] we say that g(X) is p-primitive if p does not divide
c(g), that is, at least one of the coefficient of g(X) is not divisible by p. If f ∈ Int(Z), we
say that f(X) is p-image primitive if p does not divide d(f).

Given a polynomial g ∈ Z[X], the content of g(X) is in general a proper divisor of
the fixed divisor of g(X): consider for example g(X) = X(X − 1) which is primitive but
its fixed divisor is equal to 2. Already in [4] it is shown the important role played by the
fixed divisor in the study of the factorizations of an integer-valued polynomial (see the
results that we recall below). For example, the polynomial g(X) = X2 + X + 2, which is
irreducible in Z[X] (and consequently in Q[X] by Gauss Lemma), has fixed divisor equal

to 2, so that in Int(Z) we have the non trivial factorization g(X) = 2 · g(X)
2 .

We recall the following facts:

- Int(Z), Z[X] and Z share the same group of units, {±1} ([3, Lemma 1.1]).

- An irreducible integer p stays irreducible in Int(Z) ([2, Lemma VI.3.1]).

- Int(Z) has no prime elements ([1, Prop. 3.2]).

- If g ∈ Z[X] is p-primitive for some prime p and p divides the fixed divisor of g(X),
then p ≤ deg(g) (this is due to Polya, see [8, Thm. 3.1] for a modern treatment).

- Let g ∈ Z[X] be primitive. Then g(X) is irreducible in Int(Z) if and only if it is
image primitive and irreducible in Z[X] (Chapman-McClain [4, Thm. 2.6]). Hence,
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an irreducible factor in Int(Z) of an irreducible polynomial g ∈ Z[X] is either a

constant c which is a divisor of d(g) or g(X)
d(g) .

- Given two integer-valued polynomials f and g, we have d(fg) ⊂ d(f)d(g) and in
general we may not have an equality (see the above example X(X − 1)). This is
the main difference between fixed divisor and content: in fact, the content of the
product of two polynomials g1(X) and g2(X) is equal to the product of the contents
of g1(X) and g2(X) by Gauss Lemma. This is equivalent to the fact that a primitive
polynomial g ∈ Z[X] is irreducible if and only if it is irreducible in Q[X]; this sentence
is no more true if we substitute the ring Q[X] with Int(Z) (see the above example
g(X) = X2 + X + 2). By the above cited theorem of Chapman-McClain, we have to
add the assumption that g(X) is also image primitive. We notice that a factor of an
image primitive polynomial is image primitive ([4]).

Given a polynomial f ∈ Q[X], we have f(X) = g(X)/d, for some uniquely determined
g ∈ Z[X] and d ∈ N such that (d, c(g)) = 1 (we essentially use the fact that Z is UFD).
For short, we call d the denominator of f(X) and g(X) the numerator of f(X).

We can further express f(X) in the following way:

f(X) =
g(X)

d
=

∏
i∈I gi(X)ei∏
k∈K pekk

(1)

where g(X) =
∏

i∈I gi(X)ei is the unique irreducible factorization in Z[X] (the gi(X)

may be possibly constant) and d =
∏

k∈K pfkk is the factorization of d in Z. Obviously,
f(X) is integer-valued if and only if d divides the fixed divisor of g(X), that is, for each
k = 1, . . . ,m, pekk divides d(g). Since Int(Z) ⊂ Q[X] and Q[X] is a UFD, any irreducible
factor h(X) of f(X) in Int(Z) is a rearrangement of the irreducible factors gi(X) of g(X)
and the prime factors pk of d, in such a way that we still have an integer-valued polynomial,
that is:

h(X) =
g1(X)

d1
=

∏
i∈J gi(X)e

′
i∏

k∈T p
f ′
k

k

where J ⊆ I, T ⊆ K, e′i ≤ ei, f
′
k ≤ fk for each i ∈ J and k ∈ T and h(X) is in Int(Z), that

is d1 divides d(g1). It is already not clear how a general irreducible polynomial in Int(Z)
looks like (for polynomials g ∈ Z[X] which are irreducible in Int(Z) see the above Theorem
of Chapman-McClain). To our knowledge, the only characterization of such irreducibles
is given by [4, Cor. 2.9], which largely relies on the problem of establishing the fixed
divisor of a polynomial with integer coefficients. We will give a new characterization of the
irreducible elements of Int(Z) in the case of square-free denominator.

As we observed above, being image primitive is a necessary condition for an integer-
valued polynomial to be irreducible. We will give a chacterization of image primitive
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polynomials. In particular, being image primitive implies that the numerator g(X) is
primitive (since we assume that the denominator d is coprime with the content of g(X)).
Notice that the converse of the previous statement does not hold, namely, if an integer-
valued f(X) is image primitive then it is not true in general that f(X) is irreducible in
Int(Z). Consider for example f(X) = X(X − 1)2/2 which has the irreducible factor X − 1
(by [3, Cor. 2.2 & Example 2.3], monic linear polynomials are irreducible in Int(Z)).

Let p ∈ Z be a fixed prime. We set

Ip + pInt(Z) ∩ Z[X] = {g ∈ Z[X] | p|d(g)},

which is the ideal of polynomials in Z[X] whose fixed divisor is divisible by p. From [9]
(but see also [5, Chapt. 2, 18, p. 22]) we know that

Ip = (p,Xp −X) =
(
p,

∏
i=0,...,p−1

(X − i)
)

=

p−1⋂
j=0

(p,X − j).

The last intersection is precisely the primary decomposition of the ideal Ip (see [9, Lemma
2.2]). For j = 0, . . . , p− 1, we set

Mp,j + (p,X − j) = {g ∈ Z[X] | p|g(j)}.

The above intersection is actually equal to a product of ideals, sinceMp,j , for j = 0, . . . , p−
1, are p distinct maximal ideals in Z[X]. More in general, if n is a positive integer, we set

Ipn + pnInt(Z) ∩ Z[X]

which is the ideal of polynomials whose fixed divisor is divisible by pn. Clearly, a polynomial
f ∈ Q[X] like in (1) is in Int(Z) if and only if for every prime factor pk of the denominator
d, the numerator g(X) is in Ipekk

.

In the next section we will introduce the notion of prime covering for the set of irre-
ducible factors of the numerator of an integer-valued polynomial f(X). For each prime
p which appears in the denominator and for each irreducible polynomial g ∈ Z[X] which
appears in the numerator, we look for the primary components of Ip which contain g(X).
A subset of the irreducible factors {gi(X)}i∈I of the numerator of f(X) whose elements
are contained in all the primary components of Ip is called a p-covering. A p-covering is
minimal if, whenever we remove an element, one of the primary components of Ip is not
covered by any of the polynomials left in the p-covering itself. In the case of prime denomi-

nator, say f(X) = g(X)
p =

∏
i∈I gi(X)

p , f(X) is irreducible in Int(Z) if and only if {gi(X)}i∈I
form a minimal p-covering. In the same way, if for a subset J ( I we have

∏
i∈J gi(X) in

Ip, then f(X) is reducible in Int(Z). If that choice is minimal in the above sense, then that
factor is irreducible.

In the subsequent section, we generalize the previous results to the case of an integer-
valued polynomial with square-free denominator. Finally, as an explicit example, we con-
sider the case of an integer-valued polynomial with denominator equal to the product of
two distinct primes.
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2 Integer-valued polynomials with prime denominator

2.1 Prime covering

Definition 2.1. Let g ∈ Z[X] and p ∈ Z be a prime. We set

Cp,g + {j ∈ {0, . . . , p− 1} | p|g(j)}.

Notice that the elements of Cp,g correspond precisely to the primary components Mp,j =
(p,X − j) of Ip which contain g(X). Observe that the set Cp,g can be empty: for instance,
take g(X) = X2 + 1 and p = 3. Obviously, #Cp,g ≤ p. Equivalently, we may consider the
polynomial g ∈ (Z/pZ)[X] obtained by reducing the coefficients of g modulo p. A residue
class j ∈ Z/pZ is a root of g(X) if and only if the primary component Mp,j of Ip contains
g(X).

We have the following result, which involves the family of sets {Ci}i∈I just defined. We
omit the proof, which follows directly from the definitions.

Lemma 2.1. Let g(X) =
∏

i∈I gi(X) be a product of polynomials in Z[X] and let p be a
prime. For each i ∈ I, let Ci = Cp,gi. Then

g ∈ Ip ⇔
⋃
i∈I

Ci = {0, . . . , p− 1}.

In particular, g(X) is p-image primitive if and only if there exists j ∈ {0, . . . , p− 1} such
that no Ci contains j.

Notice that the condition g(X) is p-image primitive is equivalent to g /∈ Ip. Obviously
we don’t need to factor a given integer coefficient polynomial g(X) in Z[X] in order to
establish whether it is p-image primitive or not (just consider it modulo p as we said
above). By Polya’s Theorem we cited in the introduction, it is sufficient to consider only
those primes p which are less or equal to the degree of g(X). Anyway, for the study of the
problem of the factorization in the ring Int(Z) it is useful to write the statement as it is.

We give now the following definition.

Definition 2.2. Let G = {gi(X)}i∈I be a set of polynomials in Z[X]. Let p be a prime.
For each i ∈ I we set Ci = Cp,gi . A p-covering for G (or just prime covering, if the
prime p is understood) is a subset J of I such that⋃

i∈J
Ci = {0, . . . , p− 1}.

We say that J is minimal if no proper subset J ′ of J has the same property. We will
always assume that a given prime covering J is proper, that is, for each i ∈ J we have
Ci 6= ∅.

Two p-covering J1, J2 ⊂ I for G are disjoint if J1 ∩ J2 = ∅.
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Notice that from a prime covering we can always extract a minimal prime covering, by
discarding the redundant sets Ci. We may rephrase Lemma 2.1 by saying that f(X) =
g(X)/p =

∏
i∈I gi(X)/p belongs to Int(Z) if and only if I contains a p-covering for {gi}i∈I .

A minimal p-covering can have 1 element, for example consider the irreducible polynomial
Xp − X + p. It has at most p elements. The problem to find such p-coverings has a
combinatorial flavour.

The next example shows that given a minimal p-covering J , it does not follow that
{Ci}i∈J forms a family of disjoint subsets of the residue classes modulo p. In fact, a
polynomial gi(X) may belong to different primary components of Ip. If this is the case the
degree of gi(X) has to be greater than one.

Example 2.1.

f(X) =
(X2 −X + 3)(X2 + 2)

3
(2)

if we set g1(X) = X2 −X + 3, g2(X) = X2 + 2 we immediately see that

• C3,g1 = {0, 1}, C3,g2 = {1, 2}

• C2,g1 = ∅, C2,g2 = {0}

the second line implies that 2 does not divide the fixed divisor of the numerator, that is
f(X) is 2-image primitive (by Polya’s Theorem, we check only those primes p which are
less or equal to the degree of f(X)). We have that C3,g1 and C3,g2 covers the residue classes
modulo 3 and they have non trivial intersection. In particular, I = {1, 2} is a minimal
3-covering.

2.2 Integer-valued polynomials which are p-image primitive

We characterize now p-image primitive integer-valued polynomials, when the denominator
is exactly divisible by a prime p ( we denote this by p ‖ d ).

Suppose that for a polynomial f(X) as in (1) the denominator d is equal to a prime p.
If f(X) is p-image primitive, then there exists i ∈ I such that ei = 1, otherwise the fixed

divisor of the numerator g(X) is divisible by pn, for some n > 1. For example, X(X−1)2
2

is 2-image primitive, while X2(X−1)2
2 is not (the numerator has fixed divisor equal to 4).

However, this condition on the exponents of the irreducible factors gi(X) is not sufficient
to ensure that f(X) is p-image primitive, as the next example shows:

f(X) =
(X2 + 4)(X2 + 3)

2
(3)

The polynomial f(X) is not 2-image primitive since the numerator has fixed divisor equal
to 4 (modulo 2, each factor at the numerator has a double root in 0 and 1, respectively).
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Moreover, under the above assumption, the next lemma shows that all the minimal
p-coverings must intersect in one spot. For g(X) =

∏
i∈I gi(X) ∈ Z[X] and J ⊆ I, we set

gJ(X) +
∏
i∈J

gi(X).

For each i ∈ I we set Ci = Cp,gi . By Lemma 2.1, for any subset J ⊆ I we have gJ ∈ Ip ⇔ J
is a p-covering.

Lemma 2.2. Let

f(X) =

∏
i∈I gi(X)

d

be in Int(Z). Let p be a prime factor of d such that p ‖ d. Then f(X) is p-image primitive
if and only if the following condition holds: there exists a primary component Mp,j of Ip,

for some j ∈ {0, . . . , p − 1}, such that gi ∈ Mp,j \M2
p,j

for some i ∈ I and for all i ∈ I,

i 6= i, we have gi /∈Mp,j.

If that condition holds, then for every minimal p-covering J ⊆ I, we have i ∈ J .

Proof : Suppose f(X) is p-image primitive. If for every j ∈ {0, . . . , p − 1} there exist
i1(j) 6= i2(j) in I such that gi1 , gi2 ∈ Mp,j , then we can form two disjoint p-coverings
Jt = {it(j)}j=0,...,p−1, for t = 1, 2. By Lemma 2.1 the polynomials gJ1 and gJ2 belong to
Ip, thus their fixed divisor is divisible by p; since gI is divisible by gJ1 · gJ2 , it has fixed
divisor divisible by p2, contradiction. So there exists j′ ∈ {0, . . . , p− 1} for which only one
irreducible factor gi′(X) is in Mp,j′ . If gi′ /∈ M2

p,j′ we are done. Suppose that is not the
case. If for all the other j’s we have either more than one factor gi(X) in Mp,j or a factor
gi(X) which belongs to M2

p,j we get again to the same contradiction as before. Hence,

there must be some j ∈ {0, . . . , p − 1} for which the corresponding primary component
Mp,j of Ip contains only one factor gi(X). Moreover, gi /∈M2

p,j
.

Conversely, suppose there exists j ∈ {0, . . . , p − 1} as in the statement. If, for each
i ∈ I, we set Ci = Cp,gi we have that j /∈ Ci for all i 6= i. Let J ⊆ I be a minimal
p-covering for {gi}i∈I (we know that such a prime covering exists by Lemma 2.1). Since by
definition

⋃
i∈J Ci = {0, . . . , p− 1}, and for all i ∈ I, i 6= i, we have Ci 63 j, it follows that

i is contained in J . Notice that this proves the last statement of the Lemma. So there are
no two disjoint p-coverings. Since gi /∈ M2

p,j
and gi is the only factor of the numerator of

f(X) in Mp,j we have that gJ /∈ Ip2 . Since this holds for every minimal p-covering J , this
concludes the proof of the lemma. �

Remark 2.1. Under the assunptions of Lemma 2.2, f(X) is p-image primitive if and only
if there exists a primary componentMp,j of Ip which contains one and only one irreducible

factor gi(X) of the numerator of f(X) and gi /∈ M2
p,j

. In particular, this means that only

Ci contains j.
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The last statement of Lemma 2.2 cannot be reversed, see for example (3). We have to
add the hypothesis that for each minimal p-covering J ⊆ I there exists at least one i ∈ J
such that gi ∈ Mp,j \M2

p,j for some j ∈ J . Equivalently, by the remarks after Definition
2.1, we can say that for at least one residue classes j modulo p, there is one and only one
irreducible factor gi(X) which has a simple root modulo p in j.

We can have more than one minimal p-covering, say J1, J2 ⊆ I, provided they are not
disjoint, as Lemma 2.2 says. For instance, consider the polynomial:

f(X) =
X(X − 1)(X − 2)

2 · 3
(4)

which is known to be irreducible ([3, Example 2.8]; in particular, f(X) is image primitive).
We set gi+1(X) = X − i, for i = 0, 1, 2. Then J1 = {1, 2} and J2 = {2, 3} are different
minimal 2-coverings, which are not disjoint.

Example 2.2.

f(X) =
X2 · (X − 1) · (X2 + 4)

2

in this example only X − 1 belongs to M2,1 and moreover it does not belong to M2
2,1.

Hence, the polynomial is 2-image primitive.

Example 2.3.

f(X) =
X · (X2 − 2X + 5) · (X + 6)

2

in this example, only g(X) = X2 − 2X + 5 belongs to M2,1. Moreover, g ∈ M2
2,1. No

irreducible polynomial in the numerator belongs toM2
2,0, but there are two distinct factors,

namely X and X + 6, which belong to M2,0. Hence, f(X) is not 2-image primitive, since
the fixed divisor of the numerator is 4. So it is not sufficient to have a unique i ∈ I such
that gi ∈ Mp,j . We must also take care of the exact power of the maximal ideal Mp,j to
which each polynomial gi(X) belongs to.

2.3 Irreducible integer-valued polynomials

Suppose that an integer-valued polynomial f(X) is of the form

f(X) =
g(X)

p
=

∏
i∈I gi(X)

p
(5)

where, for i ∈ I, gi ∈ Z[X] is irreducible. The fact that f ∈ Int(Z) is image primitive
amounts to saying that d(g) is equal to p. Since f ∈ Int(Z), by Lemma 2.1 there exists a
p-covering J ⊆ I for {gi(X)}i∈I . The next lemma establishes that f(X) is irreducible in
Int(Z) if and only if I is a minimal p-covering.
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Lemma 2.3. An image primitive polynomial f(X) = g(X)/p in Int(Z) as in (5) is ir-
reducible in Int(Z) if and only if there is no proper subset J of I such that

⋃
j∈J Cj =

{0, . . . , p− 1} (that is, I is a minimal p-covering).

Proof : Suppose there exists J ( I such that J is a p-covering. Then

f(X) =
gJ(X)

p
· gI\J(X)

is a non-trivial factorization of f(X) in Int(Z), because the first factor is integer-valued by
Lemma 2.1 and the second one is in Z[X] ⊂ Int(Z).

Conversely, if f(X) is reducible in Int(Z), then there exist non-constant g, h ∈ Int(Z)
such that f(X) = h1(X)h2(X) (because we are assuming f(X) to be image primitive).
Since p must appear in the denominator of one of the two factors, say h1(X), then for
some ∅ 6= J ( I we have h1(X) = gJ(X)/p and consequently h2 = gI\J ∈ Z[X]. Since
h1 ∈ Int(Z), by Lemma 2.1 J is a p-covering (notice that h1 ∈ Int(Z)⇔ gJ ∈ Ip). �

Notice that Lemma 2.3 does not hold without assuming f(X) to be image primitive, as
example (3) shows. By the arguments we have just given, we deduce that every factorization

of an image primitive integer-valued polynomial with prime denominator f(X) = g(X)
p is

of the form f(X) = gJ (X)
p · gI\J(X), for some J ⊆ I minimal p-covering. Notice that the

number of irreducible factors of the previous factorization in Int(Z) is 1 + #(I \ J). The
assumption that f(X) is image primitive implies that for each such a minimal p-covering
J , the set I \ J does not contain a p-covering.

3 Integer-valued polynomials with square-free denominator

The main problem in the general case of more than one prime factor in the denominator d
of an integer-valued polynomial f(X) is that each irreducible factor gi(X) of the numerator
of f(X) may belong to different primary componentsMpk,j of Ipk , where {pk}k∈K are the
different prime factors of d.

As already remarked in [6], this phenomenon has the effect that if p,q are two distinct
primes, then it does not follow that Ip · Iq = Ipq: for example, g(X) = X(X − 1)(X − 2)
belongs to I2·3 (see (4)), but it cannot be expressed as a product of a polynomial in I2 and
a polynomial in I3. This is due to the fact that the only minimal 3-covering J = {1, 2, 3}
is equal to the set I itself, so in particular it has non-zero intersection with any possible
2-covering (we saw that there are only two of them). Hence, in the next subsection, we are
lead to give this globalizing definition.
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3.1 Family of minimal P-coverings

Definition 3.1. Let G = {gi(X)}i∈I be a set of polynomials in Z[X] and let P = {pk}k∈K
be a set of distinct prime integers. A family of minimal P-coverings for G is a family
of sets {Jk}k∈K such that for each k ∈ K, Jk ⊆ I is a minimal pk-covering for G.

Let f ∈ Q[X] be as in (1). If f(X) is an integer-valued polynomial, then by Lemma
2.1 there exists a family of minimal P = {pk}k∈K-coverings for G = {gi(X)}i∈I .

We can now formulate a proposition, which gives a criterion for an integer-valued
polynomial to be irreducible, in the case that the denominator is square-free. This is a first
step to determine explicitly all the factorizations of a given element in the ring Int(Z).

Firstly we set some notations. Let

f(X) =
g(X)

d
=

∏
i∈I gi(X)∏
k∈K pk

(6)

be a polynomial in Q[X], with pk distinct prime integers, gi ∈ Z[X] irreducible polynomials.
Notice that the condition that f(X) is integer-valued is equivalent to gI(X) =

∏
i∈I gi(X) ∈⋂

k∈K Ipk . We set G = {gi(X)}i∈I and P = {pk}k∈K . As in the previous section, given
J ⊆ I we set gJ(X) +

∏
i∈J gi(X). Notice that if J1 ⊆ J2 ⊆ I we have that gJ1(X) divides

gJ2(X) in Z[X] (and so in Int(Z)). Similarly, for a subset T ⊆ K we set

dT +
∏
k∈T

pk

(dK = d). With these notations, a factor of f(X) is of the form:

h(X) =
gJ(X)

dT

for some J ⊆ I and T ⊆ K.
Finally, if T ⊆ K and J = {Jk}k∈K is a family of minimal P-coverings for G, we set

IJ ,T +
⋃
k∈T

Jk.

Notice that, if T1, T2 ⊆ K are two disjoint subsets, then IJ ,T1∪T2 = IJ ,T1 ∪ IJ ,T2 .

3.2 Irreducible integer-valued polynomials

Theorem 3.1. Let

f(X) =
g(X)

d
=

∏
i∈I gi(X)∏
k∈K pk
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be an image primitive integer-valued polynomial. Let P = {gi(X)}i∈I and G = {pk}k∈K .
We suppose that the polynomials gi(X) are irreducible in Z[X] and that the pk are distinct
prime integers. Then f(X) is irreducible in Int(Z) if and only if the following holds: for
every family J = {Jk}k∈K of minimal P-coverings for G we have

i) I = IJ ,K .

ii) there is no non-trivial partition K = K1∪̇K2 such that IJ ,K1 ∩ IJ ,K2 = ∅.

Notice that condition i) implies that for each i ∈ I there exists k ∈ K such that
Cpk,gi 6= ∅, so that each of the gi’s belongs to at least one of the primary components
Mpk,j of some of the ideals Ipk . Moreover, condition ii) says that the union of the elements
Jk of the family J cannot be partitioned (in a sense we will make precise soon). We will
treat the case P = {p1, p2} as an example in section 3.4.

Proof : Suppose f ∈ Int(Z) irreducible. Let J = {Jk}k∈K be a family of minimal P-
coverings for G (it exists because of Lemma 2.1). If I strictly contains IJ ,K then there
exists t ∈ I which is not contained in any Jk (equivalently, Jk ⊆ I \ {t} for every k ∈ K).
This means that gt(X) divides f(X) in Int(Z), because we have

f(X) = gt(X) ·
gI\{t}(X)

d

and the second factor is integer-valued, since for each k ∈ K we have gJk(X) ∈ Ipk (see
Lemma 2.1). Hence, for all such k’s, we have gI\{t}(X) ∈ Ipk , since Jk ⊆ I \ {t}. This is a
contradiction, hence condition i) holds.

If we have a non-trivial partition K = K1∪̇K2 such that I1 + IJ ,K1 and I2 + IJ ,K2 are
disjoint, then

f(X) =
gI1(X)

dK1

· gI2(X)

dK2

.

Notice that for every k1 ∈ K1 we have gJk1 (X) ∈ Ipk1 (again by Lemma 2.1) and gJk1 (X)
divides gI1(X) in Z[X], since Jk1 ⊂ I1. This implies that gI1(X)/dK1 is integer-valued.
Similarly, the second factor is integer-valued, too. That would be a non-trivial factorization
of f(X), which is a contradiction.

Conversely, suppose that for every family J = {Jk}k∈K of minimal P-coverings for G
conditions i) and ii) hold. Since f(X) is image primitive, there is no non-unit in Z which
divides f(X) in Int(Z). If f(X) is reducible in Int(Z) we have f(X) = h1(X)h2(X), where
h1, h2 ∈ Int(Z) are not constant. Since Int(Z) ⊂ Q[X] we have

hi(X) =
gIi(X)

dKi

for some Ii ⊆ I and Ki ⊆ K, for i = 1, 2. Necessarily, I1, I2 are disjoint and I1 ∪ I2 = I.
Similarly, K1 and K2 are disjoint and K1 ∪K2 = K. Suppose that one of the Ki, say K2,

11



is empty. Then, by Lemma 2.1 for each k ∈ K1 = K there exists a minimal pk-covering
Jk ⊆ I1. We set J = {Jk}k∈K . By definition, the family J is a minimal P-coverings for
G. In particular, IJ ,K ⊆ I1, because each of the Jk’s is a subset of I1. Because of i) we
have that I = IJ ,K , so that I = I1 and consequently I2 = ∅, since I1 and I2 are disjoint.
This means that h2(X) is a unit.

Suppose now that Ki 6= ∅, for i = 1, 2. This fact also leads us to a contradiction. In
fact, by Lemma 2.1, for each i = 1, 2 and for each ki ∈ Ki there exists a minimal pki-
covering Jki ⊆ Ii. We set J = {Jk}k∈K , which is a family of minimal P-coverings for G.
In particular, IJ ,Ki ⊆ Ii. By condition i) on J we have that

I = IJ ,K = IJ ,K1∪̇IJ ,K2 .

Since I1 ∪ I2 = I, we get IJ ,Ki = Ii for i = 1, 2, which is in contradiction with condition
ii). �

Example 3.1. It is not sufficient that conditions i) and ii) of Theorem 3.1 hold only for
one family {Jk}k∈K of minimal P-coverings. For instance, let us consider

f(X) =
(X − 1) · (X − 2) · (X − 3) · (X − 9)

2 · 3

then if gi(X) = X − i, for i = 1, 2, 3, g4(X) = X − 9 and I = {1, 2, 3, 4}, we have that

- J2 = {2, 1}, J ′2 = {2, 3} and J ′′2 = {2, 4} are the minimal 2-coverings.

- J3 = {1, 2, 3} and J ′3 = {1, 2, 4} are the minimal 3-coverings.

We have that J = {J ′′2 , J3} is a family of minimal P-coverings for G which satisfies both
conditions i) and ii) but the polynomial is not irreducible, since X − 9 divides f(X) in
Int(Z). In fact, the family J ′ = {J ′2, J3} of P-coverings for G does not satisfy condition i)
of the proposition.

Remark 3.1. From Theorem 3.1 we see that each family of minimal P-coverings for G
determines a (possibly trivial, like for J in Example 3.1) factorization for f(X) in Int(Z).
Conversely, every non-trivial factorization determines a family of minimal P-coverings for
G which can be partitioned in the following sense:

Definition 3.2. We say that a family J of minimal P-coverings for G is partitionable if
there exist a partition for K, say K =

⋃̇
j∈IKj such that the sets {IJ ,Kj =

⋃
k∈Kj

Jk | j ∈
I} are disjoint.

However, notice that different families of minimal P-coverings may give the same factor-
ization for f(X). For instance, in the Example 3.1, there are six possible such families (we
have to pair each minimal 2-covering with a minimal 3-covering). The family J ′′ = {J2, J3}
gives the same factorization as J ′. This depends on the fact that IJ ′,K and IJ ′′,K are equal.

12



Corollary 3.1. Let f(X) be as in the assumptions of Theorem 3.1. If there exists k ∈ K
such that I is a minimal pk-covering, then f(X) is irreducible in Int(Z).

Proof : We retain the notations of Theorem 3.1. Let J be a family of minimal P-coverings
for G. Notice that I is the only minimal pk-covering, so I ∈ J and consequently I = IJ ,K

and J is not a partitionable family. Hence, the conditions i) and ii) of Theorem 3.1 are
satisfied for every family of minimal P-coverings, so f(X) is irreducible in Int(Z). �

In particular, this corollary shows again that the polynomial in (4) is irreducible. The
condition of the previous corollary is not necessary, see (10) below for an example.

3.3 The algorithm of factorization in Int(Z)

The next corollary shows explicitly how to obtain a non-trivial factorization of an integer-
valued polynomial f(X) as in (6) from a partitionable family of minimal P-coverings for
G. We know from the proof of Theorem 3.1 that every such factorization is obtained in
this way.

We recall that we are assuming f(X) to be image primitive and the denominator of
f(X) to be square-free.

Schematically we are doing the following steps:

i) For each k ∈ K and for each i ∈ I we determine the sets Cpk,gi .

ii) Afterwards for each k ∈ K we find all the minimal pk-coverings Jk, by grouping
together the sets Cpk,gi .

iii) Then for each k ∈ K we choose one of the minimal pk-coverings we found at point
ii) and we define the family J = {Jk}k∈K of minimal P-coverings for G.

Corollary 3.2. Let

f(X) =

∏
i∈I gi(X)∏
k∈K pk

=
gI(X)

dK

be an image primitive, integer-valued polynomial, where pk are distinct prime integers,
gi ∈ Z[X] distinct and irreducible.

Every factorization of f(X) in Int(Z) is obtained in the following way:
let J = {Jk}k∈K be a family of minimal P-coverings for G which is partitionable, say

K =
⋃̇

j∈IKj, so that the sets Ij + IJ ,Kj =
⋃

k∈Kj
Jk, for j ∈ I, are disjoint and for each

j ∈ I the integer-valued polynomial gIj (X)/dKj satisfies the conditions of Theorem 3.1 (so
that each of them is irreducible). We set I ′ +

⋃
j∈I Ij. Then

f(X) = gI\I′(X) ·
∏
j∈I

gIj (X)

dKj
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is a factorization of f(X) in Int(Z) and every one of them is obtained in that way. Notice
that in the previous factorization we have #(I \ I ′) + #I irreducible factors.

3.4 Case d = p1 · p2
Let p1, p2 ∈ Z be distinct primes. We consider an image primitive integer-valued polynomial
of the following form:

f(X) =
g(X)

p1p2
=

∏
i∈I gi(X)

p1p2
(7)

This amounts to saying that the fixed divisor d(g) is equal to p1p2. By Lemma 2.1, for
k = 1, 2, there exists a pk-covering Jk for {gi(X)}i∈I . For each i ∈ I and for each k = 1, 2
we consider the sets Cpk,gi as defined in section 2. With the notation we introduced so far,
we can have two different kind of factorization of f(X). One possible factorization is:

f(X) =
gJ1(X)

p1
· gJ2(X)

p2
·

∏
i∈I\J1∪J2

gi(X) (8)

for some J1, J2 ⊆ I, where, for k = 1, 2, gJk(X)/pk ∈ Int(Z) is irreducible. By Lemma 2.3,
this corresponds to the fact that, for k = 1, 2, Jk is a minimal pk-covering. Obviously, J1
and J2 are disjoint.

Another possible factorization is

f(X) =
gJ(X)

p1p2
·
∏

i∈I\J

gi(X) (9)

for some J ⊆ I. In this factorization gJ(X)/(p1p2) ∈ Int(Z) is irreducible.
By Lemma 2.1, since gJ(X)/(p1p2) is integer-valued then for each k = 1, 2, J contains

a minimal pk-covering Jk. By Theorem 3.1, the fact that gJ(X)/(p1p2) is irreducible in
Int(Z) is equivalent to saying that J = J1 ∪ J2 (otherwise, we can factor out some gi(X)
from it) and J1 ∩ J2 6= ∅ (otherwise we fall in the previous case (8)). It is not true that for
some k = 1, 2 we must have I = Jk, like example (10) below shows.

In [4, Example 3.6] the authors construct an integer-valued polynomial which has two
distinct factorizations as in (8) and (9). Now we give other two explicit examples: in the
first one only the factorization as in (8) occurs, in the second one we give an irreducible
polynomial in Int(Z) of the form g(X)/(p1p2).

Example 3.2.

f(X) =
(X2 + 12)(X2 + 2)(X2 + 10)(X2 + 16)(X2 + 4)

3 · 5

=
(X2 + 12)(X2 + 2)

3
· (X2 + 10)(X2 + 16)(X2 + 4)

5

14



the second line is the only factorization in Int(Z) that f(X) can have, since if we put
g1(X) = X2 + 12, g2(X) = X2 + 2, g3(X) = X2 + 10, g4(X) = X2 + 16, g5(X) = X2 + 4 we
have:

C3,g1 = {0}, C3,g2 = {1, 2}, C3,g3 = ∅, C3,g4 = ∅, C3,g5 = ∅
C5,g1 = ∅, C5,g2 = ∅, C5,g3 = {0}, C5,g4 = {2, 3}, C5,g5 = {1, 4}

so in I = {1, . . . , 5} we only have one 3-covering J3 = {1, 2} and only one 5-covering
J5 = {3, 4, 5}, and they are disjoint. It is easy to check that 2 and 7 do not divide the fixed
divisor of the numerator of f(X).

Example 3.3.

f(X) =
X(X2 + 2)(X2 + 16)(X2 + 4)

3 · 5
(10)

so if g1(X) = X, g2(X) = X2 + 2, g3(X) = X2 + 16, g4(X) = X2 + 4 we have:

C3,g1 = {0}, C3,g2 = {1, 2}, C3,g3 = ∅, C3,g4 = ∅
C5,g1 = {0}, C5,g2 = ∅, C5,g3 = {2, 3}, C5,g4 = {1, 4}

Then by Theorem 3.1 f(X) is irreducible in Int(Z) since J3 = {1, 2} is the only minimal
3-covering, J5 = {1, 3, 4} is the only minimal 5-covering, I = J3 ∪ J5 and J3 ∩ J5 6= ∅.
Notice that J3 ( I, J5 ( I. It is easy to check that 2 and 7 do not divide the fixed divisor
of the numerator g(X) of f(X). In particular, f(X) is image primitive, that is d(g) = 3 ·5.

Example 3.4. As another application of Theorem 3.1 we consider the polynomial:

f(X) =
X · (X2 + 1) · (X2 + X + 1) · (X2 + 2X + 4)

2 · 3

and let g1(X) = X, g2(X) = X2 + 1, g3(X) = X2 + X + 1, g4(X) = X2 + 2X + 4. Then

- J2 = {1, 2} and J ′2 = {2, 4} are the minimal 2-coverings.

- J3 = {1, 3, 4} is the only minimal 3-covering.

So J = {J2, J3} is a family of minimal P-coverings of G such that J2 ( I, J3 ( I. The
same holds for J ′ = {J ′2, J3}. The polynomial is irreducible by Theorem 3.1: if we consider
J we have I = J2 ∪ J3 and J2 ∩ J3 6= ∅. The same holds for J ′.

Our method can be easily generalized to the case of denominator divisible by prime
powers pn such that n ≤ p, since in this case, by [9, Proposition 3.1], the primary compo-
nents of the ideal Ipn are just the n-th power of the maximal idealsMp,j , for j = 0, . . . , p−1.
In general, a further study of the primary components of the ideal Ipn is needed.
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