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1. Introduction

When D is a domain with field of fractions K, the ring of integer-valued polynomials 
on D is Int(D) = {f ∈ K[x] | f(D) ⊆ D}. Such rings have been extensively studied 
over the past several decades; the reader is referred to [5] for standard results on these 
objects. More recently, attention has turned to the consideration of integer-valued poly-
nomials on algebras [6,8–12,17,18,20–23]. The typical approach for this construction is 
to take a torsion-free D-algebra A that is finitely generated as a D-module and such 
that A ∩K = D. Then, we define IntK(A) to be the set of polynomials in K[x] that map 
elements of A back to A under evaluation. That is, IntK(A) := {f ∈ K[x] | f(A) ⊆ A}, 
which is a subring of Int(D). (Technically, evaluation of f ∈ K[x] at elements of A is 
performed in the tensor product K ⊗D A by associating K and A with their canonical 
images K ⊗ 1 and 1 ⊗ A. In practice, however, it is usually clear how to perform the 
evaluation without the formality of tensor products.)

Depending on the choice of A, the ring IntK(A) can exhibit similarities to, or stark 
differences from, Int(D). For instance, if A is the ring of integers of a number field (viewed 
as a Z-algebra), then IntQ(A) is—like Int(Z)—a Prüfer domain [17, Thm. 3.7], hence is 
integrally closed. In contrast, when A = Mn(Z) is the algebra of n × n matrices with 
entries in Z, IntQ(A) is not integrally closed (although its integral closure is a Prüfer 
domain) [17, Sec. 4]. In a more general setting, it is known [5, Thm. VI.1.7] that if D
is a Dedekind domain with finite residue fields, then Int(D) is a Prüfer domain, and 
so is integrally closed. The motivation for this paper was to show, by giving a form for 
a general counterexample, that IntK(Mn(D)) is not integrally closed. In this vein, we 
make the following definition.

Definition 1.1. A polynomial f ∈ K[x] will be called properly integral over IntK(A) if f
lies in the integral closure of IntK(A), but f /∈ IntK(A).

Note that the integral closure of IntK(A) in its field of fractions K(x) is contained in 
K[x], so that IntK(A) is integrally closed if and only if there are no properly integral 
polynomials over IntK(A). It has been known for some time that IntQ(Mn(Z)) is not 
integrally closed. However, the first published example of a properly integral polynomial 
over IntQ(Mn(Z)) was given only recently by Evrard and Johnson in [9], and only for 
the case n = 2. We will give a general construction for a properly integral polynomial 
over IntK(Mn(D)), where D is a Dedekind domain with finite residue rings, and n ≥ 2
is arbitrary.

The theorems in this paper can be seen as complementary to the work of Evrard and 
Johnson. Their results relied heavily on the P -orderings and P -sequences of Bhargava 
[4] and the generalizations of these in [15]. In the case where D = Z, a properly integral 
polynomial f(x) = g(x)/pk (where g ∈ Z[x], pk is a prime power, and p does not divide g) 
over IntQ(Mn(Z)) produced by using the methods and p-sequences in [9] is optimal in 
the sense that f has minimal degree among all properly integral polynomials of the form 
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g1(x)/pk1 , where k1 > 0. However, building such an f requires knowing the p-sequences 
for IntQ(Mn(Z)) and its integral closure. In general, these sequences are quite difficult 
to determine; to date, formulas for such p-sequences have been given only in the case 
n = 2. In contrast, our construction gives a properly integral polynomial for a much larger 
variety of rings and does not require a P -sequence, but it is only known to be optimal 
when n = 2 and D = Z—a fact we can prove precisely because of the p-sequences derived 
in [9].

The paper proceeds as follows. Section 2 begins with a concrete construction for a 
properly integral polynomial over IntK(Mn(D)) that works when D is a discrete valua-
tion ring (DVR). This local result is then globalized (Theorem 3.3) in Section 3 to the 
case where D is a Dedekind domain. We also point out (Corollary 3.5) that the same 
construction works for some algebras that are not matrix rings. Section 4 relates our 
work to the P -sequences used by Evrard and Johnson. We generalize (Theorem 4.10) a 
classical theorem known to Dickson [7, Thm. 27, p. 22] concerning the ideal of polyno-
mials in Z[x] whose values over Z are divisible by a fixed prime power pk, k ≤ p, and 
use this generalization to give a concise formula (Corollary 4.20) for the initial terms of 
the P -sequence for IntK(Mn(V )), where V is a DVR and n ≥ 2. Finally, by utilizing 
the formulas given in [9] for the p-sequences of the integral closure of IntQ(M2(Z)), we 
prove that the polynomials produced by our construction are optimal (in the sense of 
the previous paragraph) when D = Z and n = 2 (Corollary 4.21).

2. Construction of the properly integral polynomial

Let V be a discrete valuation ring (DVR) with maximal ideal πV , field of fractions K, 
and finite residue field V/πV ∼= Fq. Fix an algebraic closure K of K and for each n ≥ 2, 
let Λn(V ) be the set of elements of K whose degree over V is at most n. For each 
α ∈ Λn(V ), we let Oα be the integral closure of V in K(α).

We know [22, Cor. 16] that the integral closure of IntK(Mn(V )) is equal to

IntK(Λn(V )) := {f ∈ K[x] | f(Λn(V )) ⊆ Λn(V )}.

Note that since Λn(V ) ∩K(α) = Oα, we have f ∈ IntK(Λn(V )) if and only if f(α) ∈ Oα

for each α ∈ Λn(V ). Here, we will give a general construction for a polynomial F that 
is properly integral over IntK(Mn(V )); that is, F ∈ IntK(Λn(V )) \ IntK(Mn(V )). The 
idea behind the construction is as follows.

A polynomial f ∈ K[x] is integer-valued on Mn(V ) if and only if it is integer-valued 
on the set of n × n companion matrices in Mn(V ) [10, Thm. 6.3]. It turns out that if f
is integer-valued on “enough” companion matrices, then it can still lie in IntK(Λn(V )). 
However, as long as f is not integer-valued on at least one companion matrix, f will 
not be in IntK(Mn(V )). So, we will build a polynomial that is integer-valued on almost 
all of the companion matrices in Mn(V ); specifically, our polynomial will fail to be 
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integer-valued on the set of companion matrices whose characteristic polynomial mod π
is a power of a linear polynomial.

As part of our construction, we will lift elements from Fq or Fq[x] up to V or V [x]. 
To be precise, one should first pick residue representatives for Fq and Fq[x], and then 
use these in all calculations taking place over V . However, to ease the notation, we will 
write Fq throughout. When a calculation must be performed over the finite field, we will 
say it occurs “mod π” or “in Fq”.

Construction 2.1. Let n ≥ 2. Let

P = {f ∈ Fq[x] | f is monic, irreducible, and 2 ≤ deg f ≤ n},

θ(x) =
∏
f∈P

f(x)�n/ deg f�,

h(x) = xn−1
∏

a∈F
×
q

(xn + πa),

H(x) =
∏
b∈Fq

h(x− b), and finally

F (x) = H(x)(θ(x))q

πq
.

The simplest example for F occurs when n = 2 and V = Z(2), so that q = 2. Then, 
we have

F (x) = x(x2 + 2)(x− 1)((x− 1)2 + 2)(x2 + x + 1)2

4 .

Our main result is the following.

Theorem 2.2. Let F be as in Construction 2.1. Then, F is properly integral over 
IntK(Mn(V )).

Remark 2.3. Even if one specifies a degree d0 and a denominator d, properly integral 
polynomials of the form g(x)/d with deg g = d0 are not unique. Indeed, [9, Cor. 3.6]
shows that

G(x) = x(x2 + 2x + 2)(x− 1)(x2 + 1)(x2 − x + 1)(x2 + x + 1)
4

is properly integral over IntQ(M2(Z(2))), and clearly G is not equal to the F given above. 
However, one may prove the following. Let I be the ideal of Z(2)[x] generated by 4 and 
2x2(x − 1)2(x2 + x + 1). If G1, G2 ∈ Z(2)[x] are both monic of degree 10 and both 
F1 = G1/4 and F2 = G2/4 are properly integral over IntQ(M2(Z(2))), then G1 and G2
are equivalent modulo I. As one may check, this is the case with F and G. Similar 
equivalences are possible for other choices of V , d0, and d.
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One part of Theorem 2.2 is easy to prove. The remaining parts are more involved, 
and the proof is completed at the end of Section 2.

Lemma 2.4. F /∈ IntK(Mn(V )).

Proof. Let C ∈ Mn(V ) be the companion matrix for xn. Then, (
∏

a∈F
×
q
h(C−aI))(θ(C))q

is a unit mod π, hence is also a unit mod πq. So, the only way that F (C) will be in 
Mn(V ) is if h(C) is 0 mod πq. However,

h(C) = Cn−1
∏

a∈F
×
q

(Cn + πaI) = Cn−1
∏

a∈F
×
q

(πa)I

is only divisible by q − 1 powers of π. Thus, h(C) /∈ πqMn(V ), F (C) /∈ Mn(V ), and 
F /∈ IntK(Mn(V )). Note that the same steps work if we replace xn by (x − a)n, where 
a ∈ F×

q , and replace h(x) with h(x − a). �
Remark 2.5. The failure of F to lie in IntK(Mn(V )) can also be expressed in terms of 
pullback rings. By [18, Rem. 2.1 & (3)]), we have

IntK(Mn(V )) =
⋂

f∈Pn

(V [x] + f(x)K[x]),

where Pn is the set of monic polynomials in V [x] of degree exactly equal to n. The 
previous Claim then demonstrates that F /∈ V [x] + (x − a)nK[x] for any a ∈ Fq.

Showing that F ∈ IntK(Λn(V )) is more difficult. The general idea is to take α ∈ Λn(V )
and focus on its minimal polynomial m(x) over V . We then consider two possibilities, 
according to how the polynomial m(x) factors over the residue field. Either m(x) ≡
(x − a)n mod π, for some a ∈ Fq; or m(x) 
≡ (x − a)n mod π, for all a ∈ Fq. The first 
case is the more difficult one, and occupies the next several results. The second case is 
dealt with in Lemma 2.10, right before we complete the proof of Theorem 2.2.

So, for now we concentrate on those cases where m(x) ≡ (x − a)n mod π for some 
a ∈ Fq. In fact, by translation, it will be enough to consider the case where m(x) ≡
xn mod π. Our starting point is a lemma involving symmetric polynomials. Given a 
set S = {x1, x2, . . . , xn}, for each 1 ≤ k ≤ n, we let σk(S) denote the kth elementary 
symmetric polynomial in x1, x2, . . . , xn.

Lemma 2.6. Let V be the integral closure of V in K. Let n ≥ 2, let S = {α1, α2, . . . , αn} ⊂
V , and let Sn−1 = {αn−1

1 , αn−1
2 , . . . , αn−1

n }. Assume the following:

• σk(S) ∈ πV , for all 1 ≤ k ≤ n − 1.
• σn(S) ∈ π2V .

Then, σk(Sn−1) ∈ πkV for each 1 ≤ k ≤ n.
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Proof. The stated conditions ensure that 
∏n

k=1(x −αk) ∈ V [x]. In particular, S ⊂ Λn(V )
and the set of conjugates of each αk is contained in S. From this, it follows that the 
polynomial 

∏n
k=1(x − αn−1

k ) is also in V [x], and thus that σk(Sn−1) ∈ V for each k. It 
remains to show that πk divides σk(Sn−1).

Fix k between 1 and n and consider σk(Sn−1). By “total degree” we mean degree as 
a polynomial in α1, α2, . . . , αn. Thus, each element of Sn−1 has total degree n − 1; each 
monomial of σk(Sn−1) has total degree k(n − 1); and σk(Sn−1), being homogeneous in 
α1, α2, . . . , αn, also has total degree k(n −1). By the Fundamental Theorem of Symmet-
ric Polynomials, σk(Sn−1) equals a polynomial f in σ1(S), σ2(S), . . . , σn(S). Moreover, 
each monomial aσ1(S)e1σ2(S)e2 · · ·σn(S)en in f has total degree (as a polynomial in 
α1, α2, . . . , αn) equal to k(n − 1). It suffices to prove that each such monomial in f is 
divisible by πk.

Let v denote the natural valuation for V and let β = aσ1(S)e1σ2(S)e2 · · ·σn(S)en be 
a monomial of f in σ1(S), σ2(S), . . . , σn(S). Since the total degree of β is k(n − 1), we 
obtain

e1 + 2e2 + · · · + nen = k(n− 1). (2.7)

Also, by assumption,

v(β) ≥ v(σ1(S)e1) + v(σ2(S)e2) + · · · + v(σn(S)en)

≥ e1 + e2 + · · · + en−1 + 2en.

We want to show that v(β) ≥ k. From (2.7), we have

k = e1

n− 1 + 2e2

n− 1 + · · · + (n− 1)en−1

n− 1 + nen
n− 1

≤ e1 + e2 + · · · + en−1 + 2en

≤ v(β),

as desired. �
Lemma 2.6 is used to prove the first part of the next proposition.

Proposition 2.8. Let α ∈ Λn(V ) with minimal polynomial over V equal to m(x) = xn +
πan−1x

n−1 + · · · + πa1x + πa0, where each ak ∈ V .

(1) If a0 ∈ πV , then αn−1/π ∈ Oα.
(2) If a0 /∈ πV , then (αn−1(αn+πa))/π2 ∈ Oα, where a ∈ Fq is the residue of a0 mod π.

Proof. (1) Assume a0 ∈ πV . Let α1, α2, . . . , αn be the roots of m. Let S =
{α1, α2, . . . , αn} and Sn−1 = {αn−1

1 , αn−1
2 , . . . , αn−1

n }. Then, the conditions of Lemma 2.6
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are satisfied, so σk(Sn−1) ∈ πkV for each 1 ≤ k ≤ n. Let g(x) =
∏n

k=1(x − αn−1
k /π). 

Then, the coefficient of xn−k in g(x) is (−1)n−kσk(Sn−1)/πk ∈ V . Thus, g ∈ V [x] and 
g(αn−1/π) = 0, so αn−1/π ∈ Oα.

(2) Assume a0 /∈ πV . Let a′ ∈ V be such that a − a0 = πa′. Since m(α) = 0, we have

αn = −πan−1α
n−1 − · · · − πa1α− πa0.

In particular, this means that αn ∈ πOα. Next,

αn−1(αn + πa) = αn−1(−πan−1α
n−1 − · · · − πa1α− πa0 + πa)

= αn−1(−πan−1α
n−1 − · · · − πa1α + π2a′).

For each 1 ≤ k ≤ n − 1, αn−1(πakαk) is divisible by both π and αn, so αn−1(πakαk) ∈
π2Oα. Also, αn−1π2a′ ∈ π2Oα. It now follows that (αn−1(αn + πa))/π2 ∈ Oα. �

Now, we relate Proposition 2.8 to the polynomial from Construction 2.1.

Proposition 2.9. Let α ∈ Λn(V ) have minimal polynomial m(x) such that m(x) ≡
xn mod π. Let f(x) = h(x)/πq, where h is as in Construction 2.1. Then, f(α) ∈ Oα.

Proof. Since m(x) ≡ xn mod π, we have m(x) = xn +πan−1x
n−1 + · · ·+πa1x +πa0 for 

some a0, . . . , an−1 ∈ V . Note that for a ∈ F×
q , we have (αn + πa)/π ∈ Oα.

If a0 ∈ πV , then αn−1/π ∈ Oα by Proposition 2.8 part (1). In this case,

f(α) = αn−1

π

∏
a∈F

×
q

αn + πa

π

is an element of Oα.
If a0 /∈ πV , then by Proposition 2.8 part (2), there exists a ∈ F×

q such that (αn−1(αn+
πa))/π2 ∈ Oα. This time, we group the factors of f(α) as

f(α) = αn−1(αn + πa)
π2

∏
b∈F×

q ,
b�=a

αn + πb

π

and as before we see that f(α) ∈ Oα. �
Proposition 2.9 is what we ultimately need to prove Theorem 2.2. As mentioned after 

Remark 2.5, there is a second case to consider, in which an element α ∈ Λn(V ) has a 
minimal polynomial m(x) such that m(x) 
≡ (x − a)n mod π, for all a ∈ Fq. Most of the 
work required in this case is done in the next lemma.
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Lemma 2.10. Let α ∈ Λn(V ) with minimal polynomial m(x) such that m(x) 
≡
(x− a)n mod π, for all a ∈ Fq. Then the numerator of F admits a factorization 
H(x)(θ(x))q =

∏
b∈Fq

fb(x) such that m(x) divides fb(x) mod π for each b. Consequently, 
F (α) ∈ Oα.

Proof. We have

H(x) =
∏
b∈Fq

h(x− b)

=
∏
b∈Fq

[
(x− b)n−1

∏
a∈F

×
q

((x− b)n + πa)
]

=
[ ∏
b∈Fq

(x− b)n−1
][ ∏

a∈F
×
q

∏
b∈Fq

((x− b)n + πa)
]
.

Let f0(x) = (
∏

b∈Fq
(x − b)n−1)θ(x) and for each a ∈ F×

q , let fa(x) = (
∏

b∈Fq
((x − b)n +

πa))θ(x). Then, H(x)(θ(x))q =
∏

b∈Fq
fb(x).

Now, factor m(x) mod π as

m(x) ≡ ι1(x)n1ι2(x)n2 · · · ιt(x)nt

where each ιk is a distinct monic irreducible polynomial in Fq[x]. Assuming that m(x) 
≡
(x − a)n mod π for any a ∈ Fq, each exponent nk satisfies 1 ≤ nk ≤ �n/ deg(ιk)
 < n

if deg(ιk) > 1 or 1 ≤ nk < n if deg(ιk) = 1. So, working mod π, the product of the 
ιnk

k with deg(ιk) > 1 divides θ; and the product of the ιnk

k with deg(ιk) = 1 divides 
fb/θ for each b ∈ Fq. Hence, m(x) divides fb(x) mod π. Finally, the last condition 
implies that fb(α) ∈ πOα for each b. Thus, H(α)(θ(α))q =

∏
b∈Fq

fb(α) ∈ πqOα, and so 
F (α) ∈ Oα. �

Finally, we complete the proof of Theorem 2.2. For convenience, the theorem is re-
stated below.

Theorem 2.2. Let the notation be as in Construction 2.1. Then, F is properly integral 
over IntK(Mn(V )).

Proof. The polynomial F /∈ IntK(Mn(V )) by Lemma 2.4. To show that F ∈
IntK(Λn(V )), let α ∈ Λn(V ). We will prove that F (α) ∈ Oα.

Let m(x) be the minimal polynomial of α. If m(x) ≡ (x −a)n mod π for some a ∈ Fq, 
then by Proposition 2.9 we have h(α − a)/πq ∈ Oα. Hence, F (α) ∈ Oα in this case. 
If instead m(x) 
≡ (x − a)n mod π for all a ∈ Fq, then by Lemma 2.10 we still have 
F (α) ∈ Oα. �
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3. Globalization and extension to algebras

In this section, we discuss how to globalize Construction 2.1, and demonstrate that it 
is applicable to algebras other than matrix rings.

Thus far, we have focused on the local case and worked with the DVR V . However, 
since the formation of our integer-valued polynomial rings is well-behaved with respect 
to localization, our results can be applied to the global case where V is replaced with a 
Dedekind domain. For the remainder of this section, D will denote a Dedekind domain 
with finite residue fields. As with V , we let K be the fraction field of D and we fix 
an algebraic closure K of K. For n ≥ 2, let Λn(D) be the set of elements of K whose 
degree over D is at most n. Then, by [22, Cor. 16], the integral closure of IntK(Mn(D))
is IntK(Λn(D)). By taking V = DP for a nonzero prime P of D, we can use our local 
construction to produce polynomials that are properly integral over IntK(Mn(D)). Most 
of the work is done in the following lemma, which works over any integral domain D.

Lemma 3.1. Let R and S be D-modules such that D[x] ⊆ R ⊆ S ⊆ K[x]. Assume there 
exists a nonzero prime P of D such that RP � SP , and let f ∈ SP \ RP . Then, there 
exists c ∈ D \ P such that cf ∈ S \R.

Proof. Write f(x) = g(x)/d, where g ∈ S, d ∈ D \ P , and d does not divide g. Since 
f(x) is not in RP , g /∈ R. Hence, df = g ∈ S \R, as wanted. �

We also require a result regarding the localization of IntK(A) at primes of D.

Proposition 3.2. ([23, Prop. 3.1, 3.2]) Let A be a torsion-free D-algebra that is finitely 
generated as D-module and such that A ∩K = D. Then, IntK(A)Q = IntK(AQ) for each 
nonzero prime Q of D, and IntK(A) =

⋂
Q IntK(A)Q, where the intersection is over all 

nonzero primes Q of D.

Combining Construction 2.1 with Lemma 3.1 now allows us to produce polynomials 
that are properly integral over IntK(Mn(D)).

Theorem 3.3. Let P be a nonzero prime of D. Let V = DP and let F be the polynomial 
from Construction 2.1 applied to V . Then, there exists c ∈ D\P such that cF is properly 
integral over IntK(Mn(D)). In particular, if P is principal, then we can take c = 1.

Proof. By Proposition 3.2, IntK(Mn(D))P = IntK(Mn(V )), and a similar argument 
shows that IntK(Λn(D))P = IntK(Λn(V )). So, we can apply Lemma 3.1 with R =
IntK(Mn(D)), S = IntK(Λn(D)), and f = F . Furthermore, if P is principal, then we 
can assume the denominator πq of F is in D and that P = πD. In this case, it is 
immediately seen that F itself is already an element of S \ R, since F ∈ SQ for every 
prime ideal Q of D different from P and S =

⋂
Q SQ, the intersection ranging over the 

set of all non-zero prime ideals of D. �
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Corollary 3.4. Let D be a Dedekind domain with finite residue fields. Let K be the field 
of fractions of D and let n ≥ 2. Then, IntK(Mn(D)) is not integrally closed.

Finally, we show that the polynomial in Construction 2.1 can be applied to D-algebras 
other than matrix rings. Consider a torsion-free D-algebra A that is finitely generated 
as a D-module and such that A ∩ K = D. If A has a generating set consisting of at 
most n elements, then each element of A satisfies a monic polynomial in D[x] of degree 
at most n (see for example [2, Thm. 1, Chap. V] or [1, Prop. 2.4, Chap. 2]). It is then a 
consequence of [13, Lem. 3.4] that IntK(Mn(D)) ⊆ IntK(A), and thus that the integral 
closure of IntK(A) contains IntK(Λn(D)).

Corollary 3.5. Let D and A be as above. Assume that there exists a nonzero prime P
of D such that A/P qA ∼= Mn(D/P q), where q = |D/P |. Let cF be as in Theorem 3.3. 
Then, cF is properly integral over IntK(A). Thus, IntK(A) is not integrally closed.

Proof. The polynomial cF is in the integral closure of IntK(A) because this integral clo-
sure contains IntK(Λn(D)). To show that cF /∈ IntK(A), we will work with localizations. 
Localize the algebra A in the natural way to produce the DP -algebra AP . Let π be the 
generator of PDP . Then, for all k > 0, we have AP /π

kAP = AP /P
kAP

∼= A/P kA. In 
particular, AP /π

qAP
∼= Mn(D/P q).

Now, by Proposition 3.2, we see that IntK(A)Q = IntK(AQ) for all nonzero primes 
Q of D, and IntK(A) =

⋂
Q IntK(A)Q. So, to prove that cF /∈ IntK(A), it suffices to 

show that cF /∈ IntK(AP ), and since c is a unit of DP , it will be enough to demonstrate 
that F /∈ IntK(AP ). Suppose by way of contradiction that F ∈ IntK(AP ). Then, the 
numerator G of F is such that G(AP ) ⊆ πqAP ; equivalently, G(AP /π

qAP ) is 0 mod πq. 
However, because AP /π

qAP
∼= Mn(D/P q), the argument used Lemma 2.4 shows that 

this is impossible. Thus, we conclude that F /∈ IntK(AP ). �
Example 3.6. Corollary 3.5 can be applied when D = Z and A is a certain quaternion 
algebra. Let i, j, and k be such that i2 = j2 = −1 and ij = k = −ji. Let A be either the 
Lipschitz quaternions

A = {a0 + a1i + a2j + a3k | ai ∈ Z}

or the Hurwitz quaternions

A = {a0 + a1i + a2j + a3k | ai ∈ Z for all i or ai ∈ Z + 1
2 for all i}.

In either case, it is a standard exercise (cf. [14, Exer. 3A]) that for each odd prime p
and each k > 0, we have A/pkA ∼= M2(Z/pkZ). Hence, Corollary 3.5 applies, and the 
polynomial F from Construction 2.1 is properly integral over IntQ(A).
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In particular, consider the polynomial F obtained when p = 3. The numerator of F is

G(x) = x(x2 + 3)(x2 + 6)(x− 1)((x− 1)2 + 3)((x− 1)2 + 6)

× (x− 2)((x− 2)2 + 3)((x− 2)2 + 6)(x2 + 1)3(x2 + x + 2)3(x2 + 2x + 2)3

and F (x) = G(x)/27, a polynomial of degree 33 that is properly integral over IntQ(A).
By contrast, a polynomial g(x)/27 ∈ IntQ(A) (with g(x) ∈ Z[x] not divisible by 3) 

must have degree at least 36. Indeed, the isomorphisms A/3kA ∼= M2(Z/3kZ), k ∈ N, 
imply that a polynomial g1(x)/3k1 (with g1 ∈ Z[x] not divisible by 3, and k1 > 0) 
is in IntQ(A) if and only if it is in IntQ(M2(Z)). As our results in Section 4 (such 
as Corollary 4.20) will show, if g(x)/27 ∈ IntQ(M2(Z)), then deg(g) ≥ 36. Explicitly, 
[(x9 − x)(x3 − x)]3/27 ∈ IntQ(M2(Z)) (and hence is in IntQ(A) as well), and there is no 
polynomial of the form g(x)/27 of smaller degree in IntQ(A).

4. Null ideals and π-sequences

Maintain the notation given at the start of Section 2. Our work so far shows that the 
polynomial F from Construction 2.1 is properly integral over IntK(Mn(V )). However, it 
is possible that there could be a polynomial of degree less than F that is also properly 
integral over IntK(Mn(V )). This inspires the next definition.

Definition 4.1. Let V be a DVR with fraction field K. A polynomial f ∈ K[x] that is 
properly integral over IntK(Mn(V )) is said to be optimal if f is of minimal degree among 
all properly integral polynomials over IntK(Mn(V )).

We are interested in determining whether our polynomial F is optimal. In general, 
this is quite hard to do. One way to make progress is to follow the lead of [9] and study 
P -sequences for IntK(Mn(V )) and IntK(Λn(V )).

Bhargava introduced P -sequences and P -orderings for Dedekind domains in [4], and 
these notions were extended to certain noncommutative rings by Johnson in [15]. Among 
other uses, P -sequences and P -orderings can be used to give regular bases for rings of 
integer-valued polynomials (see [4,15], and [9]). For our purposes, P refers to the maximal 
ideal πV of V , and we will consider π-sequences for IntK(Mn(V )) and IntK(Λn(V )).

Recall first Johnson’s definition from [15], and its connection to integer-valued poly-
nomials.

Definition 4.2. ([15, Def. 1.1]) Let K be a local field with valuation v, D a division algebra 
over K to which the valuation v extends, R the maximal order in D, and S a subset of R. 
Then, a v-ordering of S is a sequence {ai | i ∈ N} ⊆ S with the property that for each 
i > 0 the element ai minimizes the quantity v(fi(a0, . . . , ai−1)(a)) over a ∈ S, where 
f0 = 1 and, for i > 0, fi(a0, . . . , ai−1)(x) is the minimal polynomial (in the sense of [16]) 
of the set {a0, a1, . . . , ai−1}. The sequence of valuations {v(fi(a0, . . . , ai−1)(ai)) | i ∈ N}
is called the v-sequence of S.
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Proposition 4.3. ([15, Prop. 1.2]) With notation as in Definition 4.2, let π ∈ R be a 
uniformizing element. Then, the v-sequence {αS(i) = v(fi(a0, . . . , ai−1)(ai)) | i ∈ N}
depends only on the set S and not on the choice of v-ordering. Moreover, the sequence 
of polynomials

{π−αS(i)fi(a0, . . . , ai−1)(x) | i ∈ N}

forms a regular R-basis for the R-algebra of polynomials integer-valued on S.

In [9], Evrard and Johnson used these notions to construct p-sequences (p a prime 
of Z) and regular bases for IntQ(M2(Z(p))) and its integral closure IntQ(R2,p) (here, R2,p
is the maximal order of a division algebra of degree 4 over the field of p-adic numbers). 
We take a slightly different approach and define our π-sequences with regular bases and 
optimal polynomials in mind.

Definition 4.4. Express polynomials in K[x] in lowest terms, i.e. in the form g(x)/πk, 
where g ∈ V [x], k ≥ 0, and, if k > 0, then π does not divide g. The π-sequence μ0, μ1, . . .
of IntK(Mn(V )) is the sequence of non-negative integers such that

μd = max{k | there exists gd(x)/πk ∈ IntK(Mn(V )) of degree d}.

In other words, having μd = k means there exists gd(x) ∈ V [x] of degree d such that 
gd(x)/πk ∈ IntK(Mn(V )) with k as large as possible.

The π-sequence λ0, λ1, . . . of IntK(Λn(V )) is defined similarly.

Lemma 4.5. For each d ∈ N, let fd be a polynomial of degree d in V [x] \πV [x], and let αd

be a non-negative integer. If {fd(x)/παd | d ∈ N} is a regular V -basis for IntK(Mn(V ))
(respectively, IntK(Λn(V ))), then μd = αd (respectively, λd = αd) for all d.

Proof. We will prove this for IntK(Mn(V )) and μd; the proof for IntK(Λn(V )) and λd is 
identical. By means of the notion of characteristic ideals and using [5, Prop. II.1.4], the 
sequence {gd(x)/πμd | d ∈ N} forms a regular V -basis for IntK(Mn(V )). Let {fd(x)/παd |
d ∈ N} be another regular V -basis for IntK(Mn(V )). Then, we must have μd = αd, 
because the leading coefficients of the elements of two regular bases of the same degree 
must have the same valuation. �

Relating the previous definition and lemma to the work done in [9], we obtain the 
following.

Corollary 4.6. Let n = 2, let p be a prime of Z, and let V = Z(p). Then, λd is equal to 
the p-sequence for IntQ(R2,p) given in [9, Cor. 2.17].

Returning now to the question of optimal properly integral polynomials, we can phrase 
things in terms of π-sequences. Since IntK(Mn(V )) � IntK(Λn(V )), we have μd ≤ λd
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for all d, and there exists d such that μd < λd. Assume we have found the smallest d
such that μd < λd. Then, there exists a properly integral polynomial f(x) = g(x)/πλd

of degree d, and f(x) is optimal.
By Corollary 4.6, when n = 2 and p is a prime of Z, the terms of λd can be computed 

by using recursive formulas given in [9]. For the general case where n ≥ 2 and V is a 
DVR, we now proceed to use the null ideals of the matrix rings Mn(V/πkV ) to compute 
the initial terms of μd, although we will not be able to give a formula for the complete se-
quence. Nevertheless, we will be able to prove (Corollary 4.21) that the properly integral 
polynomial F constructed for IntQ(M2(Z(p))) is optimal.

We first recall the definition of a null ideal.

Definition 4.7. Let R be a commutative ring, and let S be a subset of some ring contain-
ing R. We define the null ideal of S in R to be NR(S) = {f ∈ R[x] | f(S) = 0}.

There is a strong connection between null ideals and integer-valued polynomials, as 
described in the next lemma. This relationship has been used before in various forms 
(see [13,18,23], and [25], for example).

Lemma 4.8. In the above notation, let k ∈ N and f(x) = g(x)/πk ∈ K[x], for 
some g ∈ V [x]. Then f(x) is in IntK(Mn(V )) if and only if g(x) mod πk is in 
NV/πkV (Mn(V/πkV )).

Proof. The polynomial f(x) is integer-valued over Mn(V ) if and only if g(x) maps every 
matrix in Mn(V ) to the ideal πkMn(V ) = Mn(πkV ). Considering everything modulo 
πkV , we get the stated result, using the fact that Mn(πkV ) ∩ V = πkV . �

Hence, null ideals can give us information about rings of integer-valued polynomials. 
We are interested in describing generators for the null ideal of Mn(V/πkV ) in V/πkV . 
The following polynomials will be crucial in our treatment.

Notation 4.9. For each n ≥ 1 and each prime power q, we define

Φq,n(x) = (xqn − x)(xqn−1 − x) · · · (xq − x).

With a slight abuse of notation, we will use Φq,n(x) to denote the same polynomial over 
any of the residue rings V/πkV , k ∈ N. The coefficient ring of the polynomial will be 
clear from the context.

Our goal for most of the rest of this section is to prove the next theorem.

Theorem 4.10. Let n ≥ 1 and let 1 ≤ k ≤ q. Then,

NV/πkV (Mn(V/πkV )) = (Φq,n(x), π)k = (Φq,n(x)k, πΦq,n(x)k−1, . . . , πk−1Φq,n(x)).
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Using different terminology, this theorem was proven for k = 1 in [3, Thm. 3]; we will 
revisit that result below in Theorem 4.14. When n = 1, we have Φq,1(x) = xq − x, and 
Theorem 4.10 is the assertion that NV/πkV (V/πkV ) = (xq − x, π)k for 1 ≤ k ≤ q. If, in 
addition, V is a localization of Z, then this is actually a classical result which can be 
found in the book of Dickson [7, Thm. 27, p. 22]. An alternate modern treatment, which 
examines the pullback to Z[x] of the null ideal NZ/pkZ(Z/pkZ), is given in [19, Thm. 3.1].

The proof of Theorem 4.10 is complicated, and involves several stages and preliminary 
results. We will need to work with different sets of polynomial, common multiples, and 
least common multiples across the different residue rings V/πkV . To help simplify the 
necessary notation, we adopt the following conventions (the need for all this notation 
will become apparent as we work through the proof).

Definitions–Notations 4.11.

• For each k ≥ 1 let Vk = V/πkV and Nk = NVk
(Mn(Vk)). Note that V1 = Fq.

• Since n and q will be fixed, let Φ = Φq,n.
• For each k ≥ 1, let φk(x) be a monic polynomial of minimal degree in Nk.
• For each k ≥ 1 and each d ≥ 1, let Pd(Vk) denote the set of monic polynomials of 

degree d in Vk[x].
• Let P irr

≤n(Fq) = P irr
≤n denote the set of monic irreducible polynomials in Fq[x] of 

degree at most n.
• For each k ≥ 1, f ∈ Vk[x], and ι ∈ P irr

≤n, we say that f is ι-primary if f is monic and 
the residue of f in Fq[x] is a positive power of ι.

• For each k ≥ 1, each d ≥ 1, and each ι ∈ P irr
≤n, let Pι

d(Vk) denote the set of ι-primary 
polynomials in Vk[x] of degree d.

• For each k ≥ 1, each d ≥ 1, and each ι ∈ P irr
≤n, let Lι

d(Vk) be a monic least common 
multiple (lcm) for the polynomials in Pι

d(Vk). That is, Lι
d(Vk) is a monic polynomial 

in Vk[x] of least degree such that each f ∈ Pι
d(Vk) divides Lι

d(Vk). An lcm need not 
be unique but the degree of an lcm is uniquely determined (see the discussion in 
[24]).

In [13], Frisch described some general properties of null ideals and matrices that we 
will find very useful.

Lemma 4.12.

(1) [13, Lem. 3.3] Let R be a commutative ring, f ∈ R[x] a monic polynomial and 
C ∈ Mn(R) the companion matrix of f . Then NR(C) = f(x)R[x].

(2) [13, Lem. 3.4] Let D be a domain and f(x) = g(x)/c, g ∈ D[x], c ∈ D \ {0}. Then 
f ∈ IntK(Mn(D)) if and only if g is divisible modulo cD[x] by all monic polynomials 
in D[x] of degree n.
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Specializing to our situation, we easily obtain the following corollary.

Corollary 4.13. Let k ≥ 1.

(1) Let f ∈ Vk[x], let m ∈ Pn(Vk), and let C ∈ Mn(Vk) be the companion matrix for m. 
Then, m divides f if and only if f(C) = 0.

(2) Let f ∈ Vk[x]. Then, f ∈ Nk if and only if f is divisible by every polynomial in 
Pn(Vk).

(3) The polynomial φk is an lcm for Pn(Vk).

Proof. Part (1) is a restatement of Lemma 4.12 (1). Part (2) follows from Lemmas 4.8
and 4.12 (2). Finally, for (3), φk is monic by assumption, and is a common multiple for 
Pn(Vk) because φ ∈ Nk. But, the minimality of degφk means that φk is in fact an lcm 
for Pn(Vk). �

Thus, we have established a connection between null ideals and least common multi-
ples of the sets Pn(Vk). If we focus on the case k = 1, then everything is taking place 
over the field Fq. In this situation, the aforementioned theorem [3, Thm. 3] brings us 
back to the polynomial Φ = Φq,n.

Theorem 4.14. ([3, Thm. 3 & eq. (3.3)]) Let n ≥ 1 and let q be a prime power. Let Φq,n

be as in Notation 4.9.

(1) NFq
(Mn(Fq)) is generated by Φq,n.

(2) Φq,n is the (unique) lcm for Pn(Fq).
(3) The factorization of Φq,n into irreducible polynomials is

Φq,n =
∏

ι∈Pirr
≤n

ι�n/ deg ι�.

Finally, we have all the necessary tools and can proceed with the proof of Theo-
rem 4.10. We break the proof up into three Claims. The first claim shows that it suffices 
to compare the degrees of the polynomials φk and Φk.

Claim 1. To prove Theorem 4.10, it suffices to show that deg(φk) ≥ deg(Φk) for all 
1 ≤ k ≤ q.

Proof. Fix k between 1 and q. Since over Fq we have N1 = (Φ) by Theorem 4.14
(1), over Vk we have Φk ∈ Nk, and by [25, Thm. 5.4], the ideal Nk is equal to 
(φk, πφk−1, π2φk−2, . . . , πk−1φ1). So, to prove Theorem 4.10, it will be enough to show 
that we can take φk = Φk, and doing so is valid if deg(φk) = deg(Φk).
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Now, by Corollary 4.13 part (3), φk is an lcm for Pn(Vk). We will show that Φk is 
a common multiple for Pn(Vk), i.e. that each f ∈ Pn(Vk) divides Φk. To do this, let 
f ∈ Pn(Vk) and let C ∈ Mn(Vk) be the companion matrix for f .

Recall that we have a canonical projection map from Mn(Vk) to Mn(Fq), whose kernel 
is πMn(Vk) = Mn(πVk). Over the residue field Fq, by Theorem 4.14 the polynomial Φ is 
zero on the matrix obtained by reducing the entries of C modulo π. It follows that over 
Vk we have Φ(C) ∈ Mn(πVk). Hence, Φ(C)k = 0 in Mn(Vk).

By Corollary 4.13 (1), f divides Φk, and since f was arbitrary, we conclude that Φk is a 
common multiple for Pn(Vk). Since φk is an lcm for Pn(Vk), we have deg(φk) ≤ deg(Φk).

Thus, to complete the proof, it suffices to show that deg(φk) ≥ deg(Φk). �
Next, we argue that it is enough just to focus our attention on ι-primary polynomials.

Claim 2. To prove Theorem 4.10, it suffices to show that for all 1 ≤ k ≤ q and all 
ι ∈ P irr

≤n, we have deg(Lι
D(Vk)) ≥ kD, where D = deg(ι)� n

deg(ι)
.

Proof. Let D = deg(ι)� n
deg(ι)
. By Theorem 4.14 (3), we have

Φk =
∏

ι∈Pirr
≤n

ιk�n/ deg ι�. (4.15)

Moreover, by [24, Thm. 5.1] we know that the polynomial 
∏

ι∈Pirr
≤n

Lι
D(Vk) is an lcm for 

Pn(Vk). Thus, we can take

φk =
∏

ι∈Pirr
≤n

Lι
D(Vk). (4.16)

Comparing (4.15) and (4.16) gives us a method of attack: we can prove that deg(φk) ≥
deg(Φk) by showing that for each ι, we have

deg(Lι
D(Vk)) ≥ deg(ιk�n/ deg ι�) = k deg(ι)� n

deg(ι)
 = kD. � (4.17)

To complete the proof of Theorem 4.10, all that remains is to justify the inequality 
(4.17) from the previous claim.

Claim 3. Let 1 ≤ k ≤ q and let ι ∈ P irr
≤n. Let D = deg(ι)� n

deg(ι)
. Then, deg(Lι
D(Vk)) ≥

kD.

Proof. For the final stage of the proof, k and ι are fixed, so we can simplify the notation. 
Let d = deg ι, let D = d�n

d 
, let P = Pι
D(Vk), and let f = Lι

D(Vk). We need to prove 
that deg f ≥ kD. Unless stated otherwise, calculations take place mod πk.

Choose a k-element subset {a1, . . . , ak} from Fq. For each 1 ≤ j ≤ k, let mj(x) =
(ι(x))�n/d� − πaj ∈ P, and let Cj ∈ MD(Vk) be the D × D companion matrix for mj. 
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Then, for all 1 ≤ j ≤ k, we have mj(Cj) = 0 and (ι(Cj))�n/d� = πajI. This latter 
relation implies that mj(Cj′) = π(aj′ − aj)I for all 1 ≤ j, j′ ≤ k.

Now, m1 divides f because f is an lcm for P. Since both m1 and f are monic, there 
exists a monic f1 ∈ Vk[x] such that f = m1f1. If k = 1, then we are done, so assume 
that k ≥ 2. In that case, m2 also divides f , so

0 = f(C2) = m1(C2)f1(C2) = π(a2 − a1)f1(C2).

This equality occurs mod πk, and a2 − a1 is a unit mod π (hence is a unit mod πk), 
so f1(C2) ≡ 0 mod πk−1. Thus, m2 divides f1 mod πk−1, so in Vk[x] we may write 
f1 = m2f2 + πk−1g1, where f2, g1 ∈ Vk[x], f2 is monic, and deg g1 < deg f1 = deg f −D.

At this point, we have

f = m1f1 = m1(m2f2 + πk−1g1) = m1m2f2 + πk−1m1g1.

If k = 2, we are done; if not, applying the same argument as above yields

0 = f(C3)

= m1(C3)m2(C3)f2(C3) + πk−1m1(C3)g1(C3)

= π2(a3 − a1)(a3 − a2)f2(C3) + 0.

Since (a3−a1)(a3−a2) is a unit mod πk, we have f2(C3) ≡ 0 mod πk−2. The same steps 
as before will give us

f = m1m2m3f3 + πk−1m1g1 + πk−2m1m2g2

where f3, g2 ∈ Vk[x], f3 is monic, and deg g2 < deg f2 = deg f − 2D.
Since k ≤ q, the product (ak − a1)(ak − a2) · · · (ak − ak−1) will always be a unit 

mod πk. Thus, we can continue this process as long as necessary, ultimately resulting in 
the expansion

f = m1m2 · · ·mkfk + πg

where fk, g ∈ Vk[x], fk is monic, and deg g < deg f . Since each mj has degree D, we 
conclude that deg f ≥ kD, as required. �
Remark 4.18. Theorem 4.10 does not hold once k > q; we demonstrate this by example 
below. Examining the proof gives some indication why. The final stage of the proof relied 
on the fact that the product (ak−a1)(ak−a2) · · · (ak−ak−1) is nonzero mod π, and this 
will not be true once k > q. Products of this form arise naturally with P -orderings [4], 
and illustrate once again the close connections between P -orderings and integer-valued 
polynomials.
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Example 4.19. Theorem 4.10 is false for k = q + 1. Let

θ(x) = Φ/
( ∏
a∈Fq

(x− a)n
)

=
∏

ι∈Pirr
≤n,deg ι≥2

ι(x)�n/ deg ι�,


(x) = xn−1
∏
a∈Fq

(xn + πa),

L(x) =
∏
a∈Fq


(x− a), and

ψ(x) = L(x)θ(x)q+1

(cf. Construction 2.1). We claim that ψ ∈ Nq+1. Let C be the companion matrix for a 
polynomial m ∈ Pn(Vq+1). If m 
≡ (x − a)n mod π for all a ∈ Fq, then θ(C) ≡ 0 mod π, 
so ψ(C) ≡ 0 mod πq+1. So, assume m ≡ (x − a)n mod π for some a ∈ Fq.

Assume first that a = 0, and consider m mod π2. There exists b ∈ Fq such that the 
constant term of m is equivalent to −πb mod π2. Consequently, Cn + πbI is divisible by 
πC mod π2. It follows that Cn−1(Cn + πbI) ≡ 0 mod π2, and so 
(C) ≡ 0 mod πq+1. 
By translation, L(C) ≡ 0 mod πq+1 regardless of the choice of a. We conclude that 
ψ(C) ≡ 0 mod πq+1 for all companion matrices C. Thus, ψ ∈ Nq+1.

However, one may compute that degψ = (q + 1) deg Φ − q. Since degφq+1 ≤ degψ <

deg(Φq+1), Theorem 4.10 does not hold for k = q + 1.

We close the paper by once again considering π-sequences and optimal polynomials 
(see the definitions given at the start of this section). By using Theorem 4.10, we can 
give a succinct formula for the initial terms of the π-sequence μd.

Corollary 4.20. The π-sequence μd for IntK(Mn(V )) satisfies μd = �d/ deg Φq,n
 for 
0 ≤ d ≤ q · deg Φq,n.

Proof. The polynomial g(x)/πk ∈ K[x] (where g ∈ V [x] and π does not divide g) is in 
IntK(Mn(V )) if and only if g(x) mod πk is in the null ideal Nk (Lemma 4.8). Moreover, μd

is equal to the maximum k such that there exists g(x)/πk ∈ IntK(Mn(V )) of degree d. 
It follows that, for any k > 0, we have μdeg φk

= k, and μd < k for d < degφk. By 
Theorem 4.10, degφk = k deg Φq,n for 1 ≤ k ≤ q. Hence, the sequence μd begins

0, . . . , 0︸ ︷︷ ︸
deg Φq,n terms

, 1, . . . , 1︸ ︷︷ ︸
deg Φq,n terms

, . . . , q − 1, . . . , q − 1︸ ︷︷ ︸
deg Φq,n terms

, q,

which matches the stated formula. �
In general, it is harder to describe the π-sequence λd of IntK(Λn(V )). Thankfully, 

formulas for the case n = 2 and V = Z(p) are given in [9], and we can use these to show 
that our polynomial F is optimal in that case.
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Corollary 4.21. Let p be a prime of Z. Then, the polynomial F given by Construction 2.1
for IntQ(M2(Z(p))) is optimal.

Proof. The degree of Φp,2 is p2 + p, so Corollary 4.20 tells us that the p-sequence μd of 
IntQ(M2(Z(p))) satisfies μd = �d/(p2 + p)
 for 0 ≤ d ≤ p3 + p2. The p-sequence λd of 
IntQ(Λ2(Z(p))) can be computed via recursive formulas given in [9, Prop. 2.13, Prop. 2.10, 
Cor. 2.17]. An elementary, but tedious, calculation (which we omit for the sake of space) 
shows that for 0 ≤ d < p3 + p2 − p, we have λd = �d/(p2 + p)
 < p, and λp3+p2−p = p. 
Thus, the smallest d for which μd < λd is d = p3 + p2 − p. A routine computation shows 
that degF = p3 + p2 − p, so we conclude that F is optimal. �

It is an open problem to determine whether Corollary 4.21 holds in the general case.

Question 4.22. Let V be a DVR with fraction field K and residue field Fq, and let n ≥ 2. 
Is the polynomial F given by Construction 2.1 optimal? To prove this, it would suffice 
to show that λd = μd for all d < degF = q deg Φq,n − q. We will not include the proof, 
but we have been able to determine that λd = μd = 0 for 0 ≤ d < deg Φq,n. However, we 
have not been able to prove that equality holds for larger d (although we suspect that 
this is the case).
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