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Tunable thermal expansion in framework materials
through redox intercalation
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Thermal expansion properties of solids are of fundamental interest and control of thermal

expansion is important for practical applications but can be difficult to achieve. Many

framework-type materials show negative thermal expansion when internal cages are empty

but positive thermal expansion when additional atoms or molecules fill internal voids present.

Here we show that redox intercalation offers an effective method to control thermal

expansion from positive to zero to negative by insertion of Li ions into the simple negative

thermal expansion framework material ScF3, doped with 10% Fe to enable reduction. The

small concentration of intercalated Li ions has a strong influence through steric hindrance of

transverse fluoride ion vibrations, which directly controls the thermal expansion. Redox

intercalation of guest ions is thus likely to be a general and effective method for controlling

thermal expansion in the many known framework materials with phonon-driven negative

thermal expansion.
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M
ost materials exhibit positive thermal expansion
(PTE) due to the inherent anharmonicity of bond
vibrations1–4 that leads to expansion of average bond

distances with increasing temperature. This is a critical issue in
many high precision applications subject to large temperature
fluctuations such as optical instruments, electronic devices, and
spaceflight engineering2–4. Thermal expansion control engi-
neering typically makes use of the unconventional property
of negative thermal expansion (NTE) which is found in
a variety of materials such as oxides1–7, alloys8,9, nitrides3,10,
organic compounds11,12, ReO3-based compounds13–17, metal
organic frameworks (MOFs)18,19 and cyanides20. Composites
of NTE and PTE materials are often used but may fail
after repeated cycling, so direct control of thermal expansion
within a single homogenous phase is desirable.

NTE can arise from electronic or magnetic mechanisms,
and by a transverse phonon mechanism in insulating framework
solids4. These usually have an open structure of corner-sharing
metal-anion tetrahedra or octahedra2, for example, the
archetype material ZrW2O8 where large NTE was discovered in
1996 (refs 1,2). NTE has subsequently been reported in many open
framework materials such as ReO3-type fluorides21–25, MOFs26,27,
cyanides28–30, zeolites and AlPO4 frameworks31,32. Although the
basic mechanism of NTE in open framework materials through the
presence of low energy transverse vibrations is widely accepted, this
does not lead to straightforward control of thermal expansion.
Chemical substitutions of the framework often have small effects
on the lattice dynamics related to expansion, for example, the linear
coefficient of thermal expansion (CTE, al) for Zr1� xMxW2O8� y

(M¼ Sc, In, Y) materials varies only over a short
range (� 7.3 to � 8.7� 10� 6 K� 1)33. However, introduction
of small molecules such as water into large pore materials is
known to have dramatic effects, for example, water adsorption
in ZnPt(CN)6 � xH2O cyanide34 and ZrW2O8 (ref. 35) switches
NTE to PTE behaviour, and thermal expansion is very
different between dehydrated36,37 and hydrated forms of cation-
exchanged zeolite LTA38.

Hence, a potentially general method for varying thermal
expansion is to use intercalation chemistry where small cations
such as Liþ can be inserted or removed even from relatively
dense frameworks, as much applied in Li-battery chemistry.
The intercalated cations are expected to sterically hinder or
reduce the transverse vibrations responsible for NTE. We have
tested this approach using ScF3 which has a very simple
cubic ReO3-type structure, and the results shown here demon-
strate that thermal expansion is very effectively tuned from
negative to zero or positive values through small changes to the
degree of Li ion intercalation.

Results
Composition design for control of thermal expansion in ScF3.
ScF3 has a simple cubic ReO3 crystal structure consisting
of a corner-shared ScF6 octahedra (Fig. 1a), equivalent to
ABX3 perovskite where the A-site is vacant. ScF3 shows isotropic
NTE over a wide range of temperature (10–1,100 K)22,25, and
lattice dynamics studies have explored in detail how enhanced
transverse thermal vibrations of fluoride ions with increasing
temperature lead to shrinkage of Sc–F–Sc linkages and
hence NTE25,39 (Fig. 1b). We propose that if those vibrations
of fluorine ions can be reduced or hindered by the intercalation
of Li ions into the cages of ScF3 (Fig. 1a,c), then control
of thermal expansion can be realized.

Insertion of Li ions into ScF3 can be achieved by
reductive lithiation, which is commonly used for Li-ion battery
materials. Sc3þ is not easily reducible, and direct reactions using

n-butyllithium failed to form LixScF3 products, so partial
substitution of Sc by a reducible metal is needed. The
solid solution (Sc0.9Fe0.1)F3 (SFF) was thus synthesized
and then lithiated, as described in Methods. The ionic radii of
Sc3þ , Fe3þ and Fe2þ are, respectively, 0.745, 0.645 and 0.780 Å,
so reduction of Fe3þ to Fe2þ in this framework is favoured
by lowering of lattice microstrain. Characterization results for
SFF and the lithiated product Lix(Sc0.9Fe0.1)F3 are shown in
Fig. 2a.

Composition determination. The lattice constant increases
slightly on Li intercalation, from 3.99368(5) to 3.99927(4) Å for
SFF and Lix(Sc0.9Fe0.1)F3, respectively (Fig. 2a), in keeping
with lattice expansion due to reduction of Fe3þ to Fe2þ .
The structure and composition of the lithiated Lix(Sc0.9Fe0.1)F3

product have been determined by joint studies of structure
refinement based on neutron powder diffraction (NPD) data,
spherical aberration-corrected scanning transmission electron
microscopy (STEM) and X-ray absorption near-edge structure
(XANES). A neutron scattering Fourier difference map clearly
demonstrates that the negative peak at the (0,0,0) is the
position of Li ions (Fig. 2b; Supplementary Fig. 1), since Li has
a negative neutron scattering length40. Indeed, the refinement is
greatly improved by assuming that Li ions are located at the
(0,0,0) position in the centre of the perovskite cage (Supple-
mentary Table 1). The chemical composition determined by
NPD refinement of the Li occupancy is Li0.06(Sc0.9Fe0.1)F3

(sample LSFF-1; Supplementary Fig. 2), which was further
supported by ICP analysis (Supplementary Note 1), so the
Li content is below the theoretical maximum of x¼ 0.1. The
annular-bright-field (ABF) electron micrographs of LSFF-1 and
SFF directly reveal the Li sites within the structural model
(Fig. 2c–e), and hence also provide direct evidence for the A-site
occupancy of Li ions.

XANES spectra were collected from samples SFF and LSFF-1.
There is no change in the Sc K-edge XANES (Supplementary
Fig. 3a), which shows that the chemical valence of Sc remains
constant during the lithiation. On the other hand, the Fe K-edge
is clearly shifted to lower energies, which indicates a partial
reduction from Fe3þ to Fe2þ after the lithiation reaction
(Supplementary Fig. 3b). The pre-edge peak (Fig. 2f–h),
corresponding to the 1s-3d transition, can be used to estimate
the Fe3þ /

P
Fe ratio (Supplementary Note 2). For SFF, the

Fe3þ /
P

Fe ratio is near to unity showing that Fe ions are in
the þ 3 state. However, for LSFF-1, the Fe3þ /

P
Fe ratio is

0.36, consistent with the 40% residual proportion of Fe3þ ions
predicted for the composition Li0.06(Sc0.9Fe0.1)F3 found by
NPD refinement.

Tunable thermal expansion via Li intercation. The Lattice
parameter measurements demonstrate that Li intercalation
has a strong influence on thermal expansion (Fig. 3a). ScF3 and
SFF have NTE behaviour with average linear thermal expansions
(in the range 150–425 K) of al¼ � 7.47 and � 5.01� 10� 6 K� 1,
respectively. However, introduction of a small amount of Li at
the A-sites results in a change to PTE with al¼ 1.03� 10� 6 K� 1

for LSFF-1 as shown in Fig. 3a. Samples with lower
lithium contents were generated by heating LSFF-1 at tempera-
tures above 425 K in inert an N2 atmosphere resulting in loss of
Li as LiF and Fe as Fe3O4, and a-Fe2O3 (Supplementary Figs 4–7
and Table 2), and three further Lix(Sc1-yFey)F3 products
(samples LSFF-2 to 4) were generated by this route (Fig. 3b). This
was used as a convenient way to deintercalate lithium and
demonstrate resulting changes in thermal expansion, although it
is not a practical method for applications.
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Phase contents were determined by structure refinement
based on the NPD data, and the results are tabulated in
Supplementary Table 3. Their thermal expansion curves in
Fig. 3a demonstrate that al changes smoothly with Li content.
Near zero thermal expansion (ZTE) with al¼ � 0.75� 10� 6

K� 1 is achieved in Li0.04(Sc0.94Fe0.06)F3 (LSFF-2) annealed at
475 K, while Li0.02(Sc0.97Fe0.03)F3 (LSFF-3) has moderate NTE of
al¼ � 2.59� 10� 6 K� 1. Annealing at 575 K gives sample
LSFF-4 with al¼ � 7.40� 10� 6 K� 1 the same as for ScF3

(Supplementary Fig. 8), showing that all Li and Fe have been
driven from the framework (Supplementary Note 3). Hence,
chemical control of thermal expansion is achieved by adjusting
the intercalated Li content. Maximum NTE is obtained for
the composition with zero Li content, while weaker NTE, ZTE or
PTE can be achieved as Li content increases.

The mechanism of controllable thermal expansion. A previous
inelastic neutron scattering study revealed that the NTE beha-
viour of ScF3 mainly originates from the transverse vibration of
fluoride ions at low frequencies (0–30 meV)39. To investigate
how Li ion intercalation tunes the thermal expansion of ScF3,
we have performed vibrational analysis of the fluorine atoms
using first-principles calculations. The results reveal that the
vibrations of fluorine ions are strongly perturbed by the inserted
Li ions, and the directions of all transverse modes are inclined as
shown for the representative mode with the lowest frequency in
Fig. 4a,b. Figure 4a shows the lowest frequency (37 cm� 1)
vibrational mode for undoped ScF3 where the vibrational
motion of fluorine ions is perpendicular to the Sc–F–Sc
linkages leading to NTE in ScF3. Interestingly, intercalation of
Li ions into the ScF3 cages strongly perturbs this vibrational mode
(Fig. 4b). The vectors of thermal vibration for the closest fluorine
ions change from being perpendicular to the Sc–F–Sc linkage
to an angle of B50� and hence have significant transverse
and longitudinal components. This demonstrates that
intercalation of Li ions redistributes the fluorine vibrational
motion locally, contributing to bond stretching thermal
expansion and PTE. Hence even a small concentration of
Li (xB0.04) is sufficient to suppress the overall NTE behaviour,
owing to the dual effects on the amplitude and direction of
transverse vibrations of fluorine ions.

The effects of Li intercalation on thermal expansion are further
supported by the anisotropic atomic amplitude of fluorine
ions calculated in the structure refinements from NPD data.

Supplementary Table 4 and Fig. 4c show the values of anisotropic
atomic displacement parameters of fluorine ions and CTEs of
the LSFF compositions. With increasing content of Li the
transverse thermal vibration amplitude (U33) of F ions is
weakened, while the longitudinal one (U11) is enhanced. As
shown in Fig. 4c, there is a good correlation between CTE and
the ratio U33/U11. Larger U33/U11 corresponds to stronger
transverse thermal vibration of fluorine ions, and a more negative
expansion coefficient. The change of thermal expansion
from PTE to NTE is accompanied by an increase in the ratio
of U33/U11.

Discussion
The above results demonstrate that introducing a small
concentration of Li ions into (Sc0.9Fe0.1)F3 switches the thermal
expansion behaviour from NTE to PTE, consistent with the
Li guest ions in Li0.06(Sc0.9Fe0.1)F3 providing steric hindrance to
the transverse vibrations of fluorine ions. Thus, it is likely
that NTE can be controlled in many frameworks by adjusting
the concentration of guest ions, as previously found for
several frameworks by varying the concentration of guest
water molecules34–38. This method should be applicable to
NTE frameworks containing reducible cations, otherwise
substitution can be used to introduce such species such as the
small amount of iron replacing scandium in the present example.

The present study may provide an effective method to achieve
thermal expansion control engineering by means of the
redox intercalation of guest ions or molecules into the pores of
a NTE framework. Although we have used chemical intercalation
to introduce lithium into (Sc0.9Fe0.1)F3 and thermal decomposi-
tion to delithiate leading to impurity formation, standard
electrochemical methods used in batteries or sensors could
be used to introduce or remove cations reversibly. A similar
Li insertion and extraction has been reported to occur reversibly
and rapidly at room temperature for ReO3-type FeF3 via an
electrochemical method41, validating the feasibility of this
approach. Electrochemical methods could lead to smart devices
that respond to external stimuli by varying their coefficient
of thermal expansion to control complex devices such as precise
multicomponent optics. Redox intercalation thus offers a general
method for thermal expansion control engineering at
the materials and device levels.

In summary, the present study demonstrates that redox
intercalation of guest cations into the empty pores of a framework
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Figure 1 | The effect of Li ion interaction on the tunable thermal expansion of ScF3. (a) The cubic structure of ScF3 with open framework (space group:

Pm�3m). The cage consisting of corner-shared ScF3 regular octahedra is marked with the dash line circle (A-site). The guest ions or molecules can be

inserted at the A-site cage. (b) The negative thermal expansion of ScF3 induced by the transverse vibration of fluorine normal to the linkage of Sc–F–Sc.

(c) The steric hindrance role of inserted ions, eg, Liþ , in the vibration of fluorine. The longitudinal vibration of fluorine results in the positive thermal

expansion.
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material provides an effective method for tuning thermal expansion
properties, in particular in transforming a NTE precursor to
a ZTE or PTE product. Intercalated ions play a critical role by
sterically hindering the transverse vibrations of corner-shared
ScF6 framework polyhedra, and thus changes overall thermal
expansion from negative to positive. This method should
be applicable to NTE frameworks containing reducible cations
or chemical substitution can be used to introduce such species.

Methods
Sample preparation. The (Sc0.9Fe0.1)F3 (SFF) and ScF3 samples were prepared
via the solid-state reaction with the precursors of high purity (99.99%) Sc2O3,
Fe2O3 and NH4F. These precursors in stoichiometric proportions were pressed into
a small pellet (radius and height 5� 5 mm) and covered with NH4F powder and
pressed into a larger pellet (10� 10 mm). The pellet was loaded into Pt crucible and
transferred to a furnace with heating at 600 �C for 5 h, and slow cooling to room
temperature. The SFF sample was found to be phase pure by X-ray diffraction.

The Li0.06(Sc0.9Fe0.1)F3 sample was obtained by the chemical intercalation of the
SFF powder with n-butyllithium (1.6 M in hexane Aldrich, approximately 10 times
the stoichiometric mole ratio) at room temperature for 24 h in a glove box with
high purity argon atmosphere. The as-prepared sample powder was washed
with hexane several times, and then dried under N2 flow at 80 �C for 10 h. The
product did not decompose on heating up to 425 K giving composition
Li0.06(Sc0.9Fe0.1)F3 (sample LSFF-1). Samples Li0.04(Sc0.94Fe0.06)F3 (LSFF-2),
Li0.02(Sc0.97Fe0.03)F3 (LSFF-3) and ScF3 (LSFF-4) were obtained by partial thermal
decomposition in an inert N2 atmosphere, respectively, at 475, 525 and 575 K.

A small amount (0.8 wt%) of impurity phase LiF was observed in LSFF-1.
Further impurity phases of iron oxides in LSFF-2 to 4 were generated by high-
temperature decomposition as shown in Supplementary Table 3. It needs to note
that the presence of impurity phases does not affect the intrinsic thermal expansion
properties of the ReO3-type phases.

X-ray and neutron powder diffraction. Temperature dependent X-ray
diffraction data were collected from 150 to 650 K by using a PANalytical,
PW 3040-X-PertPro X-ray diffractometer. The lattice constant was refined
using a cubic structural model (space group: Pm�3m). Room temperature
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Figure 2 | The structure and chemical valence of ScF3-based solid solutions. (a) High-energy synchrotron X-ray diffraction patterns of ScF3, (Sc0.9Fe0.1)F3

and Li0.06(Sc0.9Fe0.1)F3 samples at room temperature. (b) Difference Fourier map of Li0.06(Sc0.9Fe0.1)F3 at room temperature which was obtained by

neutron powder diffraction. The negative intensity indicates that lithium ions are at the A-site. (c) ABF image of lithiated region in the Li0.06(Sc0.9Fe0.1)F3.

The inset shows the arrangements of atoms. (d) The corresponding ABF in line profile acquired along the line in c. The black arrows mark the fluorine and

lithium atomic sites. (e) The corresponding ABF in line profile in (Sc0.9Fe0.1)F3 without Li as a comparison with d. (f,g) Fe K pre-edge peak extraction for the

(Sc0.9Fe0.1)F3 and Li0.06(Sc0.9Fe0.1)F3. (h) The comparison of Fe K pre-edge peak for both (Sc0.9Fe0.1)F3 and Li0.06(Sc0.9Fe0.1)F3 after the background

subtraction. The ratio Fe3þ/
P

Fe can be estimated according to the pre-edge centroid and is reduced in Li0.06(Sc0.9Fe0.1)F3 by lithium intercalation.
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synchrotron X-ray diffraction data were collected at the instrument 11-ID-C at
the Advanced Photon Source with a wavelength of 0.111650 Å. NPD data of the
Li0.06(Sc0.9Fe0.1)F3 sample was collected from 298 to 573 K at the NIST Center for
Neutron Research on the BT-1 high-resolution neutron powder diffractometer.
The wavelength of the neutron beam was 1.5398 Å. The chemical compositions and
anisotropic atomic displacement parameters of fluorine ions of the LSFF samples
were determined by structure refinement using NPD data. All structure calcula-
tions were performed using FULLPROF software42. The details of refinements can
be found in Supplementary Note 1.

X-ray absorption fine structure spectroscopy. Sc and Fe K-edge XANES and
extended X-ray absorption fine structure (EXAFS) spectroscopy measurements
were performed from room temperature to about 700 K at the XAFS beamline
of ELETTRA synchrotron radiation facility in Trieste (Italy). The samples for
EXAFS were prepared by mixing and pelletizing the SFF and Li0.06(Sc0.9Fe0.1)F3

powder with boron nitride powder. The EXAFS spectra were collected in
transmission mode in the energy range 4.3–5.7 keV for Sc K-edge EXAFS,
6.9–8.3 keV for Fe K-edge EXAFS, with an energy step varying from 0.1 eV in the
near-edge region to about 4 eV at the highest energies, to obtain a uniform wave
vector step Dk D 0.03 Å� 1. The X-ray beam was monochromatized by a Si(111)
double-crystal monochromator. The sample was mounted in a high-temperature
furnace and the temperature was stabilized and monitored through an electric
heater controlled by a feedback loop, ensuring a thermal stability within ±1 K.

Scanning transmission electron microscopy. STEM was performed using
a JEM-ARM 200F (JEOL, Tokyo, Japan) that operated at 200 kV and was equipped
with double aberration-correctors for probe-forming. Imaging lenses were used to
perform high-angle annular-dark field (HAADF) and ABF imaging. The attainable
spatial resolution of the microscope is 78 pm at the incident semi-angle of 25 mrad.

To observe Li ions directly using ABF collection geometry, the acceptance
semi-angle in this study was fixed between 12 and 25 mrad.

First-principles calculation. The first-principles vibrational analysis was
performed by CASTEP43, a total energy package based on the plane-wave
pseudopotential density functional theory method44,45. The exchange-correlation
functional developed by Perdew, Burke and Ernzerhof46 in general gradient
approximation form ref. 47 was adopted to describe the exchange-correlation
energy. The effective interaction between the valence electrons (Li 2s1, Sc 3d14s2,
Fe 3d64s2 and F 2s22p5) and atom cores were modelled by optimized
norm-conversing pseudopotentials48, which allow us to choose a relatively small
plane wave basis set without compromising the computational accuracy. The
kinetic energy cutoff 900 eV and dense Monkhorst-Pack49 k-point mesh spanning
less than 0.04 Å� 1 in the Brillouin zone were chosen. To consider the effect of the
intercalation of Li ions on the vibrational property, a 3� 3� 3 super cell was
built in which one Sc atom was replaced by Fe atom and one Li atom was inserted
in the neighbouring A-site. Before vibrational property calculation, the
crystal structure was geometrically optimized to find the energy minimum. The
Broyden–Fletcher–Goldfarb–Shanno (BFGS) minimization scheme50 was
employed in the geometry optimization, in which the convergence criteria for the
structure optimization were set to 5.0� 10� 5 eV per atom, 0.1 eV Å� 1, 0.2 GPa
and 5.0� 10� 3 GPa for energy, maximum force, maximum stress and maximum
displacement, respectively. On the basis of crystal configuration in the minimal
energy, the frequencies of the phonon modes were calculated by linear response
formalism51, and the phonon modes were obtained by the second derivative of the
total energy with respect to a given perturbation.

Data availability. The data relevant to the findings of this study are available from
the corresponding authors on reasonable request.
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directions, respectively. Larger values of U33/U11 correspond to greater transverse thermal vibration amplitudes of fluorine ions. The inset shows

a schematic thermal ellipsoid of fluorine in the Sc–F–Sc linkage.
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