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Abstract. We consider a quasi-linear heat transmission problem for a com-
posite material which fills the n-dimensional Euclidean space. The composite
has a periodic structure and consists of two materials. In each periodicity
cell one material occupies a cavity of size ε, and the second material fills the
remaining part of the cell. We assume that the thermal conductivities of the
materials depend nonlinearly upon the temperature. For ε small enough the
problem is known to have a solution, i.e., a pair of functions which determine
the temperature distribution in the two materials. Then we prove a limiting
property and a local uniqueness result for families of solutions which converge
as ε tends to 0.
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1. Introduction

This paper is devoted to the investigation of limiting and local uniqueness prop-
erties for families of solutions of a singularly perturbed quasi-linear temperature
transmission problem in an infinite periodic two-phase composite. Our approach is
based on integral equations and functional analysis. As is well-known, the integral
equation method has shown to be an extremely powerful tool to analyze and solve
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several problems of physical relevance. Clearly, it is impossible to provide a com-
plete list. Here, however, we mention applications to scattering theory and inverse
problems (Ammari and Kang [1], Castro, Duduchava, and Kapanadze [8], Colton
and Kress [10], Costabel and Le Louër [11], Kirsch and Hettlich [32]), elasticity and
thermoelasticity (Duduchava [20, 21], Duduchava, Natroshvili, and Shargorodsky
[22, 23], Kupradze, Gegelia, Bashelĕıshvili, and Burchuladze [35], Thomson and
Constanda [53]), fluid mechanics (Kohr, Wendland and the second-named author
[34]), composite materials (Chkadua, Mikhailov, and Natroshvili [9], Duduchava,
Sändig, and Wendland [24]), etc.

In this paper, instead, we exploit the integral equation method and potential
theory in order to prove a local uniqueness result for families of solutions of quasi-
linear temperature transmission problems in a singularly perturbed periodic two-
phase composite. In order to do so, we fix once for all

n ∈ N \ {0, 1} , (q11, . . . , qnn) ∈]0,+∞[n ,

and we introduce a periodicity cell

Q ≡ Πn
j=1]0, qjj [ .

Then we denote by q the diagonal matrix

q ≡


q11 0 . . . 0
0 q22 . . . 0
. . . . . . . . . . . .
0 0 . . . qnn

 ,

and by mn(Q) the n-dimensional measure of the fundamental cell Q, and by νQ
the outward unit normal to ∂Q, where it exists. Clearly, qZn ≡ {qz : z ∈ Zn} is
the set of vertices of a periodic subdivision of Rn corresponding to the fundamental
cell Q.

Then we consider α ∈]0, 1[ and a subset Ω of Rn satisfying the following
assumption.

Let Ω be a bounded open connected subset of Rn of class C1,α.

Let Rn \ clΩ be connected. Let 0 ∈ Ω.
(1.1)

Here cl denotes the closure. Next we fix p ∈ Q. Then there exists ε0 ∈]0,+∞[ such
that

p+ εclΩ ⊆ Q ∀ε ∈]− ε0, ε0[ . (1.2)

To shorten our notation, we set

Ωp,ε ≡ p+ εΩ ∀ε ∈ R .

Then we introduce the periodic domains

S[Ωp,ε] ≡
⋃
z∈Zn

(qz + Ωp,ε) , S[Ωp,ε]
− ≡ Rn \ clS[Ωp,ε] ,
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for all ε ∈]− ε0, ε0[. Then a function ui from clS[Ωp,ε] to R is q-periodic if

ui(x+ qhheh) = ui(x) ∀x ∈ clS[Ωp,ε] ,

for all h ∈ {1, . . . , n}, and a function uo from clS[Ωp,ε]
− to R is q-periodic if

uo(x+ qhheh) = uo(x) ∀x ∈ clS[Ωp,ε]
− ,

for all h ∈ {1, . . . , n}. Here {e1,. . . , en} denotes the canonical basis of Rn. Next
we assume that

Ki, Ko are C2 diffeomorphisms from R onto itself. (1.3)

Then we set
κi(τ) ≡ K ′i(τ), κo(τ) ≡ K ′o(τ) for all τ ∈ R.

The functions κi and κo represent the heat conductivity of the materials occupying
the sets S[Ωp,ε] and S[Ωp,ε]

−, respectively. Next we fix

ρ ∈]0,+∞[

and we denote by C0
q,ω,ρ(Rn) the corresponding Roumieu Banach space of q-

periodic analytic functions in Rn (cf. (2.1).) Then we assume that

{fε}ε∈]−ε0,ε0[ is a C1 family in C0
q,ω,ρ(Rn), (1.4)

i.e., that the map from ]− ε0, ε0[ to C0
q,ω,ρ(Rn) which takes ε to fε is of class C1,

and that
{gε}ε∈]−ε0,ε0[ is a C1 family in C0,α(∂Ω). (1.5)

For a fixed value ε ∈]0, ε0[ the function fε represents the opposite of the exter-
nal heat source per volume unit applied to the composite material. The function
gε represents the external heat supply per surface unit applied at the interface
between the materials of S[Ωp,ε] and S[Ωp,ε]

−. Then we introduce a constant

k ∈ R . (1.6)

The role of k is that of a normalizing condition for the temperature in S[Ωp,ε].
Then for each ε ∈]0, ε0[, we consider the following quasi-linear transmission

problem.

div (κi(T
i(x))DT i(x)) = fε(x) ∀x ∈ S[Ωp,ε] ,

div (κo(T
o(x))DT o(x)) = fε(x) ∀x ∈ S[Ωp,ε]

− ,

T i is q − periodic in clS[Ωp,ε] ,

T o is q − periodic in clS[Ωp,ε]
− ,

T o(x) = T i(x) ∀x ∈ ∂Ωp,ε ,

κo(T
o(x)) ∂T o

∂νΩp,ε
(x) = κi(T

i(x)) ∂T i

∂νΩp,ε
(x) + gε

(
x−p
ε

)
∀x ∈ ∂Ωp,ε ,

1∫
∂Ωp,ε

dσ

∫
∂Ωp,ε

Ki(T
i(x)) dσx = k ,

(1.7)

where νΩp,ε denotes the outward unit normal to Ωp,ε, and where the functions T i

and T o from clS[Ωp,ε] to R and from clS[Ωp,ε]
− to R represent the temperature
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distribution of the material in S[Ωp,ε] and in S[Ωp,ε]
−, respectively. The pair of

functions (T i, T o) is the unknown of the problem, and we are interested in solutions
in the product C1,α

q (clS[Ωp,ε])× C1,α
q (clS[Ωp,ε]

−) of Schauder spaces of q-periodic
functions (cf. §3.) By an energy argument, problem (1.7) can have a classical
solution (T i, T o) only if ∫

Q

fε dx+ εn−1

∫
∂Ω

gε dσ = 0 , (1.8)

(cf. [41, Lem. 3.1].) We note that a priori, it is not clear why problem (1.7) should
admit a classical solution. However, if we further assume that

Ki, Ko are C5 diffeomorphisms from R onto itself, (1.9)

and that

κi(τ) > 0, κo(τ) > 0 for all τ ∈ R, (1.10)

then we know that under suitable assumptions there exists ε′ ∈]0, ε0] such that the
boundary value problem in (1.7) has a solution (T i(ε, ·), T o(ε, ·)) in C1,α

q (clS[Ωp,ε])×
C1,α
q (clS[Ωp,ε]

−) for all ε ∈]0, ε′[ (cf. [41] and Theorem 3.5 and Definition 3.7 be-
low.)

In this paper, we are interested in discussing the limiting behavior and the
local uniqueness of families of solutions of problem (1.7) as ε tends to 0, under
weaker assumptions than those in [41]. In particular, in Theorems 4.5, 4.6 below, we
show that if {εj}j∈N is a sequence in ]0, ε0[ converging to 0 and if {(T ij , T oj )}j∈N is a

family of pairs of functions such that (T ij , T
o
j ) solves problem (1.7) for ε = εj for all

j ∈ N and such that a certain limiting condition holds, then suitable restrictions of

the rescaled functions T i(p+εj ·) and T o(p+εj ·) converge to K
(−1)
i (k) as j → +∞.

Then we turn to consider uniqueness results and by Theorem 4.7 and Corol-
lary 4.8, we show that if {εj}j∈N is a sequence in ]0, ε0[ converging to 0 and if
{(T i1,j , T o1,j)}j∈N, {(T i2,j , T o2,j)}j∈N are families of functions such that (T i1,j , T

o
1,j) and

(T i2,j , T
o
2,j) solve problem (1.7) for ε = εj for all j ∈ N and such that the restrictions

to ∂Ω of κi(T
i
1,j(p+εj ·))

(
∂T i1,j
∂νΩp,εj

)
(p+εj ·) and of κi(T

i
2,j(p+εj ·))

(
∂T i2,j
∂νΩp,εj

)
(p+εj ·)

converge as j → +∞, then we must have

(T i1,j , T
o
1,j) = (T i2,j , T

o
2,j)

for j big enough.
We note that the present article extends to the case of a quasi-linear transmis-

sion problem the results of [15] and of [16], concerning a nonlinear Robin problem
for the Laplace equation and a nonlinear traction problem for the linearized elas-
tostatics equations, respectively.

The functional analytic approach of [41] and of the present paper has been
previously exploited by the authors to analyze nonlinear singular perturbation
problems in a bounded perforated domain (cf. e.g., [14, 37, 38]) and in a periodi-
cally perforated domain (cf. e.g., [16, 40, 41].)
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Singularly perturbed boundary value problems have been largely investigated
with the methods of asymptotic analysis: see, e.g., the works of Bonnaillie-Noël,
Dambrine, Tordeux, and Vial [5], Bonnaillie-Noël, Lacave, and Masmoudi [6],
Iguernane, Nazarov, Roche, Soko lowski, and Szulc [31], Maz’ya, Movchan, and
Nieves [45], Maz’ya, Nazarov, and Plamenevskij, [46], Novotny and Soko lowski
[52]. In particular, in connection with periodic problems, we mention, e.g., Am-
mari, Kang, and Touibi [2].

We also observe that in literature the existence and uniqueness of solutions
of nonlinear boundary value problems has been largely investigated by means of
variational techniques (see, e.g., the monographs of Nečas [51] and of Roub́ıček [54]
and references therein. See also Hlaváv̌cek, Kř́ıžek and Malý [30].) Instead, poten-
tial theoretic techniques have been widely exploited to study linear or semi-linear
partial differential equations with nonlinear boundary conditions. In particular, as
far back as in 1921 Carleman [7] has considered the existence of harmonic functions
which satisfy a certain nonlinear Robin condition on the boundary of the domain
of definition. Since then, such a problem has received the attention of many au-
thors such as Leray [44], Nakamori and Suyama [50], Kilngelhöfer [33], Cushing
[13], and Efendiev, Schmitz, and Wendland [25]. Moreover, an approach based on
coupling of boundary integral and finite element methods has been developed in
order to study exterior nonlinear boundary value problems with transmission con-
ditions, we mention for example the papers of Berger, Warnecke, and Wendland
[4], Costabel and Stephan [12], Gatica and Hsiao [27], and Barrenechea and Gatica
[3]. Boundary integral methods have been applied also by Mityushev and Rogosin
for the analysis of transmission problems in the two dimensional plane (cf. [48,
Chap. 5]) and by the first named author and Mishuris [17] to study the existence
of solutions of boundary value problems with nonlinear transmission conditions.

The paper is organized as follows. Section 2 is a section of notation and pre-
liminaries. In Section 3 we provide an existence result for the solutions of problem
(1.7). In Section 4 we prove our main results on the limiting behavior and the local
uniqueness of a family of solutions of problem (1.7).

2. Notation and preliminaries

We denote the norm on a normed space X by ‖·‖X . Let X and Y be normed spaces.
We endow the space X ×Y with the norm defined by ‖(x, y)‖X×Y ≡ ‖x‖X + ‖y‖Y
for all (x, y) ∈ X × Y, while we use the Euclidean norm for Rn. We denote by
L (X ,Y) the Banach space of linear and continuous maps from X to Y endowed
with its usual norm of the uniform convergence on the unit sphere of X . For
standard definitions of Calculus in normed spaces, we refer to Deimling [18]. The
symbol N denotes the set of natural numbers including 0. The inverse function of
an invertible function f is denoted f (−1), as opposed to the reciprocal of a real-
valued function g, or the inverse of a matrix A, which are denoted g−1 and A−1,
respectively. Let A be a matrix. Then At denotes the transpose matrix of A and
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Aij denotes the (i, j)-entry of A. Let D ⊆ Rn. Then clD denotes the closure of D,
and ∂D denotes the boundary of D, and idD denotes the identity map in D. We
also set

D− ≡ Rn \ clD .

For all R > 0, x ∈ Rn, xj denotes the j-th coordinate of x, |x| denotes the Eu-
clidean modulus of x in Rn, and Bn(x,R) denotes the ball {y ∈ Rn : |x− y| < R}.
Let Ω be an open subset of Rn. The space of m times continuously differentiable
real-valued functions on Ω is denoted by Cm(Ω,R), or more simply by Cm(Ω).
Let r ∈ N \ {0}. Let f ∈ (Cm(Ω))

r
. The s-th component of f is denoted fs,

and Df denotes the Jacobian matrix
(
∂fs
∂xl

)
s=1,...,r,
l=1,...,n

. Let η ≡ (η1, . . . , ηn) ∈ Nn,

|η| ≡ η1 + · · · + ηn. Then Dηf denotes ∂|η|f
∂x
η1
1 ...∂xηnn

. The subspace of Cm(Ω) of

those functions f whose derivatives Dηf of order |η| ≤ m can be extended with
continuity to clΩ is denoted Cm(clΩ). The subspace of Cm(clΩ) whose functions
have m-th order derivatives that are Hölder continuous with exponent α ∈]0, 1]
is denoted Cm,α(clΩ) (cf. e.g., Gilbarg and Trudinger [28].) The subspace of
Cm(clΩ) of those functions f such that f|cl(Ω∩Bn(0,R)) ∈ Cm,α(cl(Ω ∩ Bn(0, R)))
for all R ∈]0,+∞[ is denoted Cm,αloc (clΩ). Let D ⊆ Rr. Then Cm,α(clΩ,D) denotes
{f ∈ (Cm,α(clΩ))

r
: f(clΩ) ⊆ D}.

We say that a bounded open subset Ω of Rn is of class Cm or of class Cm,α, if
clΩ is a manifold with boundary imbedded in Rn of class Cm or Cm,α, respectively
(cf. e.g., Gilbarg and Trudinger [28, §6.2].) We denote by νΩ the outward unit
normal to ∂Ω. For standard properties of functions in Schauder spaces, we refer the
reader to Gilbarg and Trudinger [28] (see also [36, §2, Lem. 3.1, 4.26, Thm. 4.28],
[43, §2].)

If M is a manifold imbedded into Rn of class Cm,α, with m ≥ 1, α ∈]0, 1[, one
can define the Schauder spaces also on M by exploiting the local parametrizations.
In particular, one can consider the spaces Ck,α(∂Ω) on ∂Ω for 0 ≤ k ≤ m with
Ω a bounded open set of class Cm,α, and the trace operator from Ck,α(clΩ) to
Ck,α(∂Ω) is linear and continuous. We denote by dσ the area element of a manifold
imbedded in Rn. We retain the standard notation for the Lebesgue space Lp(M) of
p-summable functions. Also, if X is a vector subspace of L1(M), we find convenient
to set

X0 ≡
{
f ∈ X :

∫
M

f dσ = 0

}
.

We note that throughout the paper ‘analytic’ means always ‘real analytic’ (cf. e.g.,
Deimling [18, §15].) In particular, we mention that the pointwise product in
Schauder spaces is bilinear and continuous, and thus analytic, and that the map
which takes a nonvanishing function to its reciprocal, or an invertible matrix of
functions to its inverse matrix is real analytic in Schauder spaces.

We set δi,j = 1 if i = j, δi,j = 0 if i 6= j for all i, j = 1, . . . , n.
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If Ω is an arbitrary open subset of Rn, k ∈ N, β ∈]0, 1], we set

Ckb (clΩ) ≡ {u ∈ Ck(clΩ) : Dγu is bounded ∀γ ∈ Nn such that |γ| ≤ k} ,
and we endow Ckb (clΩ) with its usual norm

‖u‖Ckb (clΩ) ≡
∑
|γ|≤k

sup
x∈clΩ

|Dγu(x)| ∀u ∈ Ckb (clΩ) .

Then we set

Ck,βb (clΩ) ≡ {u ∈ Ck,β(clΩ) : Dγu is bounded ∀γ ∈ Nn such that |γ| ≤ k} ,

and we endow Ck,βb (clΩ) with its usual norm

‖u‖Ck,βb (clΩ) ≡
∑
|γ|≤k

sup
x∈clΩ

|Dγu(x)|+
∑
|γ|=k

|Dγu : clΩ|β ∀u ∈ Ck,βb (clΩ) ,

where |Dγu : clΩ|β denotes the β-Hölder constant of Dγu.
Next, we turn to introduce the Roumieu classes. For all bounded open subsets

Ω of Rn and ρ > 0, we set

C0
ω,ρ(clΩ) ≡

{
u ∈ C∞(clΩ) : sup

β∈Nn

ρ|β|

|β|!
‖Dβu‖C0(clΩ) < +∞

}
,

and

‖u‖C0
ω,ρ(clΩ) ≡ sup

β∈Nn

ρ|β|

|β|!
‖Dβu‖C0(clΩ) ∀u ∈ C0

ω,ρ(clΩ) ,

where |β| ≡ β1 + · · · + βn for all β ≡ (β1, . . . , βn) ∈ Nn. As is well known, the

Roumieu class
(
C0
ω,ρ(clΩ), ‖ · ‖C0

ω,ρ(clΩ)

)
is a Banach space.

Next we turn to periodic domains. If Ω is an arbitrary subset of Rn such that
clΩ ⊆ Q, then we set

S[Ω] ≡
⋃
z∈Zn

(qz + Ω) = qZn + Ω , S[Ω]− ≡ Rn \ clS[Ω] .

If Ω is an open subset of Rn such that clΩ ⊆ Q and if k ∈ N, β ∈]0, 1], then we set

Ckq (clS[Ω]) ≡
{
u ∈ Ckb (clS[Ω]) : u is q − periodic

}
,

which we regard as a Banach subspace of Ckb (clS[Ω]), and

Ck,βq (clS[Ω]) ≡
{
u ∈ Ck,βb (clS[Ω]) : u is q − periodic

}
,

which we regard as a Banach subspace of Ck,βb (clS[Ω]), and

Ckq (clS[Ω]−) ≡
{
u ∈ Ckb (clS[Ω]−) : u is q − periodic

}
,

which we regard as a Banach subspace of Ckb (clS[Ω]−), and

Ck,βq (clS[Ω]−) ≡
{
u ∈ Ck,βb (clS[Ω]−) : u is q − periodic

}
,

which we regard as a Banach subspace of Ck,βb (clS[Ω]−).
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If ρ ∈]0,+∞[, then we set

C0
q,ω,ρ(Rn) ≡

{
u ∈ C∞q (Rn) : sup

β∈Nn

ρ|β|

|β|!
‖Dβu‖C0(clQ) < +∞

}
, (2.1)

where C∞q (Rn) denotes the set of q-periodic functions of C∞(Rn), and

‖u‖C0
q,ω,ρ(Rn) ≡ sup

β∈Nn

ρ|β|

|β|!
‖Dβu‖C0(clQ) ∀u ∈ C0

q,ω,ρ(Rn) .

The Roumieu class
(
C0
q,ω,ρ(Rn), ‖ · ‖C0

q,ω,ρ(Rn)

)
is a Banach space. As is well known,

there exists a q-periodic tempered distribution Sq,n such that

∆Sq,n =
∑
z∈Zn

δqz −
1

mn(Q)
,

where ∆ ≡
∑n
j=1(∂2/∂x2

j ) and δqz denotes the Dirac measure with mass in qz

(cf. e.g., [49, Thm. 2.1].) As is well known, Sq,n is determined up to an additive
constant, and we can take

Sq,n(x) = −
∑

z∈Zn\{0}

1

mn(Q)4π2|q−1z|2
e2πi(q−1z)·x ,

in the sense of distributions in Rn (cf. e.g., Ammari and Kang [1, p. 53], [49,
Thm. 2.1].) The function Sq,n is even, and real analytic in Rn \ qZn, and locally
integrable in Rn (cf. e.g., [49, Thm. 2.1].)

Let Sn be the function from Rn \ {0} to R defined by

Sn(x) ≡


1

sn
log |x| ∀x ∈ Rn \ {0}, if n = 2 ,

1

(2− n)sn
|x|2−n ∀x ∈ Rn \ {0}, if n > 2 ,

where sn denotes the (n− 1)-dimensional measure of ∂Bn. Sn is well-known to be
the fundamental solution of the Laplace operator.

Then the function Sq,n−Sn is analytic in (Rn \ qZn)∪{0} (cf. e.g., Ammari
and Kang [1, Lemma 2.39, p. 54].) Then we find convenient to set

Rq,n ≡ Sq,n − Sn in (Rn \ qZn) ∪ {0} .

Obviously, Rq,n is not a q-periodic function. We also note that the following ele-
mentary equality holds

Sq,n(εx) = ε2−nSn(x) +
1

2π
(δ2,n log ε) +Rq,n(εx) ,

for all x ∈ Rn \ ε−1qZn and ε ∈]0,+∞[.
If Ω is a bounded open subset of Rn and f ∈ L∞(Ω), then we set

Pn[Ω, f ](x) ≡
∫

Ω

Sn(x− y)f(y) dy ∀x ∈ Rn .
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If we further assume that Ω ⊆ Q, then we set

Pq,n[Ω, f ](x) ≡
∫

Ω

Sq,n(x− y)f(y) dy ∀x ∈ Rn .

Let Ω be a bounded open connected subset of Rn of class C1,α for some
α ∈]0, 1[. If H is any of the functions Sq,n, Rq,n and clΩ ⊆ Q or if H equals Sn,
we set

v[∂Ω, H, µ](x) ≡
∫
∂Ω

H(x− y)µ(y) dσy ∀x ∈ Rn ,

w[∂Ω, H, µ](x) ≡
∫
∂Ω

∂

∂νΩ(y)
H(x− y)µ(y) dσy ∀x ∈ Rn ,

w∗[∂Ω, H, µ](x) ≡
∫
∂Ω

∂

∂νΩ(x)
H(x− y)µ(y) dσy ∀x ∈ ∂Ω ,

for all µ ∈ L2(∂Ω). As is well known, if µ ∈ C0(∂Ω), then v[∂Ω, Sq,n, µ] and
v[∂Ω, Sn, µ] are continuous in Rn, and we set

v+[∂Ω, Sq,n, µ] ≡ v[∂Ω, Sq,n, µ]|clS[Ω] v−[∂Ω, Sq,n, µ] ≡ v[∂Ω, Sq,n, µ]|clS[Ω]−

v+[∂Ω, Sn, µ] ≡ v[∂Ω, Sn, µ]|clΩ v−[∂Ω, Sn, µ] ≡ v[∂Ω, Sn, µ]|clΩ− .

Also, if µ is continuous, then w[∂Ω, Sq,n, µ]|S[Ω] admits a continuous extension

to clS[Ω], which we denote by w+[∂Ω, Sq,n, µ] and w[∂Ω, Sq,n, µ]|S[Ω]− admits a

continuous extension to clS[Ω]−, which we denote by w−[∂Ω, Sq,n, µ] (cf. e.g., [49,
Thm. 2.3].) Similarly, w[∂Ω, Sn, µ]|Ω admits a continuous extension to clΩ, which

we denote by w+[∂Ω, Sn, µ] and w[∂Ω, Sn, µ]|Ω− admits a continuous extension to

clΩ−, which we denote by w−[∂Ω, Sn, µ] (cf. e.g., Miranda [47], [43, Thm. 3.1].)
In the specific case in which H equals Sn, we omit Sn and we simply write

v[∂Ω, µ], w[∂Ω, µ], w∗[∂Ω, µ] instead of v[∂Ω, Sn, µ], w[∂Ω, Sn, µ], w∗[∂Ω, Sn, µ],
respectively.

Finally, we denote by −
∫
A

the integral
∫
A

divided by the measure of A, for all
measurable subsets A of Rn or of a manifold imbedded into Rn.

3. An existence results for the solutions of problem (1.7)

In this section, we proceed as in [41] and we prove the existence of a solution of
problem (1.7) for ε small enough under weaker assumptions. As a first step, in order
to convert the non-homogeneous problem (1.7) into a homogeneous one, we need
the following lemma on periodic volume potentials. For a proof and appropriate
references, we refer to [42, §3].

Lemma 3.1. Let α ∈]0, 1[, p ∈ Q. Let Ω and ε0 be as in (1.1) and (1.2), respectively.
Let ε ∈]0, ε0[. Then the following statements hold.

(i) The function aε from clS[Ωp,ε] to R defined by

aε(x) ≡
∫

Ωp,ε

Sn(x− qz − y) dy ∀x ∈ qz + clΩp,ε ,
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for each z ∈ Zn belongs to C1,α
q (clS[Ωp,ε]) and satisfies the equalities

∆aε(x) = 1 ∀x ∈ S[Ωp,ε] ,

and

∂

∂xj
aε(x) = −

∫
∂Ωp,ε

Sn(x− qz − y)(νΩp,ε)j(y) dσy ∀x ∈ qz + Ωp,ε ,

for all z ∈ Zn.
(ii) The function bε from Rn to R defined by

bε(x) ≡
∫

Ωp,ε

Sq,n(x− y) dy ∀x ∈ Rn ,

belongs to C1
q (Rn) and

∂

∂xj
bε(x) = −

∫
∂Ωp,ε

Sq,n(x− y)(νΩp,ε)j(y) dσy ∀x ∈ Rn .

Moreover,

bε|clS[Ωp,ε] ∈ C
1,α
q (clS[Ωp,ε]) ,

∆bε(x) = 1− mn(Ωp,ε)

mn(Q)
∀x ∈ S[Ωp,ε] ,

and

bε|clS[Ωp,ε]− ∈ C
1,α
q (clS[Ωp,ε]

−) ,

∆bε(x) = −mn(Ωp,ε)

mn(Q)
∀x ∈ S[Ωp,ε]

− .

(iii) Let f ∈ C0,α
q (Rn). Then the function F iε [f ] from clS[Ωp,ε] to R defined by

F iε [f ](x) ≡
∫
Q

Sq,n(x− y)f(y) dy +
1

mn(Q)
aε(x)

∫
Q

f(y) dy (3.1)

for all x ∈ clS[Ωp,ε] belongs to C1,α
q (clS[Ωp,ε]) and satisfies the equality

∆(F iε [f ])(x) = f(x) ∀x ∈ S[Ωp,ε] .

(iv) Let f ∈ C0,α
q (Rn). Then the function F oε [f ] from clS[Ωp,ε]

− to R defined by

F oε [f ](x) ≡
∫
Q

Sq,n(x− y)f(y) dy − 1

mn(Ωp,ε)
bε(x)

∫
Q

f(y) dy (3.2)

for all x ∈ clS[Ωp,ε]
− belongs to C1,α

q (clS[Ωp,ε]
−) and satisfies the equality

∆(F oε [f ])(x) = f(x) ∀x ∈ S[Ωp,ε]
− .

By exploiting Lemma 3.1 and the Kirchhoff transformation (cf. e.g., Mityu-
shev and Rogosin [48, Ch. 5]), we convert our quasi-linear transmission problem
(1.7) into a problem for a linear equation with a nonlinear boundary condition
(cf. [41, §3].)
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Proposition 3.2. Let α ∈]0, 1[, ρ ∈]0,+∞[, p ∈ Q. Let Ω and ε0 be as in (1.1) and
(1.2), respectively. Let ε ∈]0, ε0[. Let (1.3), (1.4), (1.5), (1.6) hold. Then the pair
of functions (T i, T o) ∈ C1,α

q (clS[Ωp,ε]) × C1,α
q (clS[Ωp,ε]

−) satisfies problem (1.7)

if and only if the pair of functions (ui, uo) ∈ C1,α
q (clS[Ωp,ε]) × C1,α

q (clS[Ωp,ε]
−)

defined by

ui(x) ≡ Ki ◦ T i(x)− F iε [fε](x) ∀x ∈ clS[Ωp,ε] ,

uo(x) ≡ Ko ◦ T o(x)− F oε [fε](x) ∀x ∈ clS[Ωp,ε]
− ,

satisfies the following nonlinear transmission problem

∆ui(x) = 0 ∀x ∈ S[Ωp,ε] ,

∆uo(x) = 0 ∀x ∈ S[Ωp,ε]
− ,

ui is q − periodic in clS[Ωp,ε] ,

uo is q − periodic in clS[Ωp,ε]
− ,

uo(x) + Pq,n[Q, fε](x)− 1

mn(Ωp,ε)
Pq,n[Ωp,ε, 1](x)

∫
Q
fε(y) dy

= Ko ◦K(−1)
i

(
ui(x) + Pq,n[Q, fε](x) + Pn[Ωp,ε, 1](x)−

∫
Q
fε(y) dy

)
∀x ∈ ∂Ωp,ε ,

∂uo

∂νΩp,ε

(x)− 1

mn(Ωp,ε)

∂Pq,n[Ωp,ε, 1]

∂νΩp,ε

(x)
∫
Q
fε(y) dy

=
∂ui

∂νΩp,ε

(x) +
∂Pn[Ωp,ε, 1]

∂νΩp,ε

(x)−
∫
Q
fε(y) dy + gε

(
x− p
ε

)
∀x ∈ ∂Ωp,ε ,

−
∫
∂Ωp,ε

ui(x) dσx = k − −
∫
∂Ωp,ε

Pq,n[Q, fε](x) dσx

−−
∫
∂Ωp,ε

Pn[Ωp,ε, 1](x) dσx−
∫
Q
fε(y) dy .

(3.3)

Then we have the following proposition, which allows to convert problem
(1.7) into a system of integral equation for each ε ∈]0, ε0[. For a proof we refer to
[41, Thm. 4.2, 4.4].

Proposition 3.3. Let α ∈]0, 1[, ρ ∈]0,+∞[, p ∈ Q. Let Ω and ε0 be as in (1.1)
and (1.2), respectively. Let ε ∈]0, ε0[. Let (1.4), (1.5), (1.6), (1.9) hold. Let K ≡
Ko ◦K(−1)

i . Let

mi[ε, ψ](t) ≡ v[∂Ω, ψ](t) + εn−2

∫
∂Ω

Rq,n(ε(t− s))ψ(s) dσs

−−
∫
∂Ω

(
v[∂Ω, ψ](τ) + εn−2

∫
∂Ω

Rq,n(ε(τ − s))ψ(s) dσs

)
dστ ∀t ∈ ∂Ω ,

mi
1[ε](t) ≡

∫ 1

0

t ·DPq,n[Q, fε](p+ εtτ) dτ + εPn[Ω, 1](t)−
∫
Q

fε dx ∀t ∈ ∂Ω ,

mo[ε, θ, ξ](t) ≡ v[∂Ω, θ](t) + εn−2

∫
∂Ω

Rq,n(ε(t− s))θ(s) dσs + ξ ∀t ∈ ∂Ω ,
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G[ε, ε1] ≡ K
(
k −−

∫
∂Ω

Pq,n[Q, fε](p+ εt) dσt (3.4)

−−
∫
Q

fε dy−
∫
∂Ω

ε2Pn[Ω, 1](t) dσt −−
∫
Q

fε dyε
mn(Ω)

2π
ε1 + Pq,n[Q, fε](p)

)
,

for all (ε, ε1, ψ, θ, ξ) ∈]− ε0, ε0[×R×C0,α(∂Ω)2×R. Let Λ ≡ (Λj)j=1,2 be the map
from ]− ε0, ε0[×R× C0,α(∂Ω)2

0 × R to C1,α(∂Ω)× C0,α(∂Ω) defined by

Λ1[ε, ε1, ψ, θ, ξ](t)

≡ mo[ε, θ, ξ](t) +

∫ 1

0

D(Pq,n[Q, fε])(p+ τεt) · t dτ

+
1

mn(Ω)

∫
∂Ω

gε dσ

{
Pn[Ω, 1](t) + εn−2

∫
Ω

Rq,n(ε(t− s)) ds
}

−K ′(K(−1)(G[ε, ε1]))

×
[
mi[ε, ψ](t) +mi

1[ε](t) +
mn(Ω)

2πmn(Q)
ε1

∫
Q

fε dx

]
−ε
[
mi[ε, ψ](t) +mi

1[ε](t) +
mn(Ω)

2πmn(Q)
ε1

∫
Q

fε dx

]2

×
∫ 1

0

(1− β)K ′′
(
K(−1)(G[ε, ε1])

+βε

[
mi[ε, ψ](t) +mi

1[ε](t) +
mn(Ω)

2πmn(Q)
ε1

∫
Q

fε dx

])
dβ ∀t ∈ ∂Ω ,

Λ2[ε, ε1, ψ, θ, ξ](t)

≡ 1

2
θ(t) + w∗[∂Ω, θ](t) + εn−1

∫
∂Ω

νΩ(t) ·DRq,n(ε(t− s))θ(s) dσs

− 1

mn(Ω)

∫
∂Ω

gε dσ

{∫
∂Ω

Sn(t− s)νΩ(t) · νΩ(s) dσs

+εn−2

∫
∂Ω

Rq,n(ε(t− s))νΩ(t) · νΩ(s) dσs

}
+

1

2
ψ(t)− w∗[∂Ω, ψ](t)− εn−1

∫
∂Ω

νΩ(t) ·DRq,n(ε(t− s))ψ(s) dσs

− εn

mn(Q)

∫
∂Ω

gε dσ

∫
∂Ω

Sn(t− s)νΩ(t) · νΩ(s) dσs − gε(t) ∀t ∈ ∂Ω ,

for all (ε, ε1, ψ, θ, ξ) ∈]− ε0, ε0[×R× C0,α(∂Ω)2
0 × R.

Then the map (ui[ε, ·, ·, ·], uo[ε, ·, ·, ·]) from the set of triples (ψ, θ, ξ) of the space
C0,α(∂Ω)2

0 × R that solve the equation

Λ[ε, δ2,nε log ε, ψ, θ, ξ] = 0 (3.5)
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to the set of pairs (ui, uo) of C1,α
q (clS[Ωp,ε])×C1,α

q (clS[Ωp,ε]
−) which solve problem

(3.3), which takes (ψ, θ, ξ) to the pair (ui[ε, ψ, θ, ξ], uo[ε, ψ, θ, ξ]) defined by

ui[ε, ψ, θ, ξ](x)

≡ v+[∂Ωp,ε, Sq,n, ψ(
· − p
ε

)](x)−−
∫
∂Ωp,ε

v+[∂Ωp,ε, Sq,n, ψ(
· − p
ε

)] dσ

+k −−
∫
∂Ω

Pq,n[Q, fε](p+ εt) dσt +
εn−1

mn(Q)

∫
∂Ω

gε dσ

×−
∫
∂Ω

Pn[Ω, 1](t)ε2 +
mn(Ω)

2π
ε(δ2,nε log ε) dσt ∀x ∈ clS[Ωp,ε] ,

and

uo[ε, ψ, θ, ξ](x) ≡ v−[∂Ωp,ε, Sq,n, θ(
· − p
ε

)](x) + εξ − Pq,n[Q, fε](p)

+G[ε, δ2,nε log ε] +

∫
Q

fε dy
1

2π
δ2,n log ε ∀x ∈ clS[Ωp,ε]

− ,

is a bijection.

Hence, in order to study problem (1.7), we are reduced to analyze system
(3.5). As a first step, we note that if (ψ, θ, ξ) ∈ C0,α(∂Ω)2

0×R and if we let ε tend
to 0, we obtain a system which we address to as the ‘limiting system’, and which
has the following form

v[∂Ω, θ](t) + ξ +D(Pq,n[Q, f0])(p) · t (3.6)

+
1

mn(Ω)

∫
∂Ω

g0 dσ{Pn[Ω, 1](t) + δ2,nmn(Ω)Rq,n(0)}

= K ′(k)

[
v[∂Ω, ψ](t)−−

∫
∂Ω

v[∂Ω, ψ] dσ + t ·D(Pq,n[Q, f0])(p)

]
∀t ∈ ∂Ω ,

1

2
θ(t) + w∗[∂Ω, θ](t)− 1

mn(Ω)

∫
∂Ω

g0 dσ

∫
∂Ω

Sn(t− s)νΩ(t) · νΩ(s) dσs (3.7)

= −1

2
ψ(t) + w∗[∂Ω, ψ](t) + g0(t) ∀t ∈ ∂Ω .

Then we have the following proposition of [41], which shows the unique solvability
of the system of equations (3.6), (3.7), and its link with a boundary value prob-
lem which we shall address to as the ‘limiting boundary value problem’ (see [41,
Thm. 4.3].)

Proposition 3.4. Let α ∈]0, 1[, ρ ∈]0,+∞[, p ∈ Q. Let Ω be as in (1.1). Let (1.3),

(1.10) hold. Let f0 ∈ C0
q,ω,ρ(Rn), g0 ∈ C0,α(∂Ω), k ∈ R, K ≡ Ko ◦K(−1)

i . Then
the following statements hold.

(i) The limiting system (3.6)-(3.7) has one and only one solution (ψ̃, θ̃, ξ̃) in the
space C0,α(∂Ω)2

0 × R. Moreover,

ξ̃ =−−
∫
∂Ω

v[∂Ω, θ̃] dσ +−
∫
∂Ω

t ·D(Pq,n[Q, f0])(p) dσt(K
′(k)− 1)
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− 1

mn(Ω)

∫
∂Ω

g0 dσ

{
−
∫
∂Ω

Pn[Ω, 1] dσ + δ2,nmn(Ω)Rq,n(0)

}
.

(ii) The ‘limiting boundary value problem’

∆ui = 0 in Ω ,

∆uo = 0 in Rn \ clΩ ,

uo(t)− −
∫
∂Ω
uo dσ + t ·D(Pq,n[Q, f0])(p)

+−
∫
∂Ω
s ·D(Pq,n[Q, f0])(p) dσs(K

′(k)− 1)

+
1

mn(Ω)

∫
∂Ω

g0 dσ

{
Pn[Ω, 1](t)−−

∫
∂Ω

Pn[Ω, 1] dσ

}
= K ′(k)[ui(t) + t ·D(Pq,n[Q, f0])(p)] ∀t ∈ ∂Ω ,

∂uo

∂νΩ
(t) =

∂ui

∂νΩ
(t) + g0(t)

+
1

mn(Ω)

∫
∂Ω

g0 dσ

∫
∂Ω

Sn(t− s)νΩ(t) · νΩ(s) dσs ∀t ∈ ∂Ω ,

−
∫
∂Ω
ui dσ = 0 ,

limx→∞ uo(x) = 0 ,

has one and only one solution (ũi, ũo) ∈ C1,α(clΩ) × C1,α
loc (Rn \ Ω), and the

following formulas hold.

ũi(x) = v[∂Ω, ψ̃](x)−−
∫
∂Ω

v[∂Ω, ψ̃] dσ ∀x ∈ clΩ ,

ũo(x) = v[∂Ω, θ̃](x) ∀x ∈ Rn \ Ω .

By exploiting the proof of [41, Thm. 4.4], where Ki, Ko have been assumed
to be analytic, while here Ki and Ko have been assumed to be only of class C5,
and by differentiability results for the composition operator (cf. e.g., Valent [55,
Thm. 4.4, p. 35]), we can analyze equation (3.5) for ε close to 0 by the very same
argument based on the Implicit Function Theorem in Banach spaces and we can
prove the following.

Theorem 3.5. Let α ∈]0, 1[, ρ ∈]0,+∞[, p ∈ Q. Let Ω and ε0 be as in (1.1) and
(1.2), respectively. Let (1.4), (1.5), (1.6), (1.9), (1.10) hold. Let (1.8) hold for all

ε ∈]0, ε0[. Let (ψ̃, θ̃, ξ̃) be as in Proposition 3.4, K ≡ Ko ◦ K(−1)
i . Then there

exist (ε′, ε]) ∈]0, ε0[×]0,+∞[ and an open neighborhood U of (ψ̃, θ̃, ξ̃) in the space
C0,α(∂Ω)2

0 × R and a C1 map (Ψ[·, ·],Θ[·, ·],Ξ[·, ·]) from ] − ε′, ε′[×] − ε], ε][ to U
such that δ2,nε log ε ∈]− ε], ε][ for all ε ∈]0, ε′[ and such that the set of zeros of the
map Λ in ] − ε′, ε′[×] − ε], ε][×U coincides with the graph of (Ψ[·, ·],Θ[·, ·],Ξ[·, ·]).
In particular, (Ψ[0, 0],Θ[0, 0],Ξ[0, 0]) = (ψ̃, θ̃, ξ̃).

We are now in the position to introduce the following.

Definition 3.6. Let the assumptions of Theorem 3.5 hold. Let both ε′ ∈]0, ε0[ and
(Ψ[·, ·],Θ[·, ·],Ξ[·, ·]) be as in Theorem 3.5. Let ε ∈]0, ε′[. Let (ui[ε, ·, ·, ·], uo[ε, ·, ·, ·])
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be as in Proposition 3.3. Then we set

ui(ε, x) ≡ ui[ε,Ψ[ε, δ2,nε log ε],Θ[ε, δ2,nε log ε],Ξ[ε, δ2,nε log ε]](x)

∀x ∈ clS[Ωp,ε] ,

uo(ε, x) ≡ uo[ε,Ψ[ε, δ2,nε log ε],Θ[ε, δ2,nε log ε],Ξ[ε, δ2,nε log ε]](x)

∀x ∈ cl S[Ωp,ε]
− .

By definition, the pair (ui(ε, ·), uo(ε, ·)) is a solution of problem (3.3) for all
ε ∈]0, ε′[. Then Proposition 3.2 implies that we can define a corresponding solution
of our original problem (1.7). We do so in the following.

Definition 3.7. Let the assumptions of Theorem 3.5 hold. Let ε′ ∈]0, ε0[ be as in
Theorem 3.5. Let ε ∈]0, ε′[. Let (ui(ε, ·), uo(ε, ·)) be as in Definition 3.6. Then we
set

T i(ε, x) ≡ K
(−1)
i

(
F iε [fε](x) + ui(ε, x)

)
∀x ∈ clS[Ωp,ε] ,

T o(ε, x) ≡ K(−1)
o

(
F oε [fε](x) + uo(ε, x)

)
∀x ∈ clS[Ωp,ε]

− .

By Proposition 3.2 and by Definition 3.6, the pair (T i(ε, ·), T o(ε, ·)) is a so-
lution of problem (1.7) in C1,α

q (clS[Ωp,ε])× C1,α
q (clS[Ωp,ε]

−) for all ε ∈]0, ε′[.

4. Converging families of solutions

In this section we investigate some limiting and uniqueness properties of converging
families of solutions of problem (1.7).

4.1. Preliminary results

We first need to study some auxiliary integral operators. In the following lemma,
we introduce an operator which we denote by M i

#. The proof of the lemma can

be effected by exploiting classical properties of the single layer potential (cf. e.g.,
Folland [26, Ch. 3], [37, Thm. 5.1].)

Lemma 4.1. Let α ∈]0, 1[. Let Ω be as in (1.1). Let M i
# denote the operator from

C0,α(∂Ω)0 to C0,α(∂Ω)0, which takes θ to the function M i
#[θ] defined by

M i
#[θ](t) ≡ −1

2
θ(t) + w∗[∂Ω, θ](t) ∀t ∈ ∂Ω .

Then M i
# is a linear homeomorphism.

Then, if ε ∈]0, ε0[, we define the auxiliary integral operator M i
ε by means of

the following.

Lemma 4.2. Let α ∈]0, 1[, p ∈ Q. Let Ω and ε0 be as in (1.1) and (1.2), respectively.
Let ε ∈]0, ε0[. Let M i

ε denote the operator from C0,α(∂Ω)0 to C0,α(∂Ω)0 which takes
θ to the function M i

ε [θ] defined by

M i
ε [θ](t) ≡M i

#[θ](t) + εn−1

∫
∂Ω

νΩ(t) ·DRq,n(ε(t− s))θ(s) dσs ∀t ∈ ∂Ω .
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Then M i
ε is a linear homeomorphism.

Proof. By [42, Prop. A.4] applied to ∂Ωp,ε, M
i
ε is a linear homeomorphism in

C0,α(∂Ω). Then [40, Lem. A.1] implies that M i
ε carries C0,α(∂Ω)0 onto itself. �

We now show that if {εj}j∈N is a sequence in ]0, ε0[ converging to 0, then

(M i
εj )

(−1) converges to (M i
#)(−1) as j tends to +∞.

Lemma 4.3. Let {εj}j∈N be a sequence in ]0, ε0[ converging to 0. Then

lim
j→+∞

(M i
εj )

(−1) = (M i
#)(−1) in L(C0,α(∂Ω)0 , C

0,α(∂Ω)0) .

Proof. Let Nj be the operator from C0,α(∂Ω)0 to C0,α(∂Ω)0 which takes θ to

Nj [θ](t) ≡ εn−1
j

∫
∂Ω

νΩ(t) ·DRq,n(εj(t− s))θ(s) dσs ∀t ∈ ∂Ω , ∀j ∈ N.

Let UΩ be an open bounded neighborhood of clΩ. Let ε# be such that ε(t− s) ∈
(Rn\qZn)∪{0} for all t, s ∈ UΩ and all ε ∈]−ε#, ε#[. By the real analyticity of Rq,n
in (Rn \ qZn)∪ {0} it follows that the map which takes (ε, t, s) to DRq,n(ε(t− s))
is real analytic from ] − ε#, ε#[×UΩ × UΩ to Rn. Then, by standard properties
of integral operators with real analytic kernels and with no singularities (cf. [39,
§4]), we can deduce that limj→+∞Nj = 0 in L(C0,α(∂Ω)0 , C

0,α(∂Ω)0). Since
M i
εj = M i

# +Nj , it follows that limj→+∞M i
εj = M i

] in L(C0,α(∂Ω)0 , C
0,α(∂Ω)0).

Then by the continuity of the map from the open subset of the invertible operators
of L(C0,α(∂Ω)0 , C

0,α(∂Ω)0) to L(C0,α(∂Ω)0 , C
0,α(∂Ω)0) which takes an operator

to its inverse, one deduces that limj→+∞(M i
εj )

(−1) = (M i
#)(−1) (cf. e.g., Hille and

Phillips [29, Thms. 4.3.2 and 4.3.3].) Thus the validity of the lemma follows. �

4.2. Limiting behavior of a converging family of solutions

We are now ready to investigate the limiting behavior of a converging family
of solutions of problem (1.7). To begin with, we consider the limiting behavior
of converging families of q-periodic harmonic functions in the following technical
proposition

Proposition 4.4. Let α ∈]0, 1[, p ∈ Q. Let Ω and ε0 be as in (1.1) and (1.2),
respectively. Let {εj}j∈N be a sequence in ]0, ε0[ converging to 0. Then the following
statements hold.

(i) Let {ui#,j}j∈N be a sequence of functions such that for each j ∈ N

ui#,j ∈ C1,α
q (clS[Ωp,εj ]) and ∆ui#,j = 0 in S[Ωp,εj ] .

Assume that there exist gi# ∈ C0,α(∂Ω)0 and ξi# such that

lim
j→+∞

(
∂ui#,j
∂νΩp,εj

)
(p+ εj id∂Ω) = gi# in C0,α(∂Ω)0 , (4.1)

sup
j∈N

∣∣∣∣ε−1
j

(
1∫

∂Ω
dσ

∫
∂Ω

ui#,j(p+ εjs) dσs − ξi#
)∣∣∣∣ <∞ . (4.2)
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Then

sup
j∈N

∥∥∥∥ε−1
j

(
ui#,j(p+ εj idclΩ) − ξi#

)∥∥∥∥
C1,α(clΩ)

<∞ . (4.3)

(ii) Let {uo#,j}j∈N be a sequence of functions such that

uo#,j ∈ C1,α
q (clS[Ωp,εj ]

−) and ∆uo#,j = 0 in S[Ωp,εj ]
− ,

for all j ∈ N. Assume that there exists a function vo# ∈ C1,α(∂Ω) such that

lim
j→+∞

uo#,j(p+ εj id∂Ω) = vo# in C1,α(∂Ω) .

Then there exists a unique pair (uo#, ξ
o
#) ∈ C1,α

loc (Rn \ Ω)× R such that

vo# = uo#|∂Ω + ξo#, ∆uo# = 0 in Rn \ clΩ ,

and such that

lim
x→∞

uo#(x) = 0 .

Moreover,

lim
j→+∞

uo#,j(p+ εj idclO) = uo#|clO + ξo# in C1,α(clO)

for all open bounded subsets O of Rn \ clΩ, and

lim
j→+∞

uo
#,j|clÕ = ξ# in Cr(clÕ)

for all r ∈ N and for all open bounded subsets Õ of Rn such that clÕ ⊆
Rn \ (p+ qZn).

Proof. We first consider statement (i). Let

θij ≡ (M i
εj )

(−1)

[(
∂ui#,j
∂νΩp,εj

)
(p+ εj id∂Ω)

]
∀j ∈ N , θi# ≡ (M i

#)(−1)[gi#] .

Since the evaluation map from L(C0,α(∂Ω)0 , C
0,α(∂Ω)0)×C0,α(∂Ω)0 to C0,α(∂Ω)0,

which takes a pair (A, v) to A[v] is bilinear and continuous, the limiting relation
(4.1) and Lemma 4.3 imply that

lim
j→+∞

θij = lim
j→+∞

(M i
εj )

(−1)

[(
∂ui#,j
∂νΩp,εj

)
(p+εj id∂Ω)

]
= (M i

#)(−1)[gi#] = θi# (4.4)

in C0,α(∂Ω)0. Also, by the representation formula for periodic harmonic functions
in terms of single layer potentials and constants of [41, Lem. 4.1 (ii)], one has

ui#,j(x) = εn−1
j

∫
∂Ω

Sq,n(x− p− εjs)θij(s) dσs

− εj∫
∂Ω
dσ

∫
∂Ω

(∫
∂Ω

Sn(t− s)θij(s) dσs + εn−2
j

∫
∂Ω

Rq,n(εj(t− s))θij(s) dσs
)
dσt

+
1∫

∂Ω
dσ

∫
∂Ω

ui#,j(p+ εjs) dσs ∀x ∈ clS[Ωp,εj ] ,∀j ∈ N .
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Then one has

ui#,j(p+ εjt) = εj

(
v[∂Ω, θij ](t) + εn−2

j

∫
∂Ω

Rq,n(εj(t− s))θij(s) dσs
)

− εj∫
∂Ω
dσ

∫
∂Ω

(
v[∂Ω, θij ](t) + εn−2

j

∫
∂Ω

Rq,n(εj(t− s))θij(s) dσs
)
dσt

+
1∫

∂Ω
dσ

∫
∂Ω

ui#,j(p+ εjs) dσs ∀t ∈ clΩ ,∀j ∈ N .

As a consequence,

ε−1
j

(
ui#,j(p+ εjt)− ξi#

)
= v[∂Ω, θij ](t) + εn−2

j

∫
∂Ω

Rq,n(εj(t− s))θij(s) dσs

− 1∫
∂Ω
dσ

∫
∂Ω

(
v[∂Ω, θij ](t) + εn−2

j

∫
∂Ω

Rq,n(εj(t− s))θij(s) dσs
)
dσt

+ ε−1
j

(
1∫

∂Ω
dσ

∫
∂Ω

ui#,j(p+ εjs) dσs − ξi#
)

∀t ∈ clΩ ,∀j ∈ N .

Then, by (4.2), by the continuity of the map from C0,α(∂Ω) to C1,α(clΩ) which
takes θ to v[∂Ω, θ]|clΩ, by standard properties of integral operators with real ana-
lytic kernels and with no singularities (cf. [40, §4]) and by (4.4), one deduces the
validity of (4.3). The proof of statement (ii) follows the lines of the proof of [16,
Prop. 4.4], where the more involved case of the operator of linearized elastostatics
has been considered. �

We are now ready to prove the main results of this subsection, where we
study the limiting behavior of converging families of solutions of problem (1.7).

Theorem 4.5. Let α ∈]0, 1[, ρ ∈]0,+∞[, p ∈ Q. Let Ω and ε0 be as in (1.1) and
(1.2), respectively. Let (1.3), (1.4), (1.5), (1.6) hold. Let (1.8) hold for all ε ∈]0, ε0[.
Let {εj}j∈N be a sequence of ]0, ε0[ which converges to 0. Let {(T ij , T oj )}j∈N be a
sequence of pairs of functions such that

(T ij , T
o
j ) ∈ C1,α

q (clS[Ωp,εj ])× C1,α
q (clS[Ωp,εj ]

−) ,
(T ij , T

o
j ) solves (1.7) for ε = εj ,

limj→+∞ κi(T
i
j (p+ εj id∂Ω))

(
∂T ij

∂νΩp,εj

)
(p+ εj id∂Ω) exists in C0,α(∂Ω)0 .

(4.5)

Then

lim
j→+∞

T ij (p+ εj idclΩ) = K
(−1)
i (k) in C1,α(clΩ) ,

and

lim
j→+∞

T oj (p+ εj idclO) = K
(−1)
i (k) in C1,α(clO)

for all open bounded subsets O of Rn \ clΩ, and

lim
j→+∞

T o
j|clÕ = K(−1)

o

(
Pq,n[Q, f0]|clÕ−Pq,n[Q, f0](p)+Ko(K

(−1)
i (k))

)
in C1,α(clÕ)
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for all open bounded subsets Õ of Rn such that clÕ ⊆ Rn \ (p+ qZn).

Proof. Let uij , u
o
j be the functions defined by

uij(x) ≡Ki ◦ T ij (x)− F iεj [fεj ](x) ∀x ∈ clS[Ωp,εj ] ,

uoj(x) ≡Ko ◦ T oj (x)− F oεj [fεj ](x) ∀x ∈ clS[Ωp,εj ]
− .

(4.6)

By Proposition 3.2 (see also [41, Thm. 3.3]), the pair (uij , u
o
j) solves problem (3.3)

for ε = εj . Then we set

ui,rj (t) ≡ uij(p+ εjt) ∀t ∈ clΩ ,

uo,rj (t) ≡ uoj(p+ εjt) ∀t ∈ ε−1
j (clS[Ωp,εj ]

− − p) ,

for all j ∈ N. Next we turn to show that

ui,r ≡ lim
j→+∞

ui,rj exists in C1,α(clΩ) .

By assumption (1.4) and by [42, Lem. A.7 (ii)], we deduce that the map from
]− ε0, ε0[ to C1,α(clΩ) which takes ε to

∫
Q
Sq,n(p+ εt− y)fε(y) dy is continuously

differentiable. Accordingly, there exists a continuous function F from ]− ε0, ε0[ to
C1,α(clΩ) such that∫

Q

Sq,n(p+ εt− y)fε(y) dy =

∫
Q

Sq,n(p− y)f0(y) dy + εF [ε](t)

= Pq,n[Q, f0](p) + εF [ε](t) ∀t ∈ clΩ ,

for all ε ∈]− ε0, ε0[. As a consequence,

F iε [fε](p+ εt) = Pq,n[Q, fε](p+ εt) + Pn[Ωp,ε, 1](p+ εt)−
∫
Q

fε(y) dy

=

∫
Q

Sq,n(p− y)f0(y) dy + εF [ε](t)

− εn

mn(Q)

[
ε

∫
Ω

Sn(t− s) ds+
δ2,n
2π

ε(log ε)mn(Ω)

] ∫
∂Ω

gε dσ ∀t ∈ clΩ ,

(4.7)

and(
∂F iε [fε]

∂νΩp,ε

)
(p+ εt) =

∂F [ε]

∂νΩ
(t)

+
εn

mn(Q)

∫
∂Ω

Sn(t− s)νΩ(t) · νΩ(s) dσs

∫
∂Ω

gε dσ ∀t ∈ ∂Ω ,

(4.8)

for all ε ∈]0, ε0[ (see also (1.8) and (3.1).) By (4.6) and (4.8), we have(
∂uij

∂νΩp,εj

)
(p+ εjt) = κi(T

i
j (p+ εjt))

(
∂T ij

∂νΩp,εj

)
(p+ εjt)−

∂F [εj ]

∂νΩ
(t)

−
εnj

mn(Q)

∫
∂Ω

Sn(t− s)νΩ(t) · νΩ(s) dσs

∫
∂Ω

gεj dσ ∀t ∈ ∂Ω ,
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for all j ∈ N. Moreover, by definition (4.6), and by the last equation of (1.7), and
by (4.7), we have

ε−1
j

(
−
∫
∂Ω

uij(p+ εjt) dσt − k +

∫
Q

Sq,n(p− y)f0(y) dy

)
= −−

∫
∂Ω

F [εj ] dσ

+
εn−1
j

mn(Q)

[
εj−
∫
∂Ω

∫
Ω

Sn(t− s) ds dσt + δ2,nεj(log εj)mn(Ω)

] ∫
∂Ω

gεj dσ .

Accordingly, the sequence {uij}j∈N satisfies the hypotheses of Proposition 4.4. As
a consequence,

sup
j∈N

∥∥∥∥ε−1
j

(
uij(p+ εj idclΩ)− k +

∫
Q

Sq,n(p− y)f0(y) dy

)∥∥∥∥
C1,α(clΩ)

<∞ . (4.9)

Hence,

lim
j→+∞

uij(p+ εj idclΩ) = k −
∫
Q

Sq,n(p− y)f0(y) dy in C1,α(clΩ) . (4.10)

Moreover, equation (4.7) implies that

lim
j→+∞

F iεj [fεj ](p+ εj idclΩ) = Pq,n[Q, f0](p) in C1,α(clΩ) . (4.11)

Then by the definition of uij and by continuity results for the composition operator
in Schauder spaces (cf. e.g., Drábek [19], Valent [55, Thm. 3.3, p. 32]), we deduce
that

lim
j→+∞

T ij (p+ εj idclΩ) = K
(−1)
i (k) in C1,α(clΩ) .

Next we turn to prove a corresponding statement for {T oj }j∈N. Assumption (1.4)
and the analyticity statement [42, Lem. A.7] imply that

lim
j→+∞

Pq,n[Q, fεj ](p+ εj id∂Ω) = Pq,n[Q, f0](p) in C1,α(∂Ω) . (4.12)

By assumption (1.8) and by known results on integral operators with analytic
kernels, we have

lim
j→+∞

1

mn(Ωp,εj )

∫
Ωp,εj

Sq,n(p+ εjt− y) dy

∫
Q

fεj dy (4.13)

= lim
j→+∞

−1

mn(Ω)

{∫
Ω

Sn(t− s)εj +
δ2,n
2π

(log εj)εj ds

+

∫
Ω

Rq,n(εj(t− s)) dsεn−1
j

}∫
∂Ω

gεj dσ = 0 ,

in the C1,α-norm in the variable t ∈ ∂Ω (cf. e.g., [39, Prop. 4.1].) Hence, the
limiting relations (4.12) and (4.13) imply that

lim
j→+∞

F oεj [fεj ](p+ εj id∂Ω) = Pq,n[Q, f0](p) in C1,α(∂Ω) , (4.14)
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(see also (3.2).) On the other hand, equation (4.11) implies that

lim
j→+∞

F iεj [fεj ](p+ εj id∂Ω) = Pq,n[Q, f0](p) in C1,α(∂Ω) . (4.15)

Since Ko ◦ K(−1)
i is of class C2, known continuity results on the composition

operator, and the fifth and sixth line in (3.3), and (4.10), (4.14), (4.15) imply that

lim
j→+∞

uoj(p+ εj id∂Ω)

= lim
j→+∞

(
− F oεj [fεj ](p+ εj id∂Ω)

+Ko ◦K(−1)
i

(
uij(p+ εj id∂Ω) + F iεj [fεj ](p+ εj id∂Ω)

))
= −Pq,n[Q, f0](p) +Ko ◦K(−1)

i

(
k
)

in C1,α(∂Ω)

(cf. e.g., Drábek [19], Valent [55, Thm. 3.3, p. 32].) As a consequence, Proposition
4.4 (ii) implies that

lim
j→+∞

uoj(p+ εj idclO) = −Pq,n[Q, f0](p) +Ko ◦K(−1)
i

(
k
)

in C1,α(clO) (4.16)

for all open bounded subsets O of Rn \ clΩ, and that

lim
j→+∞

uo
j|clÕ = −Pq,n[Q, f0](p) +Ko ◦K(−1)

i

(
k
)

in Cr(clÕ) (4.17)

for all r ∈ N and for all open bounded subsets Õ of Rn such that clÕ ⊆ Rn \ (p+
qZn). By the limiting relations (4.12) and (4.13) with ∂Ω replaced by clO, we have

lim
j→+∞

F oεj [fεj ](p+ εj idclO) = Pq,n[Q, f0](p) in C1,α(clO) (4.18)

for all open bounded subsets O of Rn \ clΩ. By standard properties of integral
operators with real analytic kernels and with no singularities (cf. [39, §4]), we can
deduce that

lim
j→+∞

∫
Ω

Sn(· − (p+ εjy)) dy = Sn(· − p)mn(Ω) in Cr(clÕ)

for all r ∈ N and for all open bounded subsets Õ of Rn such that clÕ ⊆ Rn \
(p+ qZn). Then by the definition of F oεj [fεj ], and by the continuity of Pq,n[Q, ·] in

Roumieu spaces and by assumption (1.8), we have

lim
j→+∞

F oεj [fεj ]|clÕ = Pq,n[Q, f0]|clÕ in Cr(clÕ)

for all r ∈ N and for all open bounded subsets Õ of Rn such that clÕ ⊆ Rn \ (p+
qZn). Then (4.6), (4.16), (4.17), (4.18), assumption (1.3) and continuity results for
the composition operators imply that

lim
j→+∞

T oj (p+ εj idclO) = K
(−1)
i (k) in C1,α(clO)
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for all open bounded subsets O of Rn \ clΩ, and that

lim
j→+∞

T o
j|clÕ = K(−1)

o

(
Pq,n[Q, f0]|clÕ−Pq,n[Q, f0](p)+Ko(K

(−1)
i (k))

)
in C1,α(clÕ)

for all open bounded subsets Õ of Rn such that clÕ ⊆ Rn \ (p + qZn) (cf. e.g.,
Drábek [19], Valent [55, Thm. 3.3, p. 32].) �

The next theorem shows in particular that if a family of solutions has a limit
when rescaled, then such a limit is uniquely determined and equals the constant

K
(−1)
i (k).

Theorem 4.6. Let α ∈]0, 1[, ρ ∈]0,+∞[, p ∈ Q. Let Ω and ε0 be as in (1.1)
and (1.2), respectively. Let (1.3), (1.4), (1.5), (1.6), (1.10) hold. Let (1.8) hold
for all ε ∈]0, ε0[. Let {εj}j∈N be a sequence of ]0, ε0[ which converges to 0. Let
{(T ij , T oj )}j∈N be a sequence of pairs of functions such that

(T ij , T
o
j ) ∈ C1,α

q (clS[Ωp,εj ])× C1,α
q (clS[Ωp,εj ]

−) ,
(T ij , T

o
j ) solves (1.7) for ε = εj ,

limj→+∞ T ij (p+ εj idclΩ) exists in C1,α(clΩ) .
(4.19)

Then

lim
j→+∞

T ij (p+ εj idclΩ) = K
(−1)
i (k) in C1,α(clΩ) ,

and

lim
j→+∞

T oj (p+ εj idclO) = K
(−1)
i (k) in C1,α(clO)

for all open bounded subsets O of Rn \ clΩ, and

lim
j→+∞

T o
j|clÕ = K(−1)

o

(
Pq,n[Q, f0]|clÕ−Pq,n[Q, f0](p)+Ko(K

(−1)
i (k))

)
in C1,α(clÕ)

for all open bounded subsets Õ of Rn such that clÕ ⊆ Rn \ (p+ qZn).

Proof. Let uij , u
o
j be the functions defined by

uij(x) ≡ Ki ◦ T ij (x)− F iεj [fεj ](x) ∀x ∈ clS[Ωp,εj ] ,

uoj(x) ≡ Ko ◦ T oj (x)− F oεj [fεj ](x) ∀x ∈ clS[Ωp,εj ]
− .

By Proposition 3.2, the pair (uij , u
o
j) solves problem (3.3) for ε = εj . Then we set

ui,rj (t) ≡ uij(p+ εjt) ∀t ∈ clΩ ,

uo,rj (t) ≡ uoj(p+ εjt) ∀t ∈ ε−1
j (clS[Ωp,εj ]

− − p) ,

for all j ∈ N. Next we turn to show that

ui,r ≡ lim
j→+∞

ui,rj exists in C1,α(clΩ) . (4.20)
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Since Ki is of class C2, known results on the composition operator and assumption
(4.19) imply that

vi,r ≡ lim
j→+∞

Ki ◦ T ij (p+ εj idclΩ) exists in C1,α(clΩ) (4.21)

(cf. e.g., Drábek [19], Valent [55, Thm. 3.3, p. 32].) Then the limiting relations
(4.11) and (4.21) imply that the limit in (4.20) exists and that

ui,r(t) = vi,r(t)− Pq,n[Q, f0](p) ∀t ∈ clΩ . (4.22)

Since ui,r is the uniform limit of the harmonic functions ui,rj , the function ui,r is
harmonic in Ω. By arguing as in the part of the proof of Theorem 4.5 following
(4.10), we deduce that

lim
j→+∞

uo,rj|∂Ω exists in C1,α(∂Ω) .

Then by Proposition 4.4 (ii), there exists a unique pair (uo,r, c]) ∈ C1,α
loc (Rn\Ω)×R

such that

∆uo,r = 0 in Rn \ clΩ , lim
t→∞

uo,r(t) = c] ,

and that

lim
j→+∞

uo,rj|clO = uo,r|clO in C1,α(clO) (4.23)

for all open bounded subsets O of Rn \ clΩ, and that

lim
j→+∞

uo
j|clÕ = c] in Cr(clÕ)

for all r ∈ N and for all open bounded subsets Õ of Rn such that clÕ ⊆ Rn \ (p+
qZn). Then we set

vo,r(t) ≡ uo,r(t) + Pq,n[Q, f0](p) ∀t ∈ Rn \ Ω .

By a change of variable, and by multiplying the second last equation of (3.3) by
εj , and by (1.8), we obtain

∂uo,rj
∂νΩ

(t)− εj
mn(Ω)

∫
∂Ω

gεj dσ

{∫
∂Ω

Sn(t− s)νΩ(t) · νΩ(s) dσs

+ εn−2
j

∫
∂Ω

Rq,n(ε(t− s))νΩ(t) · νΩ(s) dσs

}
=
∂ui,rj
∂νΩ

(t) +
εn+1
j

mn(Q)

∫
∂Ω

gεj dσ

∫
∂Ω

Sn(t− s)νΩ(t) · νΩ(s) dσs

+ εjgεj (t) ∀t ∈ ∂Ω .

(4.24)

Then by equalities

uo,rj (t) + F oεj [fεj ](p+ εjt) = Ko ◦K(−1)
i

(
ui,rj (t) + F iεj [fεj ](p+ εjt)

)
∀t ∈ ∂Ω ,

−
∫
∂Ω

uo,rj dσ = k −−
∫
∂Ω

F iεj [fεj ](p+ εjs) dσs ,
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and by the limiting relations in (4.14), (4.15), (4.20), (4.23), and by (1.8), and by
letting j tend to +∞ in (4.24), we conclude that

∆ui,r(t) = 0 ∀t ∈ Ω ,
∆uo,r(t) = 0 ∀t ∈ Rn \ clΩ ,

uo,r(t) + Pq,n[Q, f0](p) = Ko ◦K(−1)
i

(
ui,r(t) + Pq,n[Q, f0](p)

)
∀t ∈ ∂Ω ,

∂uo,r

∂νΩ
(t) = ∂ui,r

∂νΩ
(t) ∀t ∈ ∂Ω ,

−
∫
∂Ω
ui,r dσ = k − Pq,n[Q, f0](p) ,

limt→∞ uo,r(t) = c] .

Then the pair of functions (vi,r, vo,r) ∈ C1,α(clΩ) × C1,α
loc (Rn \ Ω) satifies the

boundary value problem

∆vi,r(t) = 0 ∀t ∈ Ω ,
∆vo,r(t) = 0 ∀t ∈ Rn \ clΩ ,

vo,r(t) = Ko ◦K(−1)
i

(
vi,r(t)

)
∀t ∈ ∂Ω ,

∂vo,r

∂νΩ
(t) = ∂vi,r

∂νΩ
(t) ∀t ∈ ∂Ω ,

−
∫
∂Ω
vi,r dσ = k ,

limt→∞ vo,r(t) = c] + Pq,n[Q, f0](p) .

(4.25)

We now turn to show that such a problem has a unique solution. To do so, we set

T i,r ≡ K(−1)
i ◦ vi,r , T o,r ≡ K(−1)

o ◦ vo,r ,

and we note that the pair (T i,r, T o,r) belongs to C1,α(clΩ) × C1,α
loc (Rn \ Ω) and

satisfies the following boundary value problem

div (κi(T
i,r(t))DT i,r(t)) = 0 ∀t ∈ Ω ,

div (κo(T
o,r(t))DT o,r(t)) = 0 ∀t ∈ Rn \ clΩ ,

T o,r(t) = T i,r(t) ∀t ∈ ∂Ω ,

κo(T
o,r(t))∂T

o,r

∂νΩ
(t) = κi(T

i,r(t))∂T
i,r

∂νΩ
(t) ∀t ∈ ∂Ω ,

−
∫
∂Ω
Ki ◦ T i,r dσ = k ,

limt→∞ T o,r(t) = K
(−1)
o (c] + Pq,n[Q, f0](p)) .

If R > 0 is such that clΩ ⊆ Bn(0, R), we can apply the Divergence Theorem in
Bn(0, R) \ clΩ and obtain∫

Ω

κi(T
i,r(t))|DT i,r(t)|2 dt (4.26)

=

∫
Ω

div
(
T i,r(t)κi(T

i,r(t))DT i,r(t)
)
dt

=

∫
∂Ω

T i,r(t)κi(T
i,r(t))

∂T i,r

∂νΩ
(t) dσt

=

∫
∂Ω

T o,r(t)κo(T
o,r(t))

∂T o,r

∂νΩ
(t) dσt

= −
∫
Bn(0,R)\clΩ

div (T o,r(t)κo(T
o,r(t))DT o,r(t)) dt
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+

∫
∂Bn(0,R)

T o,r(t)κo(T
o,r(t))

∂T o,r

∂νBn(0,R)
(t) dσt

= −
∫
Bn(0,R)\clΩ

κo(T
o,r(t))|DT o,r(t)|2 dt

+

∫
∂Bn(0,R)

[
K(−1)
o ◦ vo,r(t)−K(−1)

o (c] + Pq,n[Q, f0](p))
] ∂vo,r

∂νBn(0,R)
(t) dσt

+K(−1)
o (c] + Pq,n[Q, f0](p))

∫
∂Bn(0,R)

∂vo,r

∂νBn(0,R)
(t) dσt .

Since vo,r is harmonic in Rn \ clΩ and has a finite limit at infinity, classical decay
properties of the gradient of harmonic functions at infinity imply that

sup
t∈Rn\Ω

∣∣∣∣ t|t| ·Dvo,r(t)
∣∣∣∣ |t|n−1 <∞ if n ≥ 3 , sup

t∈Rn\Ω

∣∣∣∣ t|t| ·Dvo,r(t)
∣∣∣∣ |t|2 <∞ if n = 2 ,

(cf. e.g. Folland [26, p. 114].) Since

lim
t→∞

[
K(−1)
o ◦ vo,r(t)−K(−1)

o (c] + Pq,n[Q, f0](p))
]

= 0 ,

we have

lim
R→+∞

∫
∂Bn(0,R)

[
K(−1)
o ◦ vo,r(t)−K(−1)

o (c] + Pq,n[Q, f0](p))
] ∂vo,r

∂νBn(0,R)
(t) dσt

= 0 .

(4.27)

Since vi,r and vo,r are harmonic in Ω and Rn \ clΩ, respectively, we have∫
∂Bn(0,R)

∂vo,r

∂νBn(0,R)
(t) dσt =

∫
∂Ω

∂vo,r

∂νΩ
(t) dσt =

∫
∂Ω

∂vi,r

∂νΩ
(t) dσt = 0 . (4.28)

By the limiting relation (4.27) and by equality (4.28) and by the Monotone Con-
vergence Theorem, we can take the limit as R tends to infinity in equality (4.26)
and obtain∫

Ω

κi(T
i,r(t))|DT i,r(t)|2 dt = −

∫
Rn\clΩ

κo(T
o,r(t))|DT o,r(t)|2 dt .

Since κi > 0, κo > 0, such an equation can hold if and only if T i,r and T o,r

are both constant. Then assumption (1.9) implies that vi,r and vo,r are also both
constant and the third and fifth conditions of problem (4.25) imply that

K(−1)
o (vo,r) = K

(−1)
i (vi,r) = K

(−1)
i (k) , vi,r = k ,

and thus T i,r = K
(−1)
i (k) and T o,r = K

(−1)
o (vo,r) = K

(−1)
i (k). In particular, (4.20)

and (4.22) imply that

lim
j→+∞

ui,rj = k −
∫
Q

Sq,n(p− y)f0(y) dy in C1,α(clΩ) .



26 M. Dalla Riva, M. Lanza de Cristoforis and P. Musolino

Then, by arguing exactly as in the proof of Theorem 4.5 from equation (4.10) to
the end of the proof, we deduce that

lim
j→+∞

T ij (p+ εj idclΩ) = K
(−1)
i (k) in C1,α(clΩ) ,

and that

lim
j→+∞

T oj (p+ εj idclO) = K
(−1)
i (k) in C1,α(clO)

for all open bounded subsets O of Rn \ clΩ, and that

lim
j→+∞

T o
j|clÕ = K(−1)

o

(
Pq,n[Q, f0]|clÕ−Pq,n[Q, f0](p)+Ko(K

(−1)
i (k))

)
in C1,α(clÕ)

for all open bounded subsets Õ of Rn such that clÕ ⊆ Rn \ (p+ qZn). �

4.3. A local uniqueness result for converging families of solutions

In this subsection we prove that a family of solutions of (1.7) which satisfies the
limiting condition in (4.5) is essentially unique in a local sense which we clarify in
the following theorem.

Theorem 4.7. Let α ∈]0, 1[, ρ ∈]0,+∞[, p ∈ Q. Let Ω and ε0 be as in (1.1)
and (1.2), respectively. Let (1.4), (1.5), (1.6), (1.9), (1.10) hold. Let (1.8) hold
for all ε ∈]0, ε0[. Let {εj}j∈N be a sequence of ]0, ε0[ which converges to 0. Let
{(T ij , T oj )}j∈N is a sequence of pairs of functions such that

(T ij , T
o
j ) ∈ C1,α

q (clS[Ωp,εj ])× C1,α
q (clS[Ωp,εj ]

−) ,
(T ij , T

o
j ) solves (1.7) for ε = εj ,

limj→+∞ κi(T
i
j (p+ εj id∂Ω))

(
∂T ij

∂νΩp,εj

)
(p+ εj id∂Ω) exists in C0,α(∂Ω)0 .

(4.29)
then there exists j0 ∈ N such that

T ij (·) = T i(εj , ·) , T oj (·) = T o(εj , ·) ∀j ≥ j0 . (4.30)

Proof. Let uij be the function defined by

uij(x) ≡ Ki ◦ T ij (x)− F iεj [fεj ](x) ∀x ∈ clS[Ωp,εj ] ∀j ∈ N .

Since the assumptions of Theorem (4.5) are satisfied condition (4.9) holds, and we
have

sup
j∈N

∥∥∥∥ε−1
j

(
uij(p+ εj idclΩ)− k +

∫
Q

Sq,n(p− y)f0(y) dy

)∥∥∥∥
C1,α(clΩ)

<∞ .

On the other hand by (4.7), we have

sup
j∈N

∥∥∥∥ε−1
j

(
Fεj [fεj ](p+ εj id∂Ω)−

∫
Q

Sq,n(p− y)f0(y) dy

)∥∥∥∥
C1,α(∂Ω)

<∞ .
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As a consequence, we have

sup
j∈N

∥∥ε−1
j (Ki ◦ T ij (p+ εj id∂Ω)− k)

∥∥
C1,α(∂Ω)

<∞ . (4.31)

Since (T ij , T
o
j ) solves problem (1.7), Propositions 3.2 and 3.3 ensure that for each

j ∈ N there exists a unique (ψj , θj , ξj) ∈ C0,α(∂Ω)2
0 × R such that

T ij = K
(−1)
i ◦

(
F iεj [fεj ] + ui[εj , ψj , θj , ξj ]

)
, (4.32)

T oj = K(−1)
o ◦

(
F oεj [fεj ] + uo[εj , ψj , θj , ξj ]

)
.

Let (ψ̃, θ̃, ξ̃) be as in Proposition 3.4. We now try to show that

lim
j→+∞

(ψj , θj , ξj) = (ψ̃, θ̃, ξ̃) in C0,α(∂Ω)2
0 × R . (4.33)

Indeed, if U is as in Theorem 3.5, the limiting relation (4.33) implies that there
exists j0 ∈ N such that

(εj , δ2,nεj log εj , ψj , θj , ξj) ∈]− ε′, ε′[×]− ε], ε][×U for all j ≥ j0 ,

and thus Theorem 3.5 implies that

(ψj , θj , ξj) = (Ψ[εj , δ2,nεj log εj ],Θ[εj , δ2,nεj log εj ],Ξ[εj , δ2,nεj log εj ]) ,

if j ≥ j0 and thus equality (4.30) holds for j ≥ j0.
In order to prove (4.33), we rewrite equation Λ[ε, ε1, ψ, θ, ξ] = 0 in the fol-

lowing form

mo[ε, θ, ξ](t)−K ′(K(−1)(G[ε, ε1]))mi[ε, ψ](t) (4.34)

= −
∫ 1

0

D(Pq,n[Q, fε])(p+ τεt) · t dτ

− 1

mn(Ω)

∫
∂Ω

gε dσ

{
Pn[Ω, 1](t) + εn−2

∫
Ω

Rq,n(ε(t− s)) ds
}

+K ′(K(−1)(G[ε, ε1]))

[
mi

1[ε](t) +
mn(Ω)

2πmn(Q)
ε1

∫
Q

fε dx

]
+ε

[
mi[ε, ψ](t) +mi

1[ε](t) +
mn(Ω)

2πmn(Q)
ε1

∫
Q

fε dx

]2

×
∫ 1

0

(1− β)K ′′
(
K(−1)(G[ε, ε1])

+βε

[
mi[ε, ψ](t) +mi

1[ε](t) +
mn(Ω)

2πmn(Q)
ε1

∫
Q

fε dx

])
dβ ∀t ∈ ∂Ω ,

1

2
θ(t) + w∗[∂Ω, θ](t) + εn−1

∫
∂Ω

νΩ(t) ·DRq,n(ε(t− s))θ(s) dσs (4.35)

+
1

2
ψ(t)− w∗[∂Ω, ψ](t)− εn−1

∫
∂Ω

νΩ(t) ·DRq,n(ε(t− s))ψ(s) dσs



28 M. Dalla Riva, M. Lanza de Cristoforis and P. Musolino

=
1

mn(Ω)

∫
∂Ω

gε dσ

{∫
∂Ω

Sn(t− s)νΩ(t) · νΩ(s) dσs

+εn−2

∫
∂Ω

Rq,n(ε(t− s))νΩ(t) · νΩ(s) dσs

}
+

εn

mn(Q)

∫
∂Ω

gε dσ

∫
∂Ω

Sn(t− s)νΩ(t) · νΩ(s) dσs + gε(t) ∀t ∈ ∂Ω ,

for all (ε, ε1, ψ, θ, ξ) ∈]− ε0, ε0[×R×C0,α(∂Ω)2
0 ×R. As shown in the proof of [41,

Thm. 4.4 (iii), p. 2529, equation (32)], both hand sides of equation (4.35) have
zero integral on ∂Ω for all (ε, ε1, ψ, θ, ξ) ∈]− ε0, ε0[×R×C0,α(∂Ω)2

0×R. We define
the maps N ≡ (Nl)l=1,2 and B ≡ (Bl)l=1,2 from ] − ε0, ε0[×R × C0,α(∂Ω)2

0 × R
to C1,α(∂Ω) × C0,α(∂Ω)0 by setting N1[ε, ε1, ψ, θ, ξ] and B1[ε, ε1, ψ, θ, ξ] equal to
the left and the right hand side of the equality in (4.34) for all (ε, ε1, ψ, θ, ξ) ∈
] − ε0, ε0[×R × C0,α(∂Ω)2

0 × R, respectively, and by setting N2[ε, ε1, ψ, θ, ξ] and
B2[ε, ε1, ψ, θ, ξ] equal to the left and the right hand side of the equality in (4.35)
for all (ε, ε1, ψ, θ, ξ) ∈]− ε0, ε0[×R× C0,α(∂Ω)2

0 × R, respectively.
By the proof of [41, Thm. 4.4 ] the maps N and B are analytic under ana-

lyticity assumptions on Ki, Ko and on the families of (1.4), (1.5). Here instead,
Ki and Ko are of class C5 and the families of (1.4), (1.5) are of class C1. Thus
the same proof of [41, Thm. 4.4 ] implies that the maps N and B are of class
C1. Next we note that N [ε, ε1, ·, ·, ·] is linear for all fixed (ε, ε1) ∈]− ε0, ε0[×R. In
particular, the map from ]− ε0, ε0[×R to L(C0,α(∂Ω)2

0×R, C1,α(∂Ω)×C0,α(∂Ω)0)
which takes (ε, ε1) to N [ε, ε1, ·, ·, ·] is continuous. We also note that

N [0, 0, ·, ·, ·] = ∂(ψ,θ,ξ)Λ[0, 0, ψ̃, θ̃, ξ̃](·, ·, ·) ,
and that accordingly, N [0, 0, ·, ·, ·] is a linear homeomorphism (see the proof of
[41, Thm. 4.4].) Since the set of linear homeomorphisms is open in the set of
linear and continuous operators, and since the map which takes a linear invertible
operator to its inverse is continuous (cf. e.g., Hille and Phillips [29, Thms. 4.3.2
and 4.3.4]), there exists an open neighborhood W of (0, 0) in ]− ε0, ε0[×]− ε], ε][
such that the map which takes (ε, ε1) to N [ε, ε1, ·, ·, ·](−1) is continuous from W to
L(C1,α(∂Ω)× C0,α(∂Ω)0, C

0,α(∂Ω)2
0 × R). Clearly, there exists j1 ∈ N such that

(εj , δ2,nεj log εj) ∈ W ∀j ≥ j1 .
Since Λ[εj , δ2,nεj log εj , ψj , θj , ξj ] = 0, the invertibility of the linear operator

N [ε, δ2,nεj log εj , ψj , ·, ·, ·]
and equalities (4.34), (4.35) guarantee that

(ψj , θj , ξj) = N [ε, δ2,nεj log εj , ·, ·, ·](−1) [B[ε, δ2,nεj log εj , ψj , θj , ξj ]] , (4.36)

if j ≥ j1. By (4.32) and by the same computations of [41, equation (18), fourth
equation of p. 2522] yielding to [41, equations (20), (21)], we have

Ki ◦ T ij (p+ εjt)

= F iεj [fεj ](p+ tεj) + ui[εj , ψj , θj , ξj ](p+ tεj) = K(−1)(G[εj , δ2,nεj log εj ])
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+εj

[
mi[εj , ψj ](t) +mi

1[εj ](t) +
mn(Ω)

2πmn(Q)
δ2,nεj log εj

∫
Q

fεj dx

]
for all t ∈ ∂Ω and j ∈ N. Accordingly we have

mi[εj , ψj ](t) +mi
1[εj ](t) +

mn(Ω)

2πmn(Q)
δ2,nεj log εj

∫
Q

fεj dx

= ε−1
j

(
Ki ◦ T ij (p+ εjt)−K(−1)(G[εj , δ2,nεj log εj ])

)
for all t ∈ ∂Ω and j ∈ N. Hence,

B1[εj , δ2,nεj log εj , ψj , θj , ξj ](t) (4.37)

= −
∫ 1

0

D(Pq,n[Q, fεj ])(p+ τεjt) · t dτ

− 1

mn(Ω)

∫
∂Ω

gεj dσ

{
Pn[Ω, 1](t) + εn−2

j

∫
Ω

Rq,n(εj(t− s)) ds
}

+K ′(K(−1)(G[εj , δ2,nεj log εj ]))

×
[
mi

1[εj ](t) +
mn(Ω)

2πmn(Q)
δ2,nεj log εj

∫
Q

fεj dx

]
+εj

[
ε−1
j

(
Ki ◦ T ij (p+ εjt)−K(−1)(G[εj , δ2,nεj log εj ])

)]2

×
∫ 1

0

(1− β)K ′′
(
K(−1)(G[εj , δ2,nεj log εj ])

+βεj

[
ε−1
j

(
Ki ◦ T ij (p+ εjt)−K(−1)(G[εj , δ2,nεj log εj ])

)])
dβ ,

for all t ∈ ∂Ω. We also note that B2[εj , δ2,nεj log εj , ψj , θj , ξj ] is actually inde-
pendent of ψj , θj , ξj . Next we note that (3.4) and the Fundamental Theorem of
Calculus imply that

ε−1
j

(
K(−1)(G[εj , δ2,nεj log εj ])− k

)
= −−

∫
∂Ω

∫ 1

0

D(Pq,n[Q, fεj ])(p+ τεjt) · t dτ dσt

−−
∫
Q

fεj dy−
∫
∂Ω

εjPq,n[Q, 1] dσ −−
∫
Q

fεj dy
mn(Ω)

2π
δ2nεj log εj

for all j ∈ N. By [42, Appendix], the function
∫ 1

0
D(Pq,n[Q, fε])(p + τεt) · t dτ

of the variable t ∈ ∂Ω belongs to C1,α(∂Ω) and depends continuously on ε ∈

]−ε0, ε0[. Then the sequence

{
ε−1
j

(
K(−1)(G[εj , δ2,nεj log εj ])−k

)}
j∈N

of constant
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functions is bounded in C1,α(∂Ω). Then (4.31) implies that the sequence{
ε−1
j

(
Ki ◦ T ij (p+ εj id∂Ω)−K(−1)(G[εj , δ2,nεj log εj ])

)}
j∈N

(4.38)

is bounded in C1,α(∂Ω) .

Now let B̃ = (B̃1, B̃2) be the element of C1,α(∂Ω)× C0,α(∂Ω)0 defined by

B̃1(t) ≡−D(Pq,n[Q, f0])(p) · t

− 1

mn(Ω)

∫
∂Ω

g0 dσ {Pn[Ω, 1](t) + δ2,nRq,n(0)mn(Ω)}

+K ′(k)D(Pq,n[Q, f0])(p) · t ∀t ∈ ∂Ω ,

and

B̃2(t) ≡ 1

mn(Ω)

∫
∂Ω

g0 dσ

∫
∂Ω

Sn(t− s)νΩ(t) · νΩ(s) dσs + g0(t) ∀t ∈ ∂Ω .

Then the continuity of B2, and equality (4.37), and condition (4.38) imply that

lim
j→+∞

B[εj , δ2,nεj log εj , ψj , θj , ξj ] = B̃ (4.39)

in C1,α(∂Ω)× C0,α(∂Ω)0. The continuity of the map which takes (ε, ε1) to

N [ε, ε1, ·, ·, ·](−1)

implies that

lim
j→+∞

N [εj , δ2,nεj log εj ·, ·, ·](−1) = N [0, 0, ·, ·, ·](−1) (4.40)

in L(C1,α(∂Ω) × C0,α(∂Ω)0, C
0,α(∂Ω)2

0 × R). Since the evaluation map from the
space L(C1,α(∂Ω)×C0,α(∂Ω)0, C

0,α(∂Ω)2
0 ×R)× (C1,α(∂Ω)×C0,α(∂Ω)0) to the

space C0,α(∂Ω)2
0 ×R, which takes a pair (A, v) to A[v] is bilinear and continuous,

equation (4.36) and the limiting relations (4.39), (4.40) imply that

lim
j→+∞

(ψj , θj , ξj) = N [0, 0, ·, ·, ·](−1)[B̃] (4.41)

in C0,α(∂Ω)2
0 ×R. Since the equality Λ[0, 0, ψ̃, θ̃, ξ̃] = 0 is equivalent to (ψ̃, θ̃, ξ̃) =

N [0, 0, ·, ·, ·](−1)[B̃], the limiting relation (4.41) implies that limj→+∞(ψj , θj , ξj) =

(ψ̃, θ̃, ξ̃) in C0,α(∂Ω)2
0 × R. �

Then by Theorem 4.7, we immediately deduce the validity of the following.

Corollary 4.8. Let the assumptions of Theorem 4.7 hold. If {εj}j∈N is a sequence
of ]0, ε0[ which converges to 0 and if {(T i1,j , T o1,j)}j∈N, {(T i2,j , T o2,j)}j∈N are two
sequences of pairs of functions satisfying the conditions in (4.29), then there exists
j0 ∈ N such that

T i1,j(·) = T i2,j(·) , T o1,j(·) = T o2,j(·) , ∀j ≥ j0 .
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[54] T. Roub́ıček, Nonlinear partial differential equations with applications. Intl. Ser. Nu-
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