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A growing number of biological, soft, and active matter systems are observed to exhibit normal
diffusive dynamics with a linear growth of the mean squared displacement, yet with a non-Gaussian
distribution of increments. Based on the Chubinsky-Slater idea of a diffusing diffusivity we here
establish and analyze a minimal model framework of diffusion processes with fluctuating diffusivity.
In particular, we demonstrate the equivalence of the diffusing diffusivity process with a superstatis-
tical approach with a distribution of diffusivities, at times shorter than the diffusivity correlation
time. At longer times a crossover to a Gaussian distribution with an effective diffusivity emerges.
Specifically, we establish a subordination picture of Brownian but non-Gaussian diffusion processes,
that can be used for a wide class of diffusivity fluctuation statistics. Our results are shown to be in
excellent agreement with simulations and numerical evaluations.

I. INTRODUCTION

Thermally driven diffusive motion belongs to the fun-
damental physical processes. To a big extent inspired by
the groundbreaking experiments of Robert Brown in the
1820ies [1] the theoretical foundations of the theory of
diffusion were then laid by Einstein, Sutherland, Smolu-
chowski, and Langevin between 1905 and 1908 [2–5]. On
their basis novel experiments, such as the seminal works
by Perrin and Nordlund [6, 7], in turn delivered ever
better quantitative information on molecular diffusion as
well as the atomistic nature of matter. Typically, we now
identify two fundamental properties with Brownian diffu-
sive processes: (i) the linear growth in time of the mean
squared displacement (MSD)

〈r2(t)〉 =
∫ ∞

−∞
r2P (r, t)dr = 2dDt (1)

typically termed normal (Fickian) diffusion. Here d de-
notes the spatial dimension and D is called the diffu-
sion coefficient. (ii) The second property is the Gaussian
shape

P (r, t) =
1

(4πDt)d/2
exp

(

− r2

4Dt

)

(2)

of the probability density function to find the diffusing
particle at position r at some time t [8]. From a more
mathematical viewpoint the Gaussian emerges as limit
distribution of independent, identically distributed ran-
dom variables (the steps of the random walk) with finite
variance and in that sense assumes a universal character
[9].
Deviations from the linear time dependence (1) are

routinely observed. Thus, modern microscopic tech-
niques reveal anomalous diffusion with the power-law de-
pendence 〈r2(t)〉 ≃ tα of the MSD, where according to

the value of the anomalous diffusion exponent we distin-
guish subdiffusion for 0 < α < 1 and superdiffusion with
1 < α < 2 [10–14]. Examples for subdiffusion of pas-
sive molecular and submicron tracers abound in the cy-
toplasm of living biological cells [15–17] and in artificially
crowded fluids [18], as well as in quasi two-dimensional
systems such as lipid bilayer membranes [19–22]. Su-
perdiffusion is typically associated with active processes
and also observed in living cells [23]. Anomalous diffu-
sion processes arise due to the loss of independence of the
random variables, divergence of the variance of the step
length or the mean of the step time distribution, as well
as due to the tortuosity of the embedding space. The as-
sociated probability density function of anomalous diffu-
sion processes may have both Gaussian and non-Gaussian
shapes [10–12].
A new class of diffusive dynamics has recently been re-

ported in a number of soft matter, biological and other
complex systems: in these processes the MSD is normal
of the form (1), however, the probability density func-
tion P (r, t) is non-Gaussian, typically characterized by a
distinct exponential shape

P (r, t) ≃ exp

(

− |r|
λ(t)

)

, (3)

with the decay length λ(t) =
√
Dt [24]. This form of

the probability density function is also sometimes called
a Laplace distribution. The Brownian yet non-Gaussian
feature appears quite robustly in a large range of sys-
tems, including beads diffusing on lipid tubes [25] or in
networks [25, 26], tracer motion in colloidal, polymeric,
or active suspensions [27], in biological cells [28], as well
as the motion of individuals in heterogeneous popula-
tions such as nematodes [29]. For additional examples
see [30–33] and the references in [24, 34, 35].
How can this combination of normal, Brownian scal-

ing of the mean squared displacement be reconciled with
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the existence of a non-Gaussian probability density func-
tion? One argument not brought forth in the discus-
sion of anomalous diffusion above is the possibility that
the random variables making up the observed dynam-
ics are indeed not identically distributed. This fact can
be introduced in different ways. First, Granick and co-
workers [25] as well as Hapca et al. [29] employed dis-
tributions of the diffusivity of individual tracer parti-
cles to explain this remarkable behavior: indeed, aver-
aging the Gaussian probability density function (2) for
a single diffusivity D over the exponential distribution
pD(D) = 〈D〉−1 exp(−D/〈D〉) with the mean diffusivity
〈D〉, the exponential form (3) of the probability density
function emerges [29, 34]. In fact, this idea of creating an
ensemble behavior in terms of distributions of diffusivi-
ties of individual tracer particles is analogous to the con-
cept of superstatistical Brownian motion: based on two
statistical levels describing, respectively, the fast jiggly
dynamics of the Brownian particle and the slow environ-
mental fluctuations with spatially local patches of given
diffusivity this concept demonstrates how non-Gaussian
probability densities arise physically [37]. In what follows
we refer to averaging over a diffusivity distribution pD(D)
as superstatistical approach. An important additional
observation from experiments that cannot be explained
by the superstatistical approach is that “the distribution
function will converge to a Gaussian at times greater than
the correlation time of the fluctuations” [24]. This is im-
pressively demonstrated, for instance, in Fig. 1C in [25].
This crossover cannot be explained by the superstatistical
approach. At the same time the normal-diffusive behav-
ior is not affected by the crossover between the shapes of
the distribution.

Second, Chubinsky and Slater came up with the dif-
fusing diffusivity model, in which the diffusion coefficient
of the tracer particle evolves in time like the coordinate
of a Brownian particle in a gravitational field [34]. For
short times they indeed find an exponential form (3). At
long times, they demonstrate from simulations that the
probability density function crosses over to a Gaussian
shape. Jan and Sebastian formalize the diffusing diffu-
sivity model in an elegant path integral approach, which
they explictly solve in two spatial dimensions [35]. Their
results are consistent with those of Ref. [34].

Here we introduce a simple yet powerful minimal model
for diffusing diffusivities, based on the concept of sub-
ordination. Based on a double Langevin equation ap-
proach our model is fully analytical, providing an explicit
solution for the probability density function in Fourier
space. The inversion is easily feasible numerically, and we
demonstrate excellent agreement with simulations of the
underlying stochastic equations. Moreover, we provide
the analytical expressions for the asymptotic behavior at
short and long times, including the crossover to Gaussian
statistics, and derive explicit results for the kurtosis of
the probability density function. The bivariate Fokker-
Planck equation for this process and its connection to
the subordination concept are established. Finally, we

show that at times shorter than the diffusivity correla-
tion time our analytical results are fully consistent with
the superstatistical approach. Our approach has the dis-
tinct advantage that it is amenable to a large variety of
different fluctuating diffusion scenarios.
In what follows we first formulate the coupled Langevin

equations for the diffusing diffusivity model. Section 3
then introduces the subordination concept allowing us to
derive the exact form of the subordinator as well as the
Fourier image of the probability density function. The
Brownian form of the MSD is demonstrated and the short
and long time limits derived. Moreover, the connection
to the superstatistical approach is made. The kurtosis
quantifying the non-Gaussian shape of the probability
density function is derived. In section 4 the bivariate
Fokker-Planck equation for the joint probability density
function P (x,D, t) is analyzed, before drawing our con-
clusions in section 5. Several Appendices provide addi-
tional details.

II. SUPERSTATISTICAL APPROACH TO

BROWNIAN YET NON-GAUSSIAN DIFFUSION

As mentioned above, it was suggested by Granick and
coworkers [24] as well as by Hapca et al. [29] that the
Laplace distribution

P (x, t) =
1

√

4〈D〉t
exp

(

− |x|
(〈D〉t)1/2

)

(4)

with effective diffusivity 〈D〉 emerging from a standard
Gaussian distribution

G(x, t|D) =
1√
4πDt

exp

(

− x2

4Dt

)

(5)

with diffusivity D, through the averaging procedure

P (x, t) =

∫ ∞

0

pD(D)G(x, t|D)dD (6)

over D. This approach corresponds to the idea of super-
statistics [37]: accordingly the overall distribution func-
tion P (x, t) of a system of tracer particles, individually
moving in sufficiently large, disjunct patches with lo-
cal diffusivity D, becomes the weighted average, where
pD(D) is the stationary state probability density for the
particle diffusivities D. While in this Section we restrict
the discussion to the one-dimensional case, we will also
provide results for higher dimensions below.
Fourier transforming Eq. (6) we obtain

P (k, t) =

∫ ∞

0

pD(D)e−Dk2tdD = p̃D(s = k2t), (7)

where we used the fact that G(k, t) = exp(−Dk2t). On
the right hand side we identified the integral of pD(D)
over exp(−Dk2t) as the Laplace transform p̃D(s = k2t)
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to be taken at s = k2t. Concurrently, the Fourier trans-
form of expression (4) is

P (k, t) =
1

1 + 〈D〉k2t . (8)

Combining these results and recalling the Laplace trans-
form L {τ−1

⋆ exp(−t/τ⋆)} = (1 + sτ⋆), we uniquely find
that indeed

pD(D) =
1

〈D〉 exp
(

− D

〈D〉

)

. (9)

To obtain the Laplace distribution (4) as superstatistical
average of elementary Gaussians (5), the necessary dis-
tribution of the diffusivities is the exponential (9). This
is exactly the result of Granick and coworkers [24] and
Hapca et al. [29]. (We note that Hapca and coworkers
also report results for the case of a gamma distribution
pD(D).)
Now, let us take the Fourier inversion of Eq. (7) and

invoke the substitution κ = kt1/2,

P (x, t) =
1

2π

∫ ∞

−∞
e−ikxp̃D(k2t)dk

=
1

2πt1/2

∫ ∞

−∞
e−iκx/t1/2 p̃D(κ2)dκ. (10)

The right hand side defines a scaling function F of the
form

P (x, t) =
1

t1/2
F (ζ), (11)

where ζ = x/t1/2. Thus the form F as function of the
similarity variable ζ is an invariant. In particular, no
transition of P (x, t) from a Laplace distribution to a dif-
ferent shape is possible in this superstatistical framework.
To account for the experimental observation, however, we
are seeking a model to explain the crossover from an ini-
tial Laplace distribution to a Gaussian shape at long(er)
times.

Anomalous diffusion with exponential, stretched

Gaussian, and power law shapes of the probability

density function

We briefly digress to mention that for the case of
anomalous diffusion with a mean squared displacement
of the form 〈x2(t)〉 ≃ tα a similar phenomena was ob-
served. Namely, for the motion of particles in a viscoelas-
tic environment with a fixed generalized diffusivity Dα of
dimension cm2/secα the motion is characterized by the
Gaussian [12, 36]

Gα(x, t|Dα) =
1√

4πDαtα
exp

(

− x2

4Dαtα

)

(12)

with x/tα/2 scaling variable. Instead, in a recent experi-
mental study observing the motion of labeled messenger

RNA molecules in living E.coli and S.cerevisiae cells an
exponential distribution of the diffusivity was found [55],

pD(Dα) =
1

D⋆
α

exp

(

−Dα

D⋆
α

)

(13)

on the single trajectory level, pointing at a higher inho-
mogeneity of the motion than previously assumed. The
distribution (13) combined with the Gaussian (12) gives
rise to the Laplace distribution [55]

Pα(x, t) =
1

√

4D⋆
αt

α
exp

(

− |x|
√

D⋆
αt

α

)

. (14)

Similarly one can show that the stretched Gaussian
observed for the lipid motion in protein-crowded lipid
bilayer membranes [21] emerges from the Gaussian (12)
in terms of a modified diffusivity distribution of the form

pD(Dα) =
1

Γ(1 + 1/κ)D⋆
α

exp

(

−
[

Dα

D⋆
α

]κ)

. (15)

In that case the resulting distribution assumes the form

Pα(x, t) ≃ exp

(

−c

[ |x|
(4D⋆

αt
α)1/2

]2κ/(1+κ)
)

(16)

with an additional power law term in x, see Appendix
A. Depending on the value of κ one can then obtain
stretched Gaussian shapes for pα(x, t) or even broader
than exponential forms (superstretched Gaussians).
We finally note that for a power law distribution

pD(D) ≃ D−1−α (17)

with 0 < α < 2 the resulting superstatistical distribution
acquires long tails of the form

Pα(x, t) ≃
1

|x|2α+1
, (18)

as demonstrated in Appendix A. This brief discussion
shows the need for a more general model for the diffusing
diffusivity, the basis of which is established here.

III. LANGEVIN MODEL FOR DIFFUSING

DIFFUSIVITIES

To describe Brownian but non-Gaussian diffusion we
start with the combined set of stochastic equations

d

dt
r(t) =

√

2D(t)ξ(t), (19a)

D(t) = Y2(t), (19b)

d

dt
Y(t) = − 1

τ
Y + ση(t). (19c)
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The independent noise terms ξ(t) and η(t) are white and
Gaussian, and both are specified by their first two mo-
ments

〈ξ(t)〉 = 0, 〈ξi(t1)ξj(t2)〉 = δijδ(t1 − t2) (19d)

〈η(t)〉 = 0, 〈ηl(t1)ηm(t2)〉 = δlmδ(t1 − t2), (19e)

for i, j = x, y, z and l,m = 1, . . . , n. As explained below,
the dimension n of the process Y(t) may differ from the
value of d of the process r(t) in real space.
In the above set of coupled stochastic equations (19),

expression (19a) designates the well-known overdamped
Langevin equation driven by the white Gaussian noise
ξ(t) [38]. However, we consider the diffusion coefficient
D(t) to be a random function of time, and we express it
in terms of the square of the Ornstein-Uhlenbeck process
Y(t) (see below for the reasoning). The physical dimen-
sion of the latter is [Y] = cm/sec1/2. In Eq. (19c) the
correlation time of the Ornstein-Uhlenbeck process is τ ,
and σ of units [σ] = cm/sec characterizes the amplitude
of the fluctuations of Y. We complete the set of stochas-
tic equations with the initial conditions, chosen as

r(0) = 0, Y(0) = Y0. (19f)

Physically, the choice of the above set of dynamic equa-
tions corresponds to the following reasonings. In the dif-
fusing diffusivity picture we model the particle motion,
on the single trajectory level, by the random diffusivity
D(t). Taking D(t) as the square of the auxiliary variable
Y(t) guarantees the non-negativity of D(t). This way
we avoid the need to impose reflecting boundary condi-
tion on D(t) at D = 0, which is more difficult to han-
dle analytically [34]. The reason to choose the Ornstein-
Uhlenbeck process (19c) for Y(t) is two-fold. First, it
makes sure that the diffusivity dynamics is stationary,
with a given correlation time. Second, the ensuing dis-
tribution pD(D) has exponential tails, thus guaranteeing
the emergence of the Laplace-like distribution for P (r, t)
at short times, as we will show. At long times, the above
choice corresponds to a particle moving with an effective
diffusivity 〈D〉, and thus leads to the crossover to the
long time Gaussian behavior of P (r, t). The above set
of Langevin equations not only fulfill these requirements
but also allows for an analytical solution, as shown below.
For simplicity, we introduce dimensionless units via the

transformations t → t/τ and x → x/(στ) (and similar for
y and z). The process Y(t) is renormalized according to
Y → στ1/2Y. As detailed in Appendix B we then obtain
the set of stochastic equations

d

dt
r(t) =

√

2D(t)ξ(t), (20a)

D(t) = Y2(t), (20b)

d

dt
Y(t) = −Y + η(t). (20c)

for our minimal diffusing diffusivity model.

We note that the above minimal model for the diffusing
diffusivity allows different choices for the number of com-
ponents of Y(t). The number n is thus essentially a free
parameter of the model. It defines the number of ‘modes’
necessary to describe the random process D(t). This is
actually another advantage of the present approach, since
it provides additional flexibility.
In the Discussion section we will show that the above

compound process is analogous to the Heston model [41]
and thus a special case of the Cox-Ingersoll-Ross (CIR)
model [39], which are widely used for return dynamics
in financial mathematics. Our approach therefore has a
wider appeal beyond stochastic particle dynamics.

Properties of the Ornstein-Uhlenbeck process

The stochastic equation (20c) contains a linear restor-
ing term, corresponding to the motion of the process Y
in a centered harmonic potential. The formal solution of
this Ornstein-Uhlenbeck process reads

Y(t) = Y0e
−t +

∫ t

0

η(t′)e−(t−t′)dt′. (21)

The associated autocorrelation function is

〈Y(t1)Y(t2)〉 = Y2
0e

−(t1+t2) + e−(t1+t2)

×
∫ t1

0

dt′1

∫ t2

0

dt′2〈η(t′1)η(t′2)〉et
′

1
+t′

2

= Y2
0e

−(t1+t2) +
n

2

(

e−|t2−t1| − e−(t1+t2)
)

. (22)

Thus, for long times (t1+ t2 → ∞), we find the exponen-
tial decay

〈Y(t1)Y(t2)〉 ∼
n

2
e−|t2−t1| (23)

of the autocorrelation, and thus the stationary variance

〈Y2(t)〉 = 〈D〉st =
n

2
. (24)

We note that the Fokker-Planck equation for this
Ornstein-Uhlenbeck process reads

∂

∂t
f(Y, t) =

∂

∂Y

(

Yf(Y, t)
)

+
1

2

∂2

∂Y2
f(Y, t). (25)

The distribution f(Y, t) converges to the normalized
equilibrium Boltzmann form

fst(Y) =
1

πn/2
e−Y

2

. (26)

In what follows and in our simulations we assume that
the initial condition Y0 is taken randomly from the equi-
librium distribution (26). Then, the process Y(t) be-
comes stationary starting from t = 0, and Eq. (23) is
exact at all times.
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The stationary diffusivity distribution pD(D) encoded
in Eq. (26) in terms of the variable Y(t) can then be
obtained as follows.
(i) In dimension n = 1, the variance of Y in the sta-

tionary state is 〈Y 2〉st = 1/2 and the mapping to pD(D)
reads

pstD(D) =

∫ ∞

−∞
fst(Y )δ

(

D − Y 2
)

dY =
1√
πD

e−D. (27)

In dimensional form we have

pstD(D) =
1√

πD⋆D
e−D/D⋆ , (28)

with

D⋆ =
x2
0

t0
= σ2τ. (29)

From comparison with the direct superstatistical ap-
proach in Section II we see that the pure exponential
form (9) in our diffusing diffusivity model is being mod-
ified by the additional prefactor 1/D1/2. From numeri-
cal comparison, however, the exponential dependence is
dominating and thus the result (28) practically indistin-
guishable from (9) for sufficiently large D values.
(ii) For n = 2, the stationary state variance of Y is

〈Y2〉st = 1, the mapping from fst(Y) to pstD(D) reads

pstD(D) = 2π

∫ ∞

0

Y fst(Y)δ
(

D − Y 2
)

dY = e−D, (30)

where Y = |Y| and 2πY fst(Y) = 2Y exp(−Y 2). More-
over, we made use of the property

δ
(

Y 2 −D
)

=
1

2
√
D

[

δ
(

Y +
√
D
)

+ δ
(

Y −
√
D
) ]

.

(31)
of the δ-function. In dimensional units, we have

pstD(D) =
1

D⋆
e−D/D⋆ , (32)

in conjunction with relation (29).
(iii) Finally, for n = 3 we have 〈Y2〉st = 3/2 and

pstD(D) = 4π

∫ ∞

0

Y 2fst(Y)δ
(

D − Y 2
)

=
2
√
D√
π

e−D,

(33)
where 4πY 2fst(Y) = 4π−1/2Y 2 exp(−Y 2). In dimen-
sional form,

pstD(D) =
2
√
D

√

πD3
⋆

e−D/D⋆ . (34)

IV. SUBORDINATION CONCEPT FOR

DIFFUSING DIFFUSIVITIES

Subordination, introduced by Bochner [42], is an im-
portant concept in probability theory [43]. Simply put,

a subordinator associates a random time increment with
the number of steps of the subordinated stochastic pro-
cess. For instance, continuous time random walks with
power-law distributions of waiting times can be described
as a Brownian motion in terms of the number of steps of
the process, while the random waiting times are intro-
duced in terms of a Lévy stable subordinator, as orig-
inally formulated by Fogedby [44] and developed as a
stochastic representation of the fractional Fokker-Planck
equation [11] and generalized master equations for con-
tinuous time random walk models [45–48].
Here we apply and extend the subordination concept

to a new class of random diffusivity based stochastic pro-
cesses. Our results for our minimal model of diffusive dif-
fusivities demonstrates that the subordination approach
leads to a superstatistical solution at times shorter than
typical diffusivity correlation times.
To start with, we note that the stochastic probability

density function P (r, t) = P (r, t|D(t)) fulfills the diffu-
sion equation

∂

∂t
P (r, t) = D(t)∇2P (r, t). (35)

With this in mind we can rewrite the Langevin equation
(20a) in the subordinated form

d

dτ
r(τ) =

√
2ξ(τ) (36a)

d

dt
τ(t) = D(t). (36b)

After this change of variables the Green function of the
diffusion equation has the form

G(r, τ) =
1

√

(4πτ)d
exp

(

− r2

4τ

)

(37)

with r = |r|. The path variable τ , for any given instant
of time t, according to Eq. (36b) is a random quantity.
In order to calculate the probability density P (r, t) of the
variable r at time t we need to eliminate the path variable
τ . This is achieved by averaging the Green function (37)
over the distribution of τ in the form

P (r, t) =

∫ ∞

0

Tn(τ, t)G(r, τ)dτ. (38)

Here Tn(τ, t) is the probability density function of the
process

τ(t) =

∫ t

0

D(t′)dt′ =

∫ t

0

Y2(t′)dt′. (39)

Equation (38) is but the well known subordination for-
mula, implying the following: the probability for the
walker to arrive at position r at time t equals the prob-
ability of being at τ on the path at time t, multiplied by
the probability of being at position r for this path length
τ , summed over all path lengths [44].
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By help of relation (38) we write the Fourier transform

P̂ (k, t) =

∫ ∞

−∞
eik·rP (r, t)dr (40)

in the subordinated form

P̂ (k, t) =

∫ ∞

0

Tn(τ, t)Ĝ(k, τ)dτ

=

∫ ∞

0

Tn(τ, t)e
−k2τdτ = T̃n(k

2, t), (41)

with k = |k|. Thus, the Fourier transform of P (r, t) is

expressed in terms of the Laplace transform T̃n of the
density function Tn(τ, t) with respect to τ ,

T̃n(s, t) =

∫ ∞

0

e−sτTn(τ, t)dτ, (42)

with argument s = k2.
The subordination approach established here intro-

duces a superior flexibility into the diffusing diffusivity
model. By specific choice of the subordinator density
Tn(τ, t) we may study a broad class of normal and anoma-
lous diffusion processes caused by diffusivities, that are
randomly varying in time and/or space. In turn, the ad-
vantage of our minimal model for diffusing diffusivities
introduced here is, that the process τ(t) is the integrated
square of the Ornstein-Uhlenbeck process, for which in
the one-dimensional case n = 1 the Laplace transform of
the probability density function is known [49],

T̃1(s, t) = exp(t/2)

/

[

1

2

(√
1 + 2s+

1√
1 + 2s

)

× sinh
(

t
√
1 + 2s

)

+ cosh
(

t
√
1 + 2s

)

]1/2

. (43)

We thus directly obtain the exact analytical result for the
Fourier transform

P̂ (k, t) = exp(t/2)

/

[

1

2

(

√

1 + 2k2 +
1√

1 + 2k2

)

× sinh
(

t
√

1 + 2k2
)

+ cosh
(

t
√

1 + 2k2
)

]1/2

. (44)

of the probability density function P (x, t). The inverse
Fourier transform can be performed numerically. Figure
1 demonstrates excellent agreement between this result
and simulations of the stochastic starting equations (20a)
to (20c). Below we provide analytical estimates of P (x, t)
for short and long times and establish a connection of the
subordination approach with the superstatistical frame-
work.
Our approach can be easily generalized to the case

of the n-dimensional Ornstein-Uhlenbeck process consid-
ered by Jain and Sebastian [35]. Namely, let us consider

D(t) = Y2(t), (45)

 0.001

 0.01

 0.1

 1

-20 -15 -10 -5  0  5  10  15  20

P
(x

,t)

x

Sim t=100
Sim t=10  
Sim t=1    
IFT t=100
IFT t=10  
IFT t=1    

FIG. 1: Probability density function P (x, t) in d = n = 1 at
longer times in dimensionless form (σ = τ = D⋆ = 1). We
compare results from simulations (Sim) of the set of Langevin
equations (20a) to (20c), represented by the symbols, with the
direct inverse Fourier transform (IFT) of result (44). Excel-
lent agreement is observed.

where Y(t) = {Y1(t), . . . , Yn(t)} is a n-dimensional
Ornstein-Uhlenbeck process. Since the components of
Y(t) are independent and

τ(t) =

∫ t

0

Y2(t)dt′

=

∫ t

0

(

Y 2
1 (t

′) + Y 2
2 (t

′) + . . .+ Y 2
n (t

′)
)

dt′, (46)

the Laplace transform T̃n(s, t) and the characteristic

function P̂ (k, t) are simply n-fold products of identical,
one-dimensional functions (43) and (44), respectively:

T̃n(s, t) = exp(nt/2)

/

[

1

2

(√
1 + 2s+

1√
1 + 2s

)

× sinh
(

t
√
1 + 2s

)

+ cosh
(

t
√
1 + 2s

)

]n/2

. (47)

We thus directly obtain the exact analytical result for the
Fourier transform

P̂ (k, t) = exp(nt/2)

/

[

1

2

(

√

1 + 2k2 +
1√

1 + 2k2

)

× sinh
(

t
√

1 + 2k2
)

+ cosh
(

t
√

1 + 2k2
)

]n/2

.(48)

This result is consistent with that of Eq. (25) in Ref. [35],
up to numerical factors, which appear due to the dif-
ference in numerical coefficients entering the Ornstein-
Uhlenbeck process.
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A. Brownian mean squared displacement and

leptokurtic behavior

The mean squared displacement and the fourth mo-
ment encoded in our minimal model can be directly ob-
tained from the Fourier transform (44) through differen-
tiation,

〈r2(t)〉 = − ∇2
k
P̂ (k, t)

∣

∣

∣

k=0
,

〈r4(t)〉 = ∇4
k
P̂ (k, t)

∣

∣

∣

k=0
. (49)

For the isotropic case considered here the Laplace oper-
ator is defined as

∇2
k
=

1

kd−1

∂

∂k

(

kd−1 ∂

∂k

)

. (50)

Expanding relation (41) for small k, we obtain up to the
fourth order

P̂ (k, t) =

∫ ∞

0

e−k2τTn(τ, t)dτ

= 1− k2
∫ ∞

0

τTn(τ, t)dτ

+
k4

2

∫ ∞

0

τ2Tn(τ, t)dτ + . . . (51)

From this we directly obtain the mean squared displace-
ment

〈r2(t)〉 = 2d

∫ ∞

0

τTn(τ, t)dτ = 2d〈τ〉

= −2d
∂T̃n(s, t)

∂s

∣

∣

∣

∣

∣

s=0

(52)

and the fourth order moment

〈r4(t)〉 = 4d(2 + d)

∫ ∞

0

τ2Tn(τ, t)dτ = 4d(2 + d)〈τ2〉

= 4d(d+ 2)
∂2T̃n(s, t)

∂s2

∣

∣

∣

∣

∣

s=0

(53)

With the results of Appendix D we find

〈r2(t)〉 = dnt = 2d〈D〉stt, (54)

where 〈D〉st is given by Eq. (24), and

〈r4(t)〉 = 4d(2 + d)〈D〉st
[

−1− e−2t

2
+ t+ 〈D〉stt2

]

.

(55)
Eq. (54) is the famed result of the normal Brownian,

linear dispersion of the mean squared displacement with
time. In dimensional units the result (54) reads

〈r2(t)〉 = dnσ2τt = 2d〈D〉stD⋆t. (56)

 1
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FIG. 2: Mean squared displacement 〈x2(t)〉 obtained from
simulation of the set of Langevin equations (20a) to (20c)
at d = n = 1, corresponding to the red symbols (due to
the density of points, these rather appear as the thick red
line), showing excellent agreement with the Brownian law
(54) shown by the (thin) full black line. In the bottom panel
we show 〈x2(t)〉/t, demonstrating that the deviations from
the expected behavior are fairly. The grey lines (lower panel)
show an interval [0.975, 1.024] around unity, based on 106 tra-
jectories.

Fig. 2 demonstrates excellent agreement of the analytical
result (54) with direct simulations of the set of Langevin
equations (20a) to (20c) with respect to both slope and
amplitude.
The deviation of the shape of a distribution function

from a Gaussian can be conveniently quantified in terms
of the kurtosis

K =
〈r4(t)〉
〈r2(t)〉2 . (57)

We note that the kurtosis is closely related to the (first)
non-Gaussian parameter, introduced in the classical text
by Rahman [50]. Inserting results (54) and (55) we obtain
in the short time limit that

K ∼
(

1 +
2

d

)(

1 +
1

〈D〉st

)

=







9, d = 1
4, d = 2
25/9, d = 3

(58)

for the choice d = n. At long times,

K ∼
(

1 +
2

d

)

=







3, d = 1
2, d = 2
5/3, d = 3

. (59)

The first relation characterizes exponential distributions
according to Equations (66), (70), and (72) derived be-
low, whereas the second result coincides exactly with the
kurtosis of the multidimensional Gaussian distribution
(note that this kurtosis does not depend on n). Taking
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FIG. 3: The Kurtosis K for d = n = 1 defined in Equation
(57), based on relations (54) and (55) is shown by the full
line, simulations results are represented by the symbols. The
crossover occurs at the correlation time τ = 1. Over the
entire displayed time range the agreement between theory and
simulations is excellent.

along the next higher term in the long time expansion,
we observe that the leptokurtosis vanishes as ≃ 1/t in
the long time limit,

K ∼ 1 +
2

d
+

2 + d

d〈D〉stt
. (60)

In Fig. 3 we compare the analytical result (57) for the
kurtosis for d = 1 based on Equations (54) and (55) with
simulations, showing excellent agreement from the short
time behavior all the way to the saturation plateau at the
Gaussian value K = 3. We note that the crossover time
from strongly leptokurtic to Gaussian behavior occurs
at t ≈ 1, which in dimensional units corresponds to the
correlation time of the diffusing diffusivity process. Thus
in experiments the behavior of the kurtosis as function of
time provides a direct means to extract the correlation
time of D(t), which also corresponds to the crossover
time from the exponential to the Gaussian behavior of
the probability density P (x, t), as will be shown below.
We also note that when the process Y(t) is very highly
dimensional and thus 〈D〉st large, the exponential tails
of P (r, t) do not exist, see Appendix C.

We now derive explicit analytical results for the prob-
ability density function P (r, t) in the short and long time
limits, starting with the short time limit and its relation
to the superstatistical formulation of the diffusing dif-
fusivity. In our further exemplary calculations we take
n = d. However, in Appendix C we discuss the situations
when n = 1 and d = 2, as well as when n goes to infinity
while d stays finite.

B. Short time limit

First we concentrate on the shape of the density P (r, t)
in the short time limit t ≪ τ . In dimensionless units this
means that we consider the asymptotic behavior of the
characteristic function (48) under the condition t ≪ 1,
for which

sinh
(

t
√

1 + 2k2
)

∼ t
√

1 + 2k2, cosh
(

t
√

1 + 2k2
)

∼ 1,

(61)
Together with expression (48) we thus find

P̂ (k, t) ∼ (1 + t)n/2

(1 + [1 + k2]t)n/2
∼ t−n/2

(

k2 +
1

t

)−n/2

.

(62)

This expression is indeed normalized, P̂ (k = 0, t) = 1.
We can thus perform the inverse Fourier transform to
obtain P (r, t) in the short time limit.
(i) For one dimension d = n = 1 we find

P (x, t) ∼ 1

πt1/2

∫ ∞

0

cos(kx)

(k2 + 1/t)
1/2

dk =
1

πt1/2
K0

( x

t1/2

)

,

(63)
in terms of the Bessel function [51]

K0(aβ) =

∫ ∞

0

cos(ax)
√

x2 + β2
dx. (64)

Apart from the normalization we observe that from
Eq. (63) we also derive the Brownian behavior 〈x2(t)〉 =
t = 2〈D〉stt, in accordance with Eqs. (24) and (54).
Keeping in mind that here we are pursuing the large

value limit of the scaling variable z = xt−1/2 ≫ 1, we
expand the Bessel function in the form [52]

K0(z) ∼
√

π

2z
e−z. (65)

We thus find the asymptotic result

P (x, t) ∼ 1
√

2π|x|t1/2
exp

(

− |x|
t1/2

)

. (66)

This expression reproduces the exponential shape of the
probability density function P (x, t) of the diffusing dif-
fusivity model, with the power-law correction |x|−1/2.
Figure 4 demonstrates excellent agreement of our short

time result (63) and simulations. For the longest simu-
lated time the wings of the distribution start to show
some deviations, indicating that in this case the short
time limit is no longer fully justified.
(ii) For d = n = 2 we obtain

P (r, t) =

∫

eik·rP̂ (k, t)
dk

(2π)2

=
1

2π

∫ ∞

0

kJ0(kr)P̂ (k, t)dk, (67)
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FIG. 4: Probability density function P (x, t) for d = n = 1
at short times in dimensionless form (σ = τ = D⋆ = 1).
We compare results from simulations of the set of Langevin
equations (20a) to (20c), represented by the symbols, with
the explicit short time solution (63). Excellent agreement is
observed, only for the longest time t = 0.5 the wings start to
show some deviations.

and thus

P (r, t) =
1

2πt
K0

(

r√
t

)

. (68)

Here we used the relation

∫ π

0

cos(kr cosϕ)dϕ = πJ0(kr) (69)

in terms of the modified Bessel function J0. The distri-
bution is normalized and encodes the Brownian behavior
〈r2(t)〉 = 4t = 4〈D〉stt. Expanding the Bessel function
K0 as above we find that

P (r, t) ∼ 1

2
√
2πrt3/2

e−r/
√
t. (70)

(iii) Finally, in d = n = 3 the asymptotic probability
density becomes

P (r, t) =

∫

eik·rP̂ (k, t)
dk

(2π)3

=
1

8π3

∫ ∞

0

k2dk

∫ π

0

sin θdθ

∫ 2π

0

dϕeikr cos θ

×t−3/2

(

k2 +
1

t

)−3/2

=
1

4π2t3/2

∫ ∞

0

k2dk

∫ 1

−1

dξeikrξ
(

k2 +
1

t

)−3/2

=
1

2π2t3/2
K0

(

r√
t

)

, (71)

and we have 〈r2(t)〉 = 9t = 6〈D〉stt. Expansion of the
Bessel function produces the asymptotic exponential be-
havior

P (r, t) ∼ 1

(2π)3/2r1/2t5/4
e−r/

√
t. (72)

As we will show in the following Subsection, in all di-
mensions the short time limit reproduces the supersta-
tistical behavior. The subordination formulation, the ex-
plicit result (63) in terms of the Bessel function, and the
asymptotic exponential (Laplace) form (66) (and their
multidimensional analogs (68) and (70) to (72)) consti-
tute our first main result. We note that the asymptotic
forms (66), (70), and (72) of the density function P (x, t)
by itself leads to the Brownian scaling (54) of the corre-
sponding mean squared displacement. When n 6= d the
exponential shape of the short time behavior is conserved
while the subdominant prefactors change, as shown for
the case d = 2 and n = 1 in Appendix C.

C. Relation to the superstatistical approximation

Above we formulated the concept of diffusing diffusiv-
ities in terms of coupled stochastic equations for the par-
ticle position r(t) and the random diffusivity D(t). An
alternative approach suggested in Refs. [24, 34] is that
of the superstatistical distribution of the diffusivity, as
laid out in Section II. In this superstatistical sense the
overall distribution function is given as the weighted av-
erage of a single Gaussian over the stationary diffusivity
distribution,

Ps(r, t) =

∫ ∞

0

pstD(D)G(r, t|D)dD. (73)

(i) In dimension d = n = 1 our minimal model pro-
duces with Eq. (28)

Ps(x, t) =
1

2π
√
D⋆t

∫ ∞

0

1

D
exp

(

− D

D⋆
− x2

4Dt

)

dD

=
1

π
√
D⋆t

K0

( |x|√
D⋆t

)

. (74)

(ii) In d = n = 2, we have with Eq. (32)

Ps(r, t) =
1

4πD⋆t

∫ ∞

0

1

D
exp

(

− D

D⋆
− r2

4Dt

)

dD

=
1

2πD⋆t
K0

(

r√
D⋆t

)

. (75)

(iii) Finally, in d = n = 3, we find with Eq. (34)

Ps(r, t) =
2

π2(4D⋆t)3/2

∫ ∞

0

1

D
exp

(

− D

D⋆
− r2

4Dt

)

dD

=
1

2π2(D⋆t)3/2
K0

(

r√
D⋆t

)

. (76)
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For all d the mean squared displacement acquires the
linear Brownian scaling in time 〈r2〉 = 2d〈D〉stt, as it
should.
This is but exactly the result of our subordination

scheme in the short time limit, expressions (66), (68),
and (71), written in dimensional form. Thus, in our ap-
proach to the diffusing diffusivity the short time regime
of the subordination formalism leads directly to the su-
perstatistical result. The reason is as follows: At times
less than the diffusivity correlation time τ the diffusion
coefficient does not change considerably, and the subor-
dination scheme describes an ensemble of particles, each
diffusing with its own diffusion coefficient. This mimics
a spatially inhomogeneous situation, when the local dif-
fusion coefficient is random, but stays constant within
confined spatial domains. In this case the ensemble of
particles moving in different domains exhibits a supersta-
tistical behavior, as assumed in the original works [37].
However, in any system with finite patch sizes, we would
not expect the particles to stay in their local patch of
diffusivity D forever, thus violating the assumption of
the superstatistical approach. Our annealed approach in
some sense delivers a mean field approximation to the
spatially disordered situation, and adequately describes
the transition from short time superstatistical behavior
to the Gaussian probability law at long times, which will
be shown in the subsequent section. The full consistency
in the short time limit between the subordination ap-
proach and superstatistics is our second main result.

D. Long time limit

We now turn to the long time limit encoded in the
Fourier transform (44) of the probability density P (r, t),
that is, the times larger than the diffusivity correlation
time τ . In dimensionless units it corresponds to t ≫ 1,
and the hyperbolic functions assume the limiting behav-
iors

sinh
(

t
√

1 + 2k2
)

∼ cosh
(

t
√

1 + 2k2
)

∼ 1

2
exp

(

t
√

1 + 2k2
)

. (77)

Combined with result (48) we find

P̂ (k, t) ∼ 2n/2 exp
(

nt
2

[

1−
√
1 + 2k2

])

(

1 + 1
2

[√
1 + 2k2 + 1√

1+2k2

])n/2
. (78)

As in the short time limit above, this expression is nor-
malized, P̂ (k = 0, t) = 1.
Now let us focus on the tails of the probability

density P (r, t), corresponding to the limit k ≪ 1,

for which Eq. (78) gives P̂ (k, t) ∼ exp(−nk2t/2) =
exp

(

−〈D〉stk2t
)

, and thus

P (r, t) ∼ 1

(4π〈D〉stt)n/2
exp

(

− r2

4〈D〉stt

)

. (79)
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FIG. 5: Probability density function P (x, t) for d = n =
1 from simulations of the Langevin equations (20) for three
different times, in dimensionless form (σ = τ = D⋆ = 1).
Comparison with Gaussian distribution (79) demonstrates the
strongly non-Gaussian behavior at short times and the almost
fully Gaussian shape at longer times.

At long times the probability density function P (r, t)
assumes a Gaussian form, with the effective diffusiv-
ity 〈D〉st = n/2. This is a consequent result given
the Ornstein-Uhlenbeck variation of the diffusivity en-
coded in the starting equations (19b) and (19c): at suf-
ficiently long times the process samples the full diffusiv-
ity space and behaves like an effective Gaussian process
with renormalized diffusivity. The explicit derivation of
the crossover to the Gaussian behavior is our third main
result.

Fig. 5 shows the crossover from the initial exponential
to the long time Gaussian behavior of the probability
density function P (x, t) for d = n = 1 by comparison to
the Gaussian distribution (79) for short time t = 0.1, the
crossover time t = 1.0 and the longer time t = 10.0.

V. BIVARIATE FOKKER-PLANCK EQUATION

AND RELATION TO THE SUBORDINATION

APPROACH

In this section we derive the Fokker-Planck equation
corresponding to the set of stochastic equations (20a)
to (20c) of our diffusing diffusivity model. We will also
establish the relation to the subordination approach of
section IV. Note that we here restrict the discussion to
the case d = n = 1, as higher dimensional cases are
completely equivalent.

Following our notation we thus seek the Fokker-Planck
equation for the bivariate probability density function
f(x, y, t), which has the structure

∂

∂t
f(x, y, t) = Lyf(x, y, t) + y2

∂2

∂x2
f(x, y, t). (80)
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The Fokker-Planck operator in y reads

Ly =
∂

∂y
y +

1

2

∂2

∂y2
, (81)

and the marginal probability density function for x is
then

P (x, t) =

∫ ∞

−∞
f(x, y, t)dy. (82)

To proceed further we introduce the joint probability
density function q(τ, y, t) of the Ornstein-Uhlenbeck pro-
cess y(t) and its integrated square τ(t), given by equation
(39). The corresponding system of stochastic equations
has the form

dy

dt
= −y + η(t), (83a)

dτ

dt
= y2, (83b)

and thus the bivariate Fokker-Planck equation governing
the probability density q(τ, y, t) reads

∂

∂t
q(τ, y, t) = Lyq(τ, y, t)− y2

∂

∂τ
q(τ, y, t). (84)

Now we introduce an ansatz for the solution of equation
(80) of the form

f(x, y, t) =

∫ ∞

0

G(x, τ)q(τ, y, t)dτ, (85)

where G(x, τ) is the Gaussian probability density given
by equation (37). Then, in accordance with equation (82)
the marginal probability density P (x, t) can be written
in the subordination form of equation (38), where

T (τ, t) =

∫ ∞

∞
q(τ, y, t)dy (86)

is the marginal probability density function of the inte-
grated square of the Ornstein-Uhlenbeck process whose
Laplace transform is given by equation (42).
We now prove that the solution of equation (80) can be

presented in the form (85). To that end we differentiate
equation (85) and use relation (84) to get

∂

∂t
f(x, y, t) =

∫ ∞

0

G(x, τ)
∂

∂t
q(τ, y, t)dτ

=

∫ ∞

0

G(x, τ)

[

Lyq(x, y, t)− y2
∂

∂τ
q(x, y, t)

]

dτ

= Ly

[
∫ ∞

0

G(x, τ)q(τ, y, t)dτ

]

−y2
∫ ∞

0

G(x, τ)
∂

∂τ
q(x, y, t)dτ. (87)

We now apply relation (85) to the first term and integrate
the second term by parts, obtaining

∂

∂t
f(x, y, t) = Lyf(x, y, t)− y2

{

q(τ, y, t)G(x, τ)
∣

∣

∣

τ=∞

τ=0

−
∫ ∞

0

q(τ, y, t)
∂

∂τ
G(x, τ)dτ

}

. (88)

Finally, with the relation ∂G(x, τ)/∂τ = ∂2G(x, τ)/∂x2,
we see that

∂

∂t
f(x, y, t) = Lyf(x, y, t) + y2

∂2

∂x2
f(x, y, t)

+y2q(τ = 0, y, t)δ(x). (89)

The last term vanishes, as τ is the integrated square of
y(t), and thus we arrive at equation (80). Therefore we
showed that the solution of the bivariate Fokker-Planck
equation (80) can be presented in the form (85), and
consequently the marginal probability density function
P (x, t) can be written in the subordination form (38).
The connection of the bivariate Fokker-Planck equa-

tion (80) for the Langevin system (19a) to (19c) with the
subordination approach represented by relations (36) and
(38) is our fourth main result.

VI. DISCUSSION

An increasing number of systems are reported in which
the mean squared displacement is linear in time, sug-
gesting normal (Fickian) diffusion of the observed tracer
particles. Concurrently the (displacement) probability
density function is pronouncedly non-Gaussian. Normal
diffusion with a Laplace distribution of particle displace-
ments was previously explained in a superstatistical ap-
proach by Granick and coworkers [24]. The experimen-
tally observed crossover to Gaussian statistics at longer
times was interpreted as a consequence of the central
limit theorem, kicking in at times longer then the corre-
lation time of the diffusion fluctuations [24]. Chubinsky
and Slater [34] introduced the diffusing diffusivity model
and studied it numerically, concluding the crossover from
the initial exponential shape to a Gaussian with effective
diffusivity. Jain and Sebastian go further with the double
Langevin approach [35]. Here we introduced a consistent
minimal model for a diffusing diffusivity. We explicitly
obtain the Fourier transform of the full probability den-
sity function, from which we derive the analytical short
and long time limits. This allows us to determine the dy-
namical crossover to the long time Gaussian shape of the
probability density at the correlation time of the fluctu-
ating diffusivity. Moreover we demonstrate a full consis-
tency of our minimal model with the superstatistical ap-
proach, as well as with the results of Jain and Sebastian.
At the same time our model is more general and flexible:
phrasing the diffusing diffusivity approach in terms of a
subordination concept we endow our model with an ex-
tremely flexible basis, such that a wide range of different
statistics for the diffusivity can be included.
We also obtained the bivariate Fokker-Planck equation

for this diffusing diffusivity process and expressed its so-
lution in terms of the subordination integral. Excellent
agreement with simulations is provided for the proba-
bility density function, the Brownian scaling of the mean
squared displacement, and the kurtosis of the probability
density function.
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We are confident that this subordination integral for-
mulation of the diffusing diffusivity model will prove use-
ful for experimentalists observing such dynamics. The
model can be calibrated with respect to the two param-
eters τ and σ, which can be obtained from experiment
by analyzing the time-dependence of the mean squared
displacement and the kurtosis. The latter provides infor-
mation on the typical diffusivity correlation time τ (see
Fig. 3), whereas the former allows one to estimate the
parameter σ, see Eq. (56). Moreover, measurement of
the diffusivity distribution, as can be directly obtained
experimentally [55], provides the value of the parame-
ter D⋆ = σ2τ according to Eq. 28. Additionally, the
possibility to include a different dimensionality n for the
subordinating process Y(t) allows for fine-tuning of the
model to match the experimentally observed probabil-
ity density function, which might be necessary when the
model is used for quantitative predictions. As we show
in the example in Appendix C1 the difference in the di-
mensionality n of the process Y(t) does not change the
dominant exponential behavior at short times but affects
the prefactors. Similarly the prefactors of the exponen-
tial in the diffusivity distribution pstD(D) is affected by the
concrete value of n. This fact may be employed to ac-
count for the deviations from the pure exponential shape
of the probability distribution also reported in [24].

An intriguing question emerging from our analysis con-
cerns the physical origin of the dimensionality n of the
subordinating process Y(t). Intuitively, one might argue
that the diffusivity and thus Y(t) should have as many
components as spatial directions in the particle trajec-
tory r(t), i.e., d = n. This is the case considered in the
derivations in Section IV. However, the mode concept for
D(t) introduced here may also have a more fundamental
physical meaning. As we showed here, the value n affects
the details of the shape of P (r, t) as well as pstD(D), and
for large n values the short time exponential shapes may
even be fully suppressed. Advanced experiments allowing
one to determine n from the exact shape of the proba-
bility densities P (r, t) and pstD(D) will provide important
clues concerning this question.

Possible generalizations may include diffusing diffusiv-
ity models with additional deterministic time dependence
of the diffusivity [54] or non-Gaussian anomalous vis-
coelastic diffusion in crowded membranes [21], which con-
trasts Gaussian anomalous viscoelastic diffusion in non-
crowded membranes [20]. Of course, the diffusing dif-
fusivity concept is a first step in capturing the full spa-
tiotemporal disorder of complex systems. Ultimately, a
full description of spatial and temporal stochasticity in
terms of a random diffusivity D(x, t) will be desired.

Let us put the diffusing diffusivity approach into con-
text with other popular models with distributed trans-
port coefficients. Typically these are constructed to de-
scribe anomalous diffusion processes. Another model is
scaled Brownian motion, in which the diffusivity is a de-
terministic, power-law function of time [56, 57]. On a
stochastic level scaled Brownian motion appears natu-

rally in granular gases [58], in which non-ideal collisions
effect a decrease of the system’s temperature (kinetic en-
ergy). Scaled Brownian motion is non-ergodic and dis-
plays a massively delayed overdamping transition [59].
Heterogeneous diffusion processes employ a continuous,
deterministic space dependence of the diffusivity and lead
to non-ergodic and ageing dynamics [57, 60, 61]. In con-
trast to these models random diffusivity approaches also
have a considerable history. Thus segregation in solids
in the context of radiation was described by such an ap-
proach [62], and Brownian motion in media with fluc-
tuating friction coefficient, temperature fluctuations, or
randomly interrupted diffusion were used to describe, for
instance, randomly stratified media [63]. A random dif-
fusivity approach was elaborated to consider light scat-
tering in a continuous medium with fluctuating dielec-
tric constant [64]. Motivated by the comparison of diffu-
sion processes assessed by different modern measurement
techniques, the concept of microscopic single-particle dif-

fusivity was developed [65]. In [66] the diffusivity varies
randomly but is constant on patches of random sizes.
Such random patch model show non-ergodic subdiffu-
sion due to the diffusivity effectively changing at random
times with a heavy-tailed distribution. Intermittency be-
tween two values of the diffusivity were also considered
[53]. Finally, we mention that a deterministic time de-
pendence of the diffusivity was combined with a random
diffusivity in [54]. As seen in several experimental stud-
ies already, to describe stochastic particle motion in real
complex systems such as living biological cells, combina-
tions of different stochastic mechanisms are necessary to
capture the observed dynamics [16]. Thus also the dif-
fusing diffusivity picture may need to be complemented
by other processes, as we saw in the example of non-
Gaussian viscoelastic subdiffusion based on the observa-
tions in [21, 55].

Despite the wealth of established stochastic processes
the diffusing diffusivity model has quite unique proper-
ties. Thus the crossover from a short time exponential
shape to Gaussian statistics at longer times, while the
MSD remains linear and thus classifies normal (Fick-
ian) diffusion, cannot be captured by existing models.
Of course, crossovers between non-Gaussian to Gaussian
probability density functions may be grasped by trun-
cated continuous time random walks or distributed or-
der fractional diffusion equations [67]. However, in these
models also the MSD exhibits a crossover from anoma-
lous to normal diffusion. In this sense we believe that
the diffusing diffusivity model and its potential general-
izations on the basis of our subordination approach will
emerge as a new paradigm in the theory of stochastic
processes.

We conclude with pointing out that the diffusing diffu-
sivity model developed here is closely related to the Cox-
Ingersoll-Ross (CIR) model for monetary returns which
is widely used in financial mathematics [39]. To show
this relation let us write the Langevin equation (19c) for
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the Ornstein-Uhlenbeck process as

dYi = − 1

τ
Yidt+ σdWi(t), (90)

where i = 1, . . . , n and Wi(t) is the Wiener process with
variance 1/2. Our aim is to design a Langevin equation in
the Itô form for the squared Ornstein-Uhlenbeck process
in n dimensions,

D(t) =

n
∑

i=1

Y 2
i (t). (91)

To this end we employ the Itô formula of differentiation
to the function of a n-dimensional vector [40] to find

dD =
2

τ

(

nσ2τ

2
−D

)

+ 2σ
√
DdW (t). (92)

This is but the stochastic differential equation of the CIR
process describing the time evolution of interest rates
[39]. The same process is used in the Heston model speci-
fying the evolution of stochastic volatility of a given asset
[41]. Our results for the subordination approach should
therefore also be relevant to financial market modeling.
Indeed, the technique of subordination, which is closely
related to random time changes, is a very common con-
cept in financial mathematics [68].

Appendix A: Superstatistics with modified

exponential diffusivity distribution

Consider the Gaussian probability density function
typical for viscoelastic subdiffusion in the overdamped
limit,

Gα(x, t|Dα) =
1√

4πDαtα
exp

(

− x2

4Dαtα

)

, (A1)

which is equivalent to fractional Brownian motion [12].
The associated mean squared displacement is 〈x2(t)〉 =
2Dαt

α. For the superstatistical distribution of the gen-
eralized diffusion coefficient we choose the modified ex-
ponential

pD(Dα) =
1

Γ(1 + 1/κ)D⋆
α

exp

(

−
[

Dα

D⋆
α

]κ)

. (A2)

The resulting probability density function

Ps(x, t) =

∫ ∞

0

pD(Dα)Gα(x, t|Dα)dDα (A3)

with Dα/D
⋆
α → D̃ and λ = x2/[4D⋆

αt
α] becomes

Ps(x, t) =
1

√

4πD⋆
αt

αΓ(1 + 1/κ)

∫ ∞

0

D̃−1/2e−D̃κ−λ/D̃dD̃.

(A4)
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FIG. 6: Top: Superstatistical probability density function
Ps(x, t) according to Equation (A3) from numerical integra-
tion, for exponents κ = 0.5, 1, and 2 (see the Figure key).
Bottom: convergence of the full numerical solution to the
analytical asymptotic form (A8) for κ = 0.5 and 2. All dis-
tributions are drawn for t = 1 (a.u.).

After change of variables according to y = D̃κ we have

Ps(x, t) =
1

√

4πD⋆
αt

ακΓ(1 + 1/κ)

×
∫ ∞

0

y−1+1/(2κ)e−y−λy−1/κ

dy. (A5)

With the identification

e−z = H1,0
0,1

[

z

∣

∣

∣

∣ (0, 1)

]

(A6)

with the Fox H-function [69], using the Laplace trans-
form rules for the H-function [70] along with the stan-
dard rules for the Fox H-function [69] one arrives at the
result

Ps(x, t) =
1

Γ(1/κ)
√

4πD⋆
αt

α

×H2,0
0,2

[

x2

4D⋆
αt

α

∣

∣

∣

∣ (1/[2κ], 1/κ), (0, 1)

]

. (A7)
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The asymptotic behavior is then [69]

Ps(x, t) ≃ |x|(1−κ)/(1+κ)

Γ(1/κ)
√
π(4D⋆

αt
α)1/(1+κ)

× exp

(

− 1 + κ

κκ/(1+κ)

[

x2

4D⋆
αt

α

]κ/(1+κ)
)

. (A8)

In Figure 6 we show the behavior of the resulting prob-
ability density (A3) from numerical inversion. For com-
pressed exponential distributions pD(Dα) with κ > 1
the resulting function Ps(x, t) is a stretched Gaussian,
while for a stretched exponential pD(Dα) with 0 < κ < 1
the function Ps(x, t) is a superstretched Gaussian, which
is broader than the exponential (Laplace) distribution.
Figure 6 also demonstrates that the asymptotic behavior
(A8) indeed fits the numerical inversion.

Asymptotics by Laplace’s method

The asymptotic behavior (A8) may also be obtained by
the Laplace method. As this is an interesting alternative
method to derive the asymptotic behavior of the integral
(see Eq. (A4))

I =

∫ ∞

0

D̃−1/2e−D̃κ−λ/D̃dD̃ =

∫ ∞

0

y−3/2e−y−κ−λydy

(A9)
for λ ≫ 1, we include this approach here. This is a
Laplace integral of the form

I =

∫ ∞

0

f(y)e−λydy. (A10)

The standard methods to evaluate the asymptotics of I
cannot be applied, since f(y) in Eq. (A9) equals zero
at y = 0 with all its derivatives. Thus, to evaluate the
asymptotics we need to find the maximum of the function

ϕ(y) = −λy − y−κ (A11)

which is reached at ym = (κ/λ)1/(1+κ). We now intro-
duce the new variable t = y/ym, such that Eq. (A9)
becomes

I =

(

λ

κ

)1/[2(1+κ)] ∫ ∞

0

t−3/2 exp
(

−λκ/(1+κ)

×
[

κ−κ/(1+κ)t−κ + tκ1/(1+κ)
])

. (A12)

After substitution τ = tκ1/(1+κ) we get

I = λ1/[2(1+κ)]

∫ ∞

0

τ−3/2eλS(τ)dτ, (A13)

where λ = λκ/(1+κ) and S(τ) = −τ − τ−κ.
Now, the standard Laplace method can be applied to

Eq. (A13). The function S(τ) reaches its maximum at

τm = κ1/(1+κ). Following the standard procedure we find

I ∼ λ1/[2(1+κ)]

∫ τm+ε

τm−ε

τ−3/2

× exp

(

λ

[

S(τm) +
(τ − τm)2

2
S′′(τm)

])

∼ λ1/[2(1+κ)]τ−3/2
m eλS(τm)

∫ ∞

∞
exp

(

−λ

2
|S′′(τm)| τ2

)

= λ1/[2(1+κ)]τ−3/2
m eλS(τm)

√

2π

λS′′(τm)
. (A14)

With S(τm) = −(1 + κ)κ−κ/(1+κ) and S′′(τm) = −(1 +
κ)κ−1/(1+κ) and applying this result to the above proba-
bility density function (A4), we obtain the same asymp-
totic behavior (A8), up to a numerical prefactor.

Power law diffusivity distribution

We now consider the power law distribution

pD(D) =
αDα

⋆

(D⋆ +D)1+α
(A15)

with α > 0. With the relation (7) we separately consider
the following cases:
(i) 0 < α < 1. The Laplace transform of the diffusivity

distribution reads

p̃D(s) = αDα
⋆

∫ ∞

0

dD

(D⋆ +D)1+α
e−DsdD

= 1−D⋆s
αeD⋆s

(

Γ(1− α)−
∫ D⋆s

0

z−αe−zdz

)

,(A16)

after substituting and integrating by parts. In the tails
we then obtain the following scaling behavior for the
probability density function,

lim
k→0

P (k, t) ∼ 1−D⋆k
2αtα

(

1 +D⋆k
2t+ . . .

)

×
[

Γ(1− α)− (D⋆k
2t)1−α

1− α
+

(D⋆k
2t)2−α

2− α
− . . .

]

.(A17)

It thus follows that

P (x, t) ≃ 1

|x|2α+1
(A18)

such that the second moment does not exist.
(ii) α = 1. After integrating by parts once we obtain

P (k, t) ∼ 1−D⋆k
2t log(D⋆k

2t). (A19)

The second moment still does not exist.
(iii) 1 < α < 2. Integrating by parts twice, we find

p̃D(s) = 1− D⋆s

α− 1
+

Dα
⋆ s

αeD⋆s

α− 1

×
(

Γ(2− α)−
∫ D⋆s

0

z1−αe−zdz

)

, (A20)
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such that we obtain

P (x, t) ≃ 1

|x|2α+1
(A21)

with the MSD

〈x2(t)〉 ∼ 2D⋆

α− 1
t. (A22)

Power law diffusivity distributions lead to a long tailed,
power law distribution P (x, t) in the superstatistical ap-
proach. The second moment diverges for 0 < α ≤ 1,
while normal diffusion emerges for α > 1.

Appendix B: Dimensionless units for the minimal

model

To simplify the calculations and obtain a more elegant
formulation we introduce dimensionless variables accord-
ing to t′ = t/t0 and x′ = x/x0 (and similarly for the y
and z components). For the x component, the set (19)
of stochastic equations then becomes

d

dt′
x′(t) =

t0
x0

√

2D(t)ξ(t0t
′) (B1a)

D(t) = Y 2(t) (B1b)

d

dt′
Y = − Y

τ/t0
+ ση(t0t

′). (B1c)

Noting that for the Gaussian noise sources we have

ξ(t0t
′) = t

−1/2
0 ξ(t′) and η(t0t

′) = t
−1/2
0 η(t′) we rewrite

Eqs. (B1) as

d

dt′
x′(t) =

√

2D(t)ξ(t′) (B2a)

D(t) = Y
2
(t) (B2b)

d

dt′
Y = −Y

τ
+ ση(t′), (B2c)

where

D =
t0
x2
0

D, Y =
t
1/2
0

x0
Y, τ =

τ

t0
. (B3)

Now we choose the temporal and spatial scales such that
τ = σ = 1, that is,

t0 = τ, x0 = στ. (B4)

With this choice of units the stochastic equations of our
minimal diffusing diffusivity model are then given by
Eqs. (20).

Appendix C: Two examples for the process Y(t)

1. The case d = 2 and n = 1

As an example for the case when the dimensionality of
the process Y(t) differs from the embedding dimension

d of the process r(t) we take the case with d = 2 and
n = 1. In the short time limit we get from Eq. (62) that

P (r, t) ∼ 1

2πt1/2

∫ ∞

0

kJ0(kr)
√

k2 + 1/t
dk

=
1√
2π3t

(

r√
t

)−1/2

K1/2

(

r√
t

)

. (C1)

The asymptotic behavior is given by

P (r, t) ∼ 1

2πr
√
t
e−t/

√
t. (C2)

Comparing this result with Eq. (70) for the case d =
n = 2 we recognize the modified prefactor, including a
different scaling in r and t. Thus the difference in the
dimensionality of the process Y(t) does not change the
dominating exponential behavior.
The connection to the superstatistical approach in

analogy to the discussion in Section IVC following
Eq. (73) with the two-dimensional Gaussian kernel

G(r, t|D) =
1

4πDt
e−r2/(4Dt) (C3)

and the stationary diffusivity distribution

pstD(D) =
1√

πDD⋆

e−D/D⋆ (C4)

for the case n = 1 produces the distribution

P (r, t) =
1√

2π3D⋆t

(

r√
D⋆t

)−1/2

K1/2

(

r√
D⋆t

)

.

(C5)
which matches exactly Eq. (C1) written in dimensional
form.

2. Infinite-dimensional process Y(t)

We here consider the limit of large dimension n for
the process Y(t). For short times t ≪ 1 the tails of the
probability density P (r, t) follow from (compare Eq. (48))

P̂ (k, t) ∼ ent/2

[

t
2 (1 + 2k2 + 1) + 1

]n/2

=
ent/2

[

1 +
t(1+k2)n

2

n/2

]n/2

→ ent/2

e(1+k2)nt/2
= e−ntk2/2. (C6)

Thus the tails of the probability density function P (x, t)
are Gaussian already at short times.
The long time behavior t ≫ 1 leads to

P̂ (k, t) ∼ 2n/2 exp
(

nt
2

[

1−
√
1 + 2k2

])

[

1 + 1
2

(√
1 + 2k2 + 1√

1+2k2

)]n/2
. (C7)
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Considering the tails, we take k ≪ 1, revealing that

P̂ (k, t) ∼ exp

(

−nk2t

2

)

(C8)

is also Gaussian, with the same variance. Thus, in the
high-dimensional case the regime of exponential wings
in the probability density function does not exist at all
and the Gaussian shape is established early on. This
is equivalent to the observation that the kurtosis (57)

becomes Gaussian already for short times when n is large.

Appendix D: Fourth moment of P (x, t)

By help of relation (41) we obtain the fourth moment of

P (x, t). The necessary derivative of T̃n(s, t) with respect
to s is

∂T̃n(s, t)

∂s
= −nent/2

2

[

1

2

(√
1 + 2s+

1√
1 + 2s

)

sinh
(

t
√
1 + 2s

)

+ cosh
(

t
√
1 + 2s

)

]−n/2−1 [
s

(1 + 2s)3/2
sinh

(

t
√
1 + 2s

)

+
t

2

(

1 +
1

1 + 2s

)

cosh

(

t
√
1 + 2s+

t√
1 + 2s

sinh
(

t
√
1 + 2s

)

]

, (D1)

and thus

∂T̃n(s, t)

∂s

∣

∣

∣

∣

∣

s=0

= −nt

2
. (D2)

The second differentiation and subsequent limit s → 0
produces, after some steps,

∂2T̃n(s, t)

∂s2

∣

∣

∣

s=0
=
〈

τ2(t)
〉

= −n

4

(

1− e−2t
)

+
nt

2
+

n2t2

4
.

(D3)
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