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Let O be an order in a quadratic number field K with ring of integers D, such that the
conductor F = fD is a prime ideal of O, where f ∈ Z is a prime. We give a complete
description of the F-primary ideals of O. They form a lattice with a particular structure
by layers; the first layer, which is the core of the lattice, consists of those F-primary
ideals not contained in F2. We get three different cases, according to whether the prime
number f is split, inert or ramified in D.
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1. Introduction

A Dedekind domain is defined as an integral domain in which every ideal can be
factored into a product of prime ideals [8, §6, Chap. IV, p. 270]; moreover, this
factorization is necessarily unique [8, Corollary, p. 273]. We are interested here in
quadratic orders, that is, integral domains O whose integral closure is the ring of
integers D of a quadratic number field K = Q[

√
d], d a square-free integer. We say

that an order is proper if it is not integrally closed, that is, O � D (recall that D is a
Dedekind domain). Since a Dedekind domain is necessarily integrally closed, if O is a
proper order then there exist ideals of O which cannot be factored into a product of
prime ideals. However, since an order is a one-dimensional Noetherian domain, each
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ideal of O can be written uniquely as a product of primary ideals ([8, Theorem 9,
§5, Chap. IV, p. 213]. An order O is determined by its conductor F, defined as the
largest ideal of D contained in O; equivalently, F = {x ∈ O : xD ⊆ O}. Since D

is a finitely generated O-module, F is always non-zero and it is a proper ideal of
O if and only if the order is proper. Each ideal coprime to the conductor, called
regular, has a unique factorization into prime ideals of O [3]. In particular, each
regular primary ideal is equal to a power of its radical. Actually, this condition
characterizes the regular primary ideals (see [6, Lemma 2.3]). More interesting is
the situation for primary ideals that are non-regular. In this paper, we focus on the
most natural case when the conductor F is a prime ideal of O, so that F = fD,
for some prime number f ∈ Z. In this case, it makes sense to talk about F-primary
ideals (i.e. primary ideals whose radical is equal to F). In particular, we will relate
the structure of the lattice of F-primary ideals to the splitting type of f in D. We
reserve further investigations for the general case to a future work.

Our purpose is to give a detailed description of the structure of the lattice of F-
primary ideals of a quadratic order O. We get three completely different lattices of F-
primary ideals, according to whether fD is a prime ideal in D (inert case), or it is the
product of two distinct prime ideals of D (split case), or it is equal to the square of
a prime ideal of D (ramified case). However, these lattices have a crucial property in
common, namely, a structure by layers. This means that the structure of the lattice
is determined by its first layer, namely the set of F-primary ideals not contained in
F2, which we call basic F-primary ideals. The remaining part of the lattice is formed
by the nth layers of the ideals contained in Fn and not contained in Fn+1, for each
n > 1, and all these layers reproduce the same pattern of the first layer.

In Secs. 2 and 3, we characterize the F-basic ideals. We firstly characterize the
F-basic ideals which are also D-modules (that is, ideals of D). This is a crucial step
to get a complete description of the first layer, since every F-basic ideal lies between
a suitable F-basic D-module Q and fQ. We also identify the F-basic ideals that are
principal. We show that there are exactly f +1 pairwise distinct intermediate ideals
properly lying between F and F2.

In Sec. 4, we examine separately the three cases mentioned above, namely, f

inert, split or ramified in D, that gives rise to different structures of the corre-
sponding lattices of F-primary ideals.

In the general case of a proper quadratic order O whose conductor F is not
necessarily a prime ideal, we know that F can be written uniquely as a product of
primary ideals G1, . . . , Gs whose radicals are distinct maximal ideals F1, . . . , Fs of
O. In Remark 4.11 at the end of the paper we make some initial comments on this
case that we intend to thoroughly investigate in a coming paper.

2. General Definitions and Results

In what follows, we will freely use the standard results on rings of integers in
quadratic number fields. For example, see [5; 8, Chap. V]. As usual, for elements
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z ∈ D and ideals I, the symbols z̄, Ī and N(z), N(I) denote the conjugates and
the norms, respectively; D∗, O∗ denote the multiplicative groups of the units of D

and O. If I is an ideal of O, ID denotes the extended ideal in D, i.e. the ideal of
D generated by I. Moreover, in order to simplify the notation, the symbol “⊂” will
denote proper containment and as usual “I �⊂ J” will denote that I is not contained
in J .

We fix some notation. Let d be a square-free integer. The ring of integers of
K = Q(

√
d) is equal to D = Z[ω], where either ω =

√
d, when d ≡ 2, 3 modulo 4, or

ω = (1+
√

d)/2, when d ≡ 1 modulo 4. In the latter case, we get ω2 = ω− (1+d)/4.
Let now f be a positive integer and O = Z[fω] be the unique quadratic order in K

such that [D : O] = f . For α, β ∈ O, we set (α, β) = αO + βO; in general, (α, β)
strictly contains the Z-module αZ + βZ. By definition, the conductor of O in D is
the ideal

F = {x ∈ O : xD ⊆ O} = fD = fZ + fωZ = fO + fωO.

Recall that F is the largest ideal of D contained in O. In particular, F is not a
principal ideal of O. A direct check shows that F2 = fF, hence Fk = fk−1F for each
k > 0. It is also useful to note that

N(Fk) = |O/Fk| = |Z/fkZ ⊕ fωZ/fkωZ| = f2k−1.

Since O/F ∼= Z/fZ, we immediately see that F is a prime ideal of O if and
only if f is a prime number. As we have already said in Sec. 1, throughout the
paper we will assume that F is a prime ideal; equivalently, f will always denote an
assigned prime number. In particular, under the present circumstances, in order to
study non-regular ideals, it will make sense to talk about F-primary ideals. Note
that there is no ideal of O lying properly between fO and F, since [F : fO] = f .

It is well known that every primitive ideal Q of O (i.e. Q �⊂ nO, for each n ≥ 2)
can be written as

Q = qZ + (a + fω)Z = (q, a + fω),

where q, a ∈ Z, such that qZ = Q∩Z and q divides N(a+fω) (see for example [2, 7]).
The ideal Q is O-invertible if and only if (Q : Q) = {x ∈ Q(

√
d) : xQ ⊆ Q} = O

[3, Proposition 7.4]. Otherwise, Q is not O-invertible and (Q : Q) = D (i.e. Q is
a D-module). Note that Q is O-invertible if and only if QQ̄ = N(Q)O; otherwise,
QQ̄ = N(Q)fD.

Lemma 2.1. In the above notation, let α ∈ F\fO. Then F = (f, α).

Proof. It suffices to show that fω ∈ (f, α). Say α = fa + fωb, where a, b ∈ Z and
f does not divide b, since α /∈ fO. Take c, k ∈ Z such that cb = 1 + fk. We get

cα = fω + f(ca + fωk),

whence fω ∈ (f, α), as required.
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Let Q be an ideal of O. Using the properties of the norm, it is clear that Q is
F-primary if and only if its norm N(Q) is a positive power of f . Moreover, if Q is
a primitive F-primary ideal of norm fk, then

Q = fkZ + fαZ = fkO + fαO, (2.1)

for some α ∈ D\O.
We give a definition which is crucial for our discussion.

Definition 2.2. Let Q ⊂ O be a F-primary ideal and let t ∈ O. We say that Q is
F-basic if Q �⊂ F2 = fF. We say that t is F-primary if tO is an F-primary ideal. We
say that t is F-basic (or simply basic) if tO is a F-primary basic ideal.

By definition, F and fO are F-basic ideals; indeed, they are the only F-primary
ideals containing f , since there are no intermediate ideals between fO and F. An
element t in O which is F-primary lies in F = fZ + fωZ and therefore has the form
t = fx + fωy, for some x, y ∈ Z.

The following equivalences for a F-primary ideal Q are straightforward:

Q is F-basic ⇔ Q is primitive ⇔ Q �⊂ fO. (2.2)

Given an F-primary ideal Q, the next lemma shows how to associate to Q an
F-basic primary ideal in a canonical way.

Lemma 2.3. Let Q be a F-primary ideal and let k = max{n ∈ N |Fn ⊇ Q}. Then
we have:

(i) Q = fk−1Q′, where Q′ is a F-basic ideal.
(ii) If Q/fm is F-basic for some m > 0, then m coincides with k − 1.

Proof. (i) Since Fk = fk−1F ⊇ Q, we get Q/fk−1 = Q′ ⊆ F. So, as well as Q,
Q′ are F-primary. Moreover, Q′ �⊂ F2, otherwise fk−1F2 = Fk+1 ⊇ fk−1Q′ = Q,
against the maximality of k. We conclude that Q′ is F-basic.

(ii) From Q/fm ⊆ F we get Q ⊆ fmF = Fm+1, whence m + 1 ≤ k, by the
definition of k. Moreover, from Q/fm �⊂ F2 = fF we get Q �⊂ fm+1F = Fm+2,
hence m + 2 > k.

Given a F-primary ideal Q, the uniquely determined F-basic ideal Q′ containing
Q, as defined in (i) of Lemma 2.3, is called the basic component of Q. It follows
that the lattice L of all the F-primary ideals is determined by the lattice L1 of the
F-basic ideals. In fact, L1 will be the first layer of L, and the other layers of the
lattice will be the Ln (n > 0), consisting of those F-primary ideals contained in Fn

but not in Fn+1. By Lemma 2.3, the elements of Ln are obtained by those of L1,
just multiplying by fn−1. Without loss of generality, we focus our attention on L1.
Hence, in what follows, we will investigate the F-basic ideals of O.
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The next proposition characterizes primary elements in terms of their norms.

Proposition 2.4. Let t = fx+fωy∈F be F-primary, x, y ∈Z. Then g.c.d.(x, y) =
fa, for some a ≥ 0. Moreover, t is F-basic if and only if x, y are coprime. If the
latter conditions hold, then t is an irreducible element of O which is not prime.

Proof. The proof of the first two claims of the statement is straightforward, using
the properties of the norm. For the last claim, let us assume, for a contradiction,
that t = rs, where r, s ∈ O, and neither r nor s is a unit in O. Since the norm is
a multiplicative function on O, r, s are F-primary elements. In particular, r, s ∈ F.
But then t = rs ∈ F2, contradiction. Moreover, tO is not a prime ideal, since it is
strictly contained in the conductor F (the only prime ideal containing t), which is
not principal.

Let t ∈ O be an F-primary element, t = fx + fωy, x, y ∈ Z. Note that t is in
fO if and only if f divides y, since t = f(x + ωy) and x + ωy ∈ O if and only if
f | y. So, by (2.2), if y /∈ fZ then t is F-basic. Note also that in this case x, y are
coprime, since f is the only common prime factor of x and y. If t is a basic element
and t ∈ fO, then tO = fO, that is, t and f are associated in O.

However, for a basic element t, it is possible that t /∈ fO, but F2 ⊂ tO ⊂ F. We
will see in the next section that this happens precisely when t and f are associated
in D but not in O (Lemma 3.4).

3. Intermediate F-Primary Ideals

Throughout this section, given a basic F-primary ideal Q ⊂ O different from fO, by
(2.1) and (2.2) we may suppose that Q = (fk, fα), where fk = N(Q) and α ∈ D\O.

The following easy lemma determines whether an ideal of O is a D-module or
not. If I is an ideal of O and ID is the extended ideal in D, [ID : I] denotes the
index of I in ID as abelian groups.

Lemma 3.1. Let I be an ideal of O.

(i) If zI ⊆ I for some z ∈ D\O, then I = ID.
(ii) If I ⊂ ID, then [ID : I] = f .

Proof. (i) By the preliminaries of Sec. 2, (I : I) is equal to O if and only if I is
not a D-module. Hence, (I : I) = D, which proves the claim.

(ii) Let α =
∑

i aiβi ∈ ID, for some ai ∈ I and βi ∈ D. Then fα =
∑

i aifβi

is an element of I, since each fβi is in O. In particular, fID ⊂ I ⊂ ID, where the
inclusions are strict, since I is not a D-module. Since f is a prime number and the
index of fID in ID is f2, it follows that the index of I in ID is f .

The next proposition characterizes the F-basic ideals of O that are also D-
modules. This kind of ideals will be crucial in the description of the lattice of
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F-basic ideals. This result also follows from [1, p. 34]. We give a direct proof for the
sake of completeness.

Proposition 3.2. Let Q = (fk, fα) be a F-basic ideal different from fO. Then Q

is a D-module if and only if fk−1 divides N(α).

Proof. Recall that Q is a D-module if and only if Q is not O-invertible (see Sec. 2).
We have QQ̄ = (f2k, fk+1α, fk+1ᾱ, f2N(α)). If Q is a D-module, then QQ̄ =
fk+1D and therefore fk−1 |N(α). If fk−1 |N(α) then QQ̄ ⊂ fk+1O, hence QQ̄ �=
fkO, so Q is not O-invertible.

We describe now the primary ideals lying in between a given F-primary ideal Q

and fQ, according to whether Q is a D-module or not.

Theorem 3.3. Let Q = (fk, fα) be a F-basic ideal different from fO.

(i) Fk is the minimum power of F contained in Q.
(ii) If Q is a D-module, then there are exactly f + 1 ideals of O lying properly

between Q and fQ, namely the pairwise distinct ideals

J = (fk, f2α); Ja = (fk+1, afk + fα), a = 0, 1, . . . , f − 1.

(iii) If Q �= QD, then there is a unique ideal of O lying properly between Q and fQ,

namely J = (fk, f2α) = fQD.

Proof. (i) Recall that α /∈ O, since Q �⊂ fO, so that F = (f, fα) (Lemma 2.1).
Then Q ⊇ (fk, fkα) = fk−1F = Fk, where the equality holds if and only if k = 1.
Since fk−1 ∈ Fk−1\Q, k is the minimal integer such that Fk ⊆ Q.

(ii) Let α = a1 +ωa2, where a2 /∈ fZ, since α /∈ O. Since Q/fQ ∼= Z/fZ⊕Z/fZ

(as abelian groups) and Z/fZ⊕Z/fZ has exactly f +1 proper non-zero subgroups,
it suffices to show that the ideals J , Ja (a = 0, . . . , f − 1) are pairwise distinct and
lie properly between Q and fQ.

It is clear that the ideals J , Ja, 0 ≤ a ≤ f − 1 lie between Q and fQ =
(fk+1, f2α). We firstly verify that these ideals are pairwise distinct.

Let us suppose that Ja = Jb. Then we get the equality

f(afk−1 + α) = (x0 + x1fω)fk+1 + (y0 + y1fω)(f(bfk−1 + α)),

for suitable x0, x1, y0, y1 ∈ Z. It follows that

afk−1 + α − x0f
k − y0(bfk−1 + α) ∈ ωQ ⊆ Q,

where ωQ ⊆ Q since Q is a D-module. The above relation yields (1 − y0)α ∈ O, so
1− y0 ∈ fZ, since a1 /∈ fZ. Then we get afk−1 − y0bf

k−1 ∈ Q, hence a− y0b ∈ fZ,
by the minimality of k. We conclude that

1 ≡ y0, a ≡ y0b mod f,
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so a ≡ b modulo f , and therefore a = b, since a, b lie in {0, 1, . . . , f −1}. We remark
that we have actually proved that Ja �⊂ Jb whenever a �= b.

Since Ja �⊂ fO, for every a ≤ f − 1, we get Ja �= J ⊂ fO, and Ja ⊃ fQ.
Moreover Q ⊃ J , since Q �⊂ fO, and J ⊃ fQ, since fk−1 /∈ Q yields fk ∈ J\fQ.

It remains to show that Ja �= Q, for a = 0, . . . , f−1. Assume, for a contradiction,
that Jb = Q for some b ≤ f − 1. Then we get Ja ⊆ Q = Jb for every a �= b, which
is impossible, as remarked above.

(iii) Under the present circumstances, we get Q ⊃ fQD ⊃ fQ, since Q is not a
D-module. Let J be an F-primary ideal properly lying between Q and fQ. Since Q

is not a D-module, Q is an invertible O-ideal (see Sec. 2). Therefore, I = JQ−1 is
an F-primary ideal of O, so we get J = QI ⊆ QF = fQD. Hence, we actually get
the equality J = fQD, since [Q : fQ] = f2. In particular, J = (fk, f2α).

In particular, the preceding theorem allows us to determine the ideals lying
between F and F2, since F is a D-module and F2 = fF.

In the next lemma, we determine the intermediate ideals that are principal, or,
equivalently, the basic elements t ∈ O such that F2 ⊂ tO ⊂ F.

Lemma 3.4. A principal ideal tO lies properly between F and F2 if and only if
t = fw, for a suitable unit w of D. Moreover, fwO = fw′O if and only if w/w′ ∈ O.

Proof. Assume that F ⊃ tO ⊃ F2. The extended ideals satisfy F ⊇ tD ⊃ F2, where
the second containment is strict, since tD ⊃ tO ⊃ F2. Since |F/F2| = f2, we get
tD = F = fD, which is possible only if t = fw for some unit w of D. Conversely,
for every unit w of D, from F ⊃ fO ⊃ F2 we get wF = F ⊃ fwO ⊃ wF2 = F2. The
last statement is immediate.

In particular, Lemma 3.4 implies that the number of principal F-primary ideals
between F and F2 is equal to |D∗/O∗|. This last quantity depends on how the prime
f splits in D.

Proposition 3.5. Let τ = |D∗/O∗|. Then we have:

(i) if f is inert in D, then τ | f + 1.
(ii) if f is split in D, then τ | f − 1.
(iii) if f is ramified in D, then τ | f .

Proof. Since f is prime, O/F ∼= Ff , the finite field with f elements. In particular,
the group of units of O/F has cardinality f −1. The residue ring D/F is isomorphic
either to Ff2 (inert case), Ff ×Ff (split case) or to a finite local ring with principal
maximal ideal (ramified case). In each of the three cases, the group of units of D/F

has cardinality equal to f2 − 1, (f − 1)2 and f2 − f , respectively.
The canonical ring homomorphism π : D � D/F induces a group homomor-

phism π∗ : D∗ → (D/F)∗ (which is not necessarily surjective). We have an induced
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group homomorphism: D∗/O∗ → (D/F)∗/(O/F)∗, u + O∗ �→ π∗(u) + (O/F)∗. We
claim that the latter group homomorphism is injective. In fact, if π∗(u) ∈ (O/F)∗,
then π(u) ∈ O/F, so we get u ∈ O∗, since π−1(O/F) = O. It follows that
τ = |D∗/O∗| divides the cardinality of (D/F)∗/(O/F)∗, which in the three cases is
equal to: (i) f + 1 (inert), (ii) f − 1 (split), (iii) f (ramified).

Remark 3.6. We note that the same conclusion of Proposition 3.5 can be obtained
by means of a well-known formula that gives the class number of O in terms of the
class number of D (see [3, pp. 146–148]). By Theorem 3.3, there are f + 1 ideals
properly lying between F and F2. In each of the three cases mentioned above, the
number of these intermediate ideals of O that are D-modules is:

(i) inert case: there is no intermediate D-module, since there are no D-modules
between F = P and F2 = P 2.

(ii) split case: 2; the only D-modules between F = PP and F2 = P 2P
2

are P 2P

and PP
2
.

(iii) ramified case: 1; the only D-module between F = P 2 and F2 = P 4 is P 3.

Hence, τ = |D∗/O∗| divides the number of ideals properly between F and F2 that
are not D-modules (f + 1, f − 1 and f , respectively), and this last number is equal
to the cardinality of (D/F)∗/(O/F)∗.

This last fact is an evidence of the following general result. We recall that an
action of a group G on a set S is free if the stabilizer of each element s ∈ S is trivial,
that is, Stab(s) = {g ∈ G | gs = s} = {1}.

Proposition 3.7. The multiplicative group (D/F)∗/(O/F)∗ acts freely on the set
of the ideals I of O that lie properly between F and F2 and are not D-modules.

Proof. Let I be the set of ideals of O lying properly between F and F2. The set I
is in one-to-one correspondence with the set [I] of proper non-zero ideals of O/F2,
by the canonical map I �→ I + F2 = [I]. Recall that F/F2 is in a natural way a
(D/F)-module, and so also a (O/F)-module.

For any assigned [z] ∈ (D/F)∗ and [I] ∈ [I], we set [z] · [I] = [zI]. Since [I]
is a O/F-module contained in F/F2, it is straightforward to see that [zI] is also a
O/F-module contained in [z] · F/F2 = F/F2, where the last equality holds since [z]
is a unit in D/F. We have thus defined an action of (D/F)∗ on [I]. In particular,
every element [I] of [I] is fixed by the elements of the subgroup (O/F)∗ ⊂ (D/F)∗,
i.e. [z] · [I] = [I], for every [z] ∈ (O/F)∗. Hence we have an induced natural action
of the group G = (D/F)∗/(O/F)∗ on [I]. We can partition I into the union of
the subset ID of the ideals that are also D-modules and the complementary subset
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IO. The set [I] is therefore partitioned by the natural map into the union of the
set [I]D/F of O/F-modules which are also D/F-modules and the subset [I]O/F of
O/F-modules which are not D/F-modules. By Lemma 3.1, for any assigned I ∈ IO

and z ∈ D\O, we get zI �⊂ I. Hence, the sets [I]D/F and [I]O/F are characterized
as follows:

[I]D/F = {Ī ∈ [I] | ∀ g ∈ G, g · [I] = [I]},
[I]O/F = {Ī ∈ [I] | ∀ g ∈ G, g �= 1, g · [I] �= [I]}.

Then [I]D/F is precisely the subset of [I] of the fixed elements under the action of
G and [I]O/F is the subset of elements whose stabilizer under the action of G is
trivial. We conclude that G acts freely on the subset [I]O/F.

By the above proposition, the cardinality of G divides the cardinality of [I]O/F.
However, in the present case where the conductor is fD, f ∈ Z a prime number,
we know by the above discussion that the two cardinalities coincide in all the three
possible cases, inert, split and ramified.

4. The Lattice of Basic Ideals

In this section, we analyze separately the lattice of F-basic ideals, in each of the
three cases that may appear, namely: f inert, split or ramified in D, respectively.

4.1. Inert case

The next theorem gives a complete description of the lattice of the F-basic ideals
of O = Z[fω], in the case when f is a prime element of D = Z[ω].

Theorem 4.1. Suppose F = fD is a prime ideal of D. Then every basic F-primary
ideal of O contains F2, and lies in the following set of pairwise distinct ideals

J = {(f, f2ω), (f2, f(a + ω)) : 0 ≤ a < f}.

Proof. Let Q be a basic ideal. The extended ideal QD is equal to F, since Q is
F-primary (F is the only prime ideal of O that contains Q, hence the only prime
ideal of D that contains Q) and Q is not contained in F2 by definition. It follows
by Lemma 3.1 that fQD = fF = F2 ⊂ Q. By Theorem 3.3, Q lies in the set J .

The number of principal basic F-primary ideals is exactly equal to the num-
ber of distinct non-associated basic elements of O, which is equal to |D∗/O∗|, by
Lemma 3.4. Moreover, their norm is equal to f2, since the ideal they generate lies
in between F and F2.

The following diagram represents the lattice of F-primary ideals in the inert
case. We recall that only the powers of F are D-modules (see Remark 3.6). For this
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reason, all the proper intermediate ideals are O-invertible (see Sec. 2).

O

F

J0

��������� . . .

�����
fO . . .

�����
Jf−1

���������

F2

�����
�����

���������
���������

fJ0

��������
. . .

�����
f2O . . .

�����
fJf−1

��������

F3

�����
�����

��������
��������

			
	 






���������

����������

. . . . . . . . . . . . . . .

4.2. Split case

Throughout this section, we assume that F = fD splits as an ideal of D, say
fD = PP̄ , where P �= P̄ are prime ideals of D of norm f , both of which lie
above F, considered as an ideal of O. Note that P is principal if and only if f is
not irreducible in D (recall that f is always irreducible in O, by Proposition 2.4).
However, some power of P is a principal ideal of D, since the class group of D is
finite. For the remainder of this section, we will denote by m the order of P in the
class group of D (i.e. the minimum power m of P such that Pm is principal), and
by β ∈ D a fixed generator of Pm.

Lemma 4.2. In the above notation, βn /∈ O for every n > 0.

Proof. Assume, for a contradiction, that βn ∈ O. Then βn ∈ O∩P = F. It follows
that βnD = Pmn ⊆ F = PP̄ ⊂ P̄ , whence P ⊆ P̄ , impossible.

The following theorem describes all the F-basic elements of O: it turns out that
they are associated to the elements tn = fβn, for some n ∈ N. In particular, in the
split case, unlike the inert case, there are basic elements of arbitrary large norm,
so, they are infinitely many.

Theorem 4.3. For each n ∈ N, let tn = fβn. An element t ∈ O is basic if and only
of t is associated in D either to tn or its conjugate, for some n ∈ N. Moreover, the
principal ideals tnwO, t̄nw′O, for n > 0 and w, w′ ∈ D∗, w/w′ /∈ O, are pairwise
incomparable and do not contain F2.

Proof. Since N(tn) = f2N(βn) = fmn+2, every element tn is F-primary. Moreover,
note that tn /∈ F2 = fF, since tn/f = βn /∈ F, so that tn is F-basic, for every n ≥ 0.
Pick now two distinct non-negative integers n, m, with n = m + h, h > 0. Since
tn/tm = βh /∈ O and tm/tn = β−h /∈ O, it follows that the ideals tnO, for n ≥ 0,
are pairwise incomparable. Finally, since tn has norm strictly greater than f2, for
n > 0, F2 is not contained in tnO.
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Conversely, let t be a basic element of O of norm fs+2, s ≥ 0. Since t is F-basic,
P, P̄ are the only prime ideals of D above tD. Then we get

tD = P kP̄ h, h, k > 0.

Moreover, since t /∈ F2 = P 2P̄ 2, the integers h, k are not both > 1. Let us assume
that h = 1, whence tD = fP k−1. Then P k−1 is principal, hence k − 1 = mn, for
some positive integer n. It follows that N(t) = fs+2 = f2N(Pmn) = fmn+2, so,
s = mn. Now, we have tD = fPmn = fβnD = tnD, which is possible only if
t = tnw, for some w ∈ D∗. In the case k = 1 we symmetrically get t = t̄nw for some
w ∈ D∗.

Finally, if thwO = t̄kw′O, then h = k otherwise th, tk have different norms and
we get that some power of β is in O, which is impossible by Lemma 4.2. Moreover,
thwO = tkw′O implies h = k as before, hence we also get w/w′ ∈ O.

Our next step is to classify the non-principal basic F-primary ideals.
We recall that a Special Principal Ideal Ring (or special PIR, for short) R is

a principal ideal ring with a unique prime ideal M , such that M is nilpotent (see
[8, p. 245]). So, in the case when M = pR, for some p ∈ R, we get pn = 0 for some
n > 1. Note that a Special PIR is a chained ring, i.e. the ideals are linearly ordered.

The next lemma gives all the basic F-primary ideals that contain some F-basic
element.

Lemma 4.4. The quotient ring O/tnO is a Special PIR for every n ≥ 0. In
particular, the ideals (necessarily F-primary) that contain tnO are equal to (f i, tn),
for i = 1, . . . , mn + 2, and their norm of (f i, tn) is f i.

Proof. The claim is immediate when tn = t0 = f , since F/fO is the unique non-
zero proper ideal of O/fO, it is generated by fω + fO, and (F/fO)2 = 0, since
F2 ⊂ fO. Note that if I is an ideal of O containing tn, then I is basic F-primary,
since any prime ideal containing I must contain the F-basic element tn. In particular,
O/tnO has a unique maximal ideal, equal to F/tnO. Since F = (f, tn) by Lemma 2.1,
it follows that F/tnO is a principal ideal of O/tnO, generated by f + tnO. From
this fact, it is not difficult to see that every non-zero ideal of O/tnO is principal,
generated by some f i + tnO, for some 1 ≤ i ≤ mn + 1 (see [4, Proposition 4], for
example). Indeed, fh ∈ tnO if and only if h ≥ mn + 2, since N(tn) = fmn+2.

Since f i is the least power of f contained in the basic ideal (f i, tn) (which
therefore is primitive by (2.2)), the last claim follows by the preliminaries
in Sec. 2.

Proposition 4.5. Let t ∈ O be a basic F-primary element of norm fm, and let
i ∈ N be such that i < m. Then the ideal I = (f i, t) of O is a D-module and is equal
either to P iP̄ or PP̄ i. In particular, we get (f i, ti) = (f i, tn), for every n ≥ i.

Proof. Since f i+1 |N(t), we get I = ID, by Proposition 3.2. Without loss of gen-
erality, we suppose that tD = Pm−1P̄ (see the proof of Theorem 4.3). Since D is a
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Dedekind domain, f iD + tD is the greatest common divisor of f iD and tD, so it
is equal to P iP̄ , since f iD = (PP̄ )i. Hence, I = ID = P iP̄ . The last claim follows
immediately, since f i divides N(tn) = fnm+2 for every n ≥ i.

For every k ≥ 1, let Qk = (fk, tk) = P kP̄ ; in this notation, Q1 = F.
The next theorem gives a description of the ideals of O that contain a basic

element.

Theorem 4.6. (i) Let Q be a F-basic ideal. Then there exists k ≥ 1 such that
fQk ⊂ Q ⊆ Qk.

(ii) The ideals Qk = (fk, tk), for k ∈ N, are pairwise distinct.
(iii) An ideal I of O contains Qk if and only if I ∈ {Qi : i = 0, . . . , k}.
(iv) If Q contains a basic element and it is not principal, then either Q = Qk or

Q = Q̄k for some k ∈ N.

Proof. (i) Since Q is basic, as in the proof of Theorem 4.3, we have QD = P kP̄ =
Qk, for some k ≥ 1 (or its conjugate), so Q ⊆ Qk. By Lemma 3.1, either Q = Qk

or [Qk : Q] = f . In each case, we get fQk ⊂ Q ⊆ Qk.
(ii) By Proposition 4.5, we get Qk = P kP̄ (and not the conjugate, since βk ∈

P\P̄ ). Hence the Qk’s are pairwise distinct, as k ranges in N.
(iii) For 0 ≤ i ≤ k, by Proposition 4.5 we get Qi = (f i, ti) = (f i, tk) ⊇ (fk, tk) =

Qk. Conversely, if I ⊇ Qk, then I contains tk, hence, by Lemma 4.4, we get I =
(f j , tk), for some j ∈ {1, . . . , k + 1}, so I = (f j , tk) = (f j , tj) = Qj .

(iv) This follows from (ii) and its proof, possibly replacing Qi with their
conjugates.

In order to complete the description of the lattice of F-basic ideals, it remains
to find the basic ideals of O that do not contain a F-basic element.

Theorem 4.7. Let Q be a basic F-primary ideal not containing any basic element.
Then:

(i) Q lies properly between Qk and fQk, for some k > 0;
(ii) Q = (fk+1, afk + tk) for some 1 ≤ a ≤ f − 1;
(iii) Q does not contain any other basic F-primary ideal ;
(iv) Q is an invertible ideal of O.

Proof. (i) The ideal Q, being F-basic, must lie between some Qk and fQk by
Theorem 4.6(i), and it is different from Qk, since it does not contain basic elements.

(ii) This follows from Theorem 3.3, since necessarily Q is different from
(fk, f tk) = fQk−1, which is not a F-basic primary ideal, and from (fk+1, tk), which
contains the F-basic element tk.
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(iii) Let Q′ be a basic ideal contained in Q = (fk+1, afk + tk). Then Q′ cannot
contain a F-basic element, hence, by (ii) we get Q′ = (fh+1, bfh + th), for some
h > 0, b ∈ {1, . . . , f − 1}. Let us assume, for a contradiction, that Q �= Q′, so
Q ⊃ Q′. It follows that h > k. Then we readily see that Q′ ⊂ Q if and only if
th ∈ Q, impossible, since th is F-basic.

(iv) Let fγ = afk + tk = f(afk−1 + βk). By Proposition 3.2, it suffices to show
that fk does not divide N(γ). We get N(γ) = a2f2k−2 + afk−1(βk + β̄k) + fmk.
Since f does not divide the trace of βk (otherwise βk ∈ fD = F, impossible), we
see that N(γ) = fk−1b, where b /∈ fZ.

Note that an ideal Q satisfying the hypothesis of the previous theorem is not
a D-module. The converse of Theorem 4.7(iv) is false: consider any principal F-
primary ideal generated by a basic element. Therefore, the basic ideals that are
invertible are either principal, necessarily generated by a F-basic element, or they
do not contain any F-basic element.

Remark 4.8. Let k ∈ N. By Theorem 4.3, there exist principal intermediate ideals
between Qk and fQk if and only if Qk is principal as an ideal of D, generated by a
F-basic element of O. In fact, if fQk ⊂ tO ⊂ Qk then we have tD = Qk. Conversely,
if Qk ⊆ F = fD is principal, then Qk is generated by an element of the form fβ,
for some β ∈ D\O. Hence, fβO is an intermediate ideal between fQk and Qk.
Moreover, as we saw in the proof of Theorem 4.3, the last condition holds if and
only if m divides k− 1. For such k’s, there are τ = [D∗ : O∗] intermediate principal
ideals between Qk and fQk (essentially by the same phenomenon of Lemma 3.4).

The diagram below represents the lattice of F-primary ideals in the split case.

O

F


 ��

��

Q2

�����
. . . fO . . . Q2

�����

Q3

����
. . .

���� . . . . . .

����
F2

����
�����

����
����

. . .

���� . . . . . .

����
Q3

����

Q4

����
. . .

���� . . . . . .

����
fQ2

����
����

����
�����

. . .

����
f2O. . .

����
fQ2

����
����

����
����

. . .

���� . . . . . .

����
Q4

����

4.3. Ramified case

We assume now that f is ramified in D, so F = P 2, for some prime ideal P of D.

Theorem 4.9. (i) If d ≡ 1, 2 (mod 4) or d ≡ 3 (mod 4) and f �= 2, then we have
P = fD +

√
dD. If d ≡ 3 (mod 4) and f = 2, then P = 2D + (1 +

√
d)D.

(ii) Let Q ⊆ F be a basic F-primary ideal. Then either P 4 ⊂ Q ⊆ P 2 or P 5 ⊂ Q ⊆
P 3.
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(iii) If F ⊃ Q ⊃ F2, then either Q = Ja = (f2, f(a +
√

d)), for some a = 0, 1, . . . ,

f − 1, or Q = J = (f, f2
√

d) = fO.
(iv) If P 3 ⊃ Q ⊃ P 5 = fP 3, then Q = Ha = (f3, af2 + f

√
d), for some

a = 0, 1, . . . , f − 1, or Q = (f2, f2
√

d) = fF = P 4, except when f = 2 and
d ≡ 3 (mod 4); in this latter case, we either get Q = (8, 2(1 +

√
d)) or Q =

(8, 4 + 2(1 +
√

d)), or Q = (4, 4(1 +
√

d)) = P 4.

Proof. (i) In any case, we have F = (f, f
√

d). Assume that f | d; we get d = fλ,
with λ /∈ fZ, since d is square-free. Then the ideal (f,

√
d) of D satisfies (f,

√
d)2 =

(f2, d)D = fD = F, hence it coincides with P . This argument covers all the possible
cases, except when f = 2 and d ≡ 3 modulo 4. Under this latter circumstance, we
take the ideal (2, 1 +

√
d), whose square is (4, 1 + d + 2

√
d) = (4, 2

√
d) = 2D = F,

where the preceding equalities hold since d + 1 ∈ 4Z, and d ∈ (2,
√

d) is odd. It
follows that P = (2, 1 +

√
d) as required.

(ii) Since D is a Dedekind domain and Q is a basic F-primary ideal, QD is equal
either to P 2 or to P 3. In both cases, by Lemma 3.1, fQD ⊂ Q ⊆ QD, which is the
statement.

(iii) and (iv) follow from Theorem 3.3, since, by (i), either P 3 = PF = PfD =
fP = (f2, f

√
d) or P 3 = 2P = (4, 2(1 +

√
d)), in the exceptional case. In this latter

case, we immediately get the equality (4, 4(1 +
√

d)) = 2F = F2 = P 4.

Besides the basic elements t ∈ F such that F2 ⊂ tO ⊂ F, which are associated
to f by a unit of D (see Lemma 3.4), in the ramified case we may have other basic
elements such that P 5 ⊂ tO ⊂ P 3, according to whether P is a principal ideal of D

or not, as the next result shows.

Proposition 4.10. There exists a basic element t ∈ O such that P 5 ⊂ tO ⊂ P 3

if and only if P is a principal ideal of D. If this condition holds, say P = βD, for
some β ∈ D, then every basic element is associated to fβ by a unit of D.

Proof. Let us assume that P = βD, for some β ∈ D. Under the present circum-
stances we get N(β) = f and f = uβ2, for some unit u ∈ D. Clearly, β /∈ O,
otherwise β ∈ P ∩ O = F = P 2, which is impossible. Hence, t = fβ is a basic
element, according to Proposition 2.4, since its norm is f3 and t /∈ fO. Since
tD = β3D = P 3, we get β5D = P 5 ⊂ tO ⊂ P 3.

Conversely, let t ∈ O be a basic element such that P 5 ⊂ tO ⊂ P 3. Using
Lemma 3.1, we get tD = P 3 = fP , so P = t

f D is a principal ideal of D.
The last claim follows arguing as in Lemma 3.4.

The diagram below represents the lattice of F-primary ideals in the ramified
case. By Proposition 3.2 and the above description of the basic ideals, all the basic
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ideals, with the exception of F and P 3, are invertible.

O

F = P 2

P 3

�������
J1
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fO . . .

�����
Jf−1

�����
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fJ1
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"""""

##
##

# f2O . . .

#####
fJf−1

$$$$$

. . .

�����. . . . . . . . .

����
. . .

%%%%%
F3 = P 6

�������
"""""

&&&&&

In our final remark we make some considerations for the case where f is not
prime.

Remark 4.11. We retain the preceding notation, but here we assume that f is not
a prime number, say f =

∏n
i=1 fsi

i , where the fi ∈ Z are pairwise distinct prime
numbers and si ≥ 0. Under the present circumstances, it is straightforward to verify
that the conductor F = (f, fω) is the product F =

∏n
i=1 Gi, where Gi = (fsi

i , fω),
for i = 1, . . . , n. The Gi are primary ideals of O, namely,

√
Gi = Fi = (fi, fω),

where the Fi’s are the prime ideals of O that contain F. Then the lattice of the
primary ideals of O = Z[fω] is given by the disjoint union of the lattices of the
Fi-primary ideals, together with the chains of the powers of the prime ideals N of
O that are coprime with F. So we may confine ourselves to a prime ideal Fi, for a
fixed i ∈ {1, . . . , n}. It can be easily verified that F2

i = fiFi, so also the lattice of
the Fi-primary ideals has a structure by layers. The main definitions and several
results, proved above for the case of F prime, can be adapted to Fi-primary ideals.
We intend to examine thoroughly this general case in a future paper. The main
difference with the case of F prime is that the Fi are not D-modules, and, in fact,
no Fi-primary ideal is a D-module if f is not a power of a single prime.

As an instance, we give a generalization of the formula we obtained in the case
of prime conductor to the general case. We use the notation Of = Z[fω]. Then for
each i = 1, . . . , n we have

Fi = fiOf + fωOf = fiOf/fi
= (Of : Of/fi

)

that is, Fi is the conductor of the order Of/fi
= Z[ f

fi
ω] into the order Z[fω].
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