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Abstract 
Motivation:	Chloroplasts	are	organelles	found	in	plants	and	involved	in	several	important	cell	functions.	
Similarly	to	other	compartments	 in	the	cell,	chloroplasts	have	an	 internal	structure	comprising	several	
sub-compartments,	where	different	proteins	are	targeted	to	perform	their	functions.	Given	the	relation	
between	protein	function	and	localization,	the	availability	of	effective	computational	tools	to	predict	pro-
tein	sub-organelle	localizations	is	crucial	for	large-scale	functional	studies.	
Results:	 In	 this	paper	we	present	 SChloro,	 a	novel	machine-learning	approach	 to	predict	protein	 sub-
chloroplastic	 localization,	 based	on	 targeting	 signal	detection	 and	membrane	protein	 information.	The	
proposed	approach	performs	multi-label	predictions	discriminating	six	chloroplastic	sub-compartments	
that	 include	 inner	membrane,	outer	membrane,	 stroma,	 thylakoid	 lumen,	plastoglobule	 	 and	 thylakoid	
membrane.	 In	 comparative	 benchmarks,	 the	 proposed	 method	 outperforms	 current	 state-of-the-art	
methods	in	both	single-	and	multi-compartment	predictions,	with	an	overall	multi-label	accuracy	of	74%.	
The	results	demonstrate	the	relevance	of	approach	that	is	eligible	as	a	good	candidate	for	integration	in-
to	more	general	large-scale	annotation	pipelines	of	protein	subcellular	localization.	
Availability:	The	method	is	available	as	web	server	at	http://schloro.biocomp.unibo.it	
Contact:	gigi@biocomp.unibo.it		

 

1 Introduction 
The eukaryotic cell hosts different compartments that play dif-
ferentiated functional roles into the cell life cycle.  Chloroplasts 
are organelles found in viridiplantae cells involved in crucial 
functions such as photosynthesis, fatty acid synthesis and im-
mune response in plant organisms. Similarly to other compart-
ments in the cell, such as the nucleus or mitochondria, in-depth 
experimental studies have identified several chloroplastic sub-
compartments such as the envelope, the stroma, the thylakoid 
lumen and the membrane, in which proteins are targeted to per-
form different functions (Cooper and Hausman, 2009).  

Few proteins found in the chloroplast are encoded by the or-
ganelle genome whereas the vast majority of them are nuclear 
encoded, synthesized by cytoplasmic ribosomes and then post-
translationally targeted into the chloroplast by means of different 
mechanisms (Schleiff and Becker, 2010). Generally, targeting 
signals are present in the precursor protein and are used by the 
transport machinery to correctly direct the protein to its final 
destination. Most proteins directed to the stroma or to the enve-

lope carry a single cleavable N-terminal signal, while proteins 
directed to the thylakoid lumen and membrane are endowed with 
a bipartite signal, which provides information for the subsequent 
sorting of the protein from the stroma to the thylakoid. Further-
more, several non-cleavable sequence signals my also be present 
at any position along the sequence (typically membrane proteins 
are endowed with this type of signals) (Schleiff and Becker, 
2010). In general, the import and sorting machinery is able to 
recognize these signals and transport both soluble proteins (di-
rected to the stroma or the thylakoid lumen) and membrane pro-
teins (directed to the thylakoid membrane or to the envelope) 
with single or multiple trans-membrane domains to their final 
working compartment (Schleiff and Becker, 2010).  

Several computational tools have been developed so far to 
predict protein subcellular localization, given the impact of the 
feature on protein function characterization (Imai and Nakai, 
2010).  

The vast majority of available computational methods routine-
ly discriminate macro compartments such as nucleus, cytoplasm, 
organelles and membranes. However, the prediction of more de-



C. Savojardo et al. 

tailed sub-localizations, such as the different sub-chloroplastic 
compartments, is challenging considering the paucity of detailed 
experimental annotations in publicly available databases (e.g., 
UniprotKB). For instance, only half of the currently available 
chloroplastic proteins with experimental evidence have also a 
sub-chloroplastic experimental annotation. Nonetheless, there 
has been a renewed interest in developing computational tools 
that are able to correctly identify very specific cellular sub-
compartments (Kumar et al., 2014; Lin et al., 2013; Wang et al., 
2015).  

The prediction of sub-chloroplastic localization has been ad-
dressed in mainly two ways: (i) single-label approaches, which 
associates to the query protein a single localization compartment 
(Du et al., 2009; Tung et al., 2010; Shi et al., 2011; Hu and Yan, 
2012) and (ii) multi-label approaches that can predict multiple 
localizations (Wang et al., 2015). 

Generally, single-label methods consider four main chloro-
plastic sub-compartments: envelope, stroma, thylakoid lumen 
and thylakoid membrane. All of them are based on similar fea-
tures extracted from protein sequence, which are then processed 
by different algorithms to perform the final prediction. SubChlo 
(Du et al., 2009), one the first released methods, is based on a 
variant of the k-nearest neighbor classifier and Chou’s pseudo 
amino-acid composition (PseAAC) (Chou, 2001). In ChloroRF 
(Tung et al., 2010), a random forest classifier is fed with a pro-
tein encoding based on physicochemical properties extracted 
from the AAindex (Kawashima et al., 2008). SubIdent (Shi et 
al., 2011), which can also predict sub-mitochondrial localiza-
tions, performs predictions using SVMs and an alternative for-
mulation of the PseAAC based on discrete wavelet transform. 
Finally, BS-KNN (Hu and Yan, 2012) is based on bit-score k-
nearest neighbor and standard amino acid composition. 

The only available multi-label method is MultiP-SChlo (Wang 
et al., 2015). It extends the set of possible compartments in 
which a protein can be found, by including the plastoglobule, 
liporotein particles present in all plastids. Then, using an algo-
rithm based on multi-stage SVMs and PseAAC, the method per-
forms multi-label predictions. MultiP-SChlo scores with an 
overall accuracy of 56% on a benchmark of multi-label dataset 
introduced in the same study (Wang et al., 2015).  

In this paper we present SChloro, a novel machine-learning 
method to improve the prediction of protein sub-chloroplastic 
localization. The basic idea of our approach is to exploit the 
recognition of high-level topological and sorting features to im-
prove the accuracy of the prediction of sub-chloroplastic locali-
zation. We adopt a two-stage prediction algorithm: first, we 
identify into the query protein, chloroplastic and/or thylakoid 
sorting signals, and second, we determine possible membrane 
interactions (suggesting membrane-related localizations). In the 
final step, these predicted features are integrated with global pro-
tein features to predict the final sub-chloroplastic localization, in 
a multi-label fashion. Differently from any previous approach, 
our method is able to provide predictions into six distinct com-
partments: inner membrane, outer membrane, stroma, plastoglo-
bule, thylakoid lumen and thylakoid membrane. When compared 
to other state-of-the-art approaches, SChloro is able to signifi-
cantly improve the prediction performance, scoring with a 74% 
overall multi-label accuracy. The method is available as web 
server at http://schloro.biocomp.unibo.it. 

2 Methods 

2.1 Datasets 
In this study, three different datasets were used to evaluate the perfor-
mance of our method and to compare it with previously developed ap-
proaches.  
 
2.1.1 The SCEXP2016 dataset 
The first dataset, referred to as SCEXP2016, was specifically compiled 
for this study and collects updated experimental data extracted from 
UniprotKB/SwissProt release 2016_01 (The Uniprot Consortium, 2014). 
In order to retain only high-quality data, the following procedure was 
adopted. Firstly, all chloroplastic proteins with experimentally annotated 
sub-cellular localization were extracted from UniprotKB/SwissProt. On-
ly proteins with evidence at the protein level and longer than 50 residues 
were selected. From this initial set, to obtain very clean data, we filtered-
out proteins that were annotated with additional localizations outside the 
chloroplast and retained only those with experimental annotation in at 
least one of the following six chloroplastic sub-compartments: inner 
membrane, outer membrane, stroma, plastoglobule, thylakoid lumen and 
thylakoid membrane. With this procedure, we ended up with 367 protein 
sequences, 309 of which are nuclear encoded whereas 26 are encoded by 
the chloroplastic genome (we decided to retain these proteins given the 
small number). Twenty-three out of 367 proteins are annotated with mul-
tiple chloroplastic sub-compartments (22 found in two compartments and 
1 in three compartments).  

Table 1. Distribution of proteins in SCEXP2016 into the six different 
chloroplastic sub-compartments 

Compartment Number of proteins 

Inner membrane   47 
Outer membrane 24 
Stroma 119 
Plastoglobule 32 
Thylakoid lumen 37 
Thylakoid membrane 131 

 

Table 2. Distribution of annotated targeting and membrane features of 
SCEXP2016 proteins  

Feature Number of annotated proteins 

Chloroplastic targeting   317 
Thylakoid targeting 60 
Single-pass membrane 34 
Multi-pass membrane 62 
Peripheral membrane 41 

 
The distribution of proteins into the six different chloroplastic sub-
compartments is summarized in Table 1. Furthermore, in Table 2 we also 
list the statistics of targeting signal and membrane interaction annota-
tions (which will be used to train/test specific classifiers, as described in 
Section 2.4). It is worth to point out that, as detailed above, experimental 
evidence has been checked only for the primary annotation of proteins 
into subcellular compartments. In contrast, secondary protein annotation 
concerning targeting signals and membrane interaction were all retained 
and used as they were annotated for the selected proteins. As a conse-
quence, these secondary annotations could be partially incomplete 



SChloro: directing proteins to six chloroplastic sub-compartments 

 
Figure 1. Overview of the SChloro system architecture. 
 
Homology clusters at 25% identity were identified using the blastclust 
program. These clusters were used to compile 10 cross-validation sets 
for the method evaluation. In particular, we avoided training/test bias by 
assigning all proteins in a cluster to the same cross-validation set. 
 
2.1.2 The MSchlor578 dataset 
The second dataset adopted in this study is the MSchlo578 dataset, pre-
viously released by Wang et al. (2015). This dataset contains 578 multi-
compartment proteins distributed into the five following sub-
chloroplastic localizations (in parenthesis the number of proteins): enve-
lope (199), stroma (105), thylakoid lumen (34), thylakoid membrane 
(233) and plastoglobule (30). Twenty-two proteins are annotated with 
multiple sub-compartments (21 into two different compartments and 1 in 
three compartments). We used the MSchlo578 dataset to compare our 
method with the state-of-the-art method MultiP-Schlo (Wang et al., 
2015). 
 
2.1.2 The S60 dataset  
Finally, a third dataset, referred to as S60 and introduced by Du et al. 
(2009), was used to compare our method with other methods in the sin-
gle-label setting. The 262 proteins in this dataset are distributed among 4 
different classes: envelope (40), stroma (71), lumen (44) and thylakoid 
membrane (129). No multiple annotations are reported for these proteins. 

2.2 Sorting signals to chloroplast and its sub-
compartments 

Nuclear encoded chloroplastic proteins are targeted toward the organelle 
by means of biological pathways involving the molecular recognition of 

specific sorting signals (Schleiff and Becker, 2010). At the higher level, 
precursor proteins synthesized by cytoplasmic ribosomes are endowed 
with the well-known transit peptide, a variable-length stretch of sequence 
located at the N-terminus of the nascent protein (Schleiff and Becker, 
2010; Bruce, 2001; Patron and Waller, 2007). Once the protein reaches 
its destination into the chloroplast (typically the stroma), the transit pep-
tide is cleaved by specific proteins. Some chloroplastic proteins of the 
thylakoid lumen and membranes are endowed with an additional signal 
located immediately after the transit peptide. This thylakoid transit pep-
tide is used for the subsequent protein sorting from the stroma to the 
thylakoid (Schleiff and Becker, 2010; Bruce, 2001). 

In addition, a subset of nuclear-encoded chloroplastic proteins was 
found as not having the classic transit peptide. These proteins are mainly 
outer-membrane proteins (and also inner-membrane and inter-membrane 
space proteins, although to a lesser extent) with alpha helical membrane 
anchors, which also carry targeting information (Schleiff and Klösgen, 
2001; Soll, 2002). 

In this paper we try to exploit the knowledge about these mechanisms 
by defining signal-specific detectors and integrating them into our locali-
zation prediction system (see Section 2.4 for details). 

2.3 Membrane interaction 
The structure of the chloroplasts comprises three different membrane 
systems: the inner and outer membranes and the thylakoid membrane 
system. The inner and outer membranes form the chloroplast envelope, 
which borders the stroma, and separates it from the cytoplasm. Inside the 
stroma, it is found the thylakoid, an additional membrane-bounded struc-
ture. The thylakoid membrane separates the stroma from the lumen. Sev-
eral membrane proteins with diverse topologies can be found as either 
directly or indirectly interacting with the three membrane systems. Ac-
cording to the type of interaction, three major classes can be distin-
guished: 

(1) Integral single-pass membrane proteins, which spans the mem-
brane with a single trans-membrane domain. 

(2) Integral multi-pass membrane proteins, which spans the mem-
brane with multiple trans-membrane domains. 

(3) Peripheral membrane proteins, which do not span the mem-
brane and interact with it through different mechanisms includ-
ing lipid anchoring, direct interaction with the phospholipid bi-
layer through specific domains or indirect interaction though in-
tegral membrane proteins. 

From the point of view of protein sub-chloroplastic localization pre-
diction, knowing if a protein interact with a membrane or not may direct-
ly restrict the number of possible compartments it may be found in. Fur-
thermore, the precise knowledge of the interaction type (single, multi 
pass or peripheral) may give some additional insight about the final des-
tination of the protein. In this paper, we exploited these considerations 
by integrating membrane-interaction specific classifiers into our localiza-
tion prediction system (see Section 2.4 for details). 

2.4 Overview of the prediction method 
The proposed multi-label prediction system, depicted in Figure 1, con-
sists of two layers of Support Vector Machines (SVMs). Classifiers of 
the first layer are devised to predict the occurrence probabilities of chlo-
roplast and/or thylakoid sorting signals as well as the probabilities for 
the protein to be in one of three possible interaction states with a mem-
brane (single-, multi-pass trans-membrane or peripheral membrane pro-
tein). Therefore, five different classifiers were defined: two for the sort-
ing signals and three for the membrane interaction. Each classifier was 
trained using available experimental evidence and slightly different input 
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features optimized for the specific feature prediction task. In particular 
the following input features are used here: 

1) The average composition of the Position Specific Scoring 
Matrix (PSSM) as computed from the multiple sequence 
alignment obtained using the psi-blast program (Altschul et 
al., 1997) to search the query sequence against the Uni-
protKB/SwissProt database (The Uniprot Consortium, 2014). 
Raw PSSM values are rescaled before averaging into the 
range [0,1] using a standard logistic function 1⁄((1+e^(-x))). 
In this way, the average PSSM consists of a 20-valued vector 
with elements ranging between 0 and 1. 

2) The average hydrophobicity computed along the protein se-
quence using the Kyte-Doolittle scale (Kyte and Doolittle, 
1982). Hydrophobicity values are firstly linearly rescaled be-
fore averaging into the range [0,1] so that the highest and the 
lowest values, namely 4.5 and -4.5 for isoleucine and argnine,  
map to 0 and 1, respectively. Hence, the average hydrophobi-
city feature consists of a single real value between 0 and 1. 

 
For the chloroplast and thylakoid targeting classifiers, considering that 
the two targeting signals are located at the N-terminus of the protein, the 
first 90 and 120 residues were used to compute the average values, re-
spectively. In contrast, the entire protein sequence has been used for the 
three membrane interaction classifiers. Altogether, the first layer outputs 
are collected into a 5-valued vector defined as follows: 

𝑝 𝑐 , 𝑝 𝑡 , 𝑝 𝑠 , 𝑝 𝑚 , 𝑝(𝑟)   (1) 

where the first two values are, respectively, the probabilities of having a 
chloroplastic-targeting signal (p(c)) and thylakoid-targeting signal (p(t)), 
while the last three values are the probabilities for the protein to be, re-
spectively, a single-pass (p(s)), a multi-pass (p(m)) and a peripheral 
(p(r)) membrane protein. 
The second layer of SVM classifiers computes the membership probabil-
ity for the query protein to be located into one or more sub-chloroplastic 
compartments.  
One separate classifier was defined for each localization compartment. 
Each second-layer classifier was trained using a 26-valued feature vector 
consisting of: (i) the 5-valued vector as defined in Eq. 1, and (ii) the av-
erage PSSM and hydrophobicity both computed on the entire protein 
sequence. The final, multi-label prediction is obtained by taking all SVM 
outputs whose probability output is greater or equal to 0.5.  
Adopting this two-layered architecture allows a better exploitation of 
different basic features that are computed over different portions of the 
sequence, By this, an intermediate representation of the protein in terms 
of presence/absence of sorting signals as well as interaction with the 
membrane, is computed. 

2.2 Model selection and implementation 
The method evaluations are carried-out using either a 10-fold cross-
validation procedure (to train/test our method on the SCEXP2016 da-
taset), or by adopting a jackknife test (to compare with other methods in 
literature on the MSchlor578 and S60 datasets). Regardless of the per-
formed actual evaluation setting, the benchmark procedure needs to be 
carefully tuned to deal with the specific structure of our prediction sys-
tem that comprises  two cascading levels of classifiers. 

To achieve this, we applied the following procedure. First of all, for 
each cross-validation or jackknife run, a fraction of the training set was 
extracted and used as a validation set. This set was used to adjust hyper-
parameters as well as to identify the optimal input feature encoding for 
both first- and second-layer classifiers. Once selected, these hyper-
parameters were frozen and used to predict the remaining testing data.  

SVM classifiers were implemented using the standard libsvm software 
package (Chang et al., 2011). Each classifier is based on a non-linear 
Radial Basis Function (RBF) kernel and is trained/tested to provide 

probabilistic outputs using the standard model implemented by the soft-
ware library. 

Concerning the cascading structure, optimal first-layer classifiers 
(found through validation sets) were used to generate both train-
ing/testing data for second-layer classifiers. In this way, SVMs of the 
second-layer were trained/tested on predicted values and this allowed 
evaluating the entire pipeline taking into account the potential error 
propagation between the two layers. 

2.3 Scoring measures 
For sake of comparison with different methods available in literature, our 
system was evaluated using either multi-label or single-label scoring 
measures. More formally, let 𝑦!  and 𝑝!  be the set of observed and pre-
dicted labels (compartments) for the ith protein, and let 𝑛 be the total 
number of proteins in the dataset. To score the prediction performance in 
the multi-label setting, we adopted the following scoring indexes (Wang 
et al., 2015): 

• The multi-label Accuracy (mlACC), defined as: 

𝑚𝑙𝐴𝐶𝐶 =  !
!

!!∩!!
!!∪!!

!
!!!  (2) 

• The multi-label Recall (mlREC), defined as: 

𝑚𝑙𝑅𝐸𝐶 = !

!

!!∩!!
!!

!
!!!  (3) 

• The multi-label Precision (mlPRE), defined as: 

𝑚𝑙𝑃𝑅𝐸 = !

!

!!∩!!
!!

!
!!!   (4) 

• The multi-label F1 (mlF1), defined as: 

𝑚𝑙𝐹1 = !∗!"#!"∗!"#$%

!"#$%!!"#$%
 (5) 

• The overall multi-label accuracy (ACCml), defined as: 

𝐴𝐶𝐶!" = !

!
𝟏!

!!! 𝑦! ≡ 𝑝!   (6) 

where 𝟏(𝑦! ≡ 𝑝!) is an indicator function that equals to 1 if the two 
sets are identical, 0 otherwise. 

To score the prediction performance in the single-label setting we 
used the following scoring indexes (Du et al., 2009): 

• The single-label accuracy of label 𝑙 (ACCsl(l)), defined as: 

𝐴𝐶𝐶!" l =  !"!
!"!!!"!

  (7) 

• The overall single-label accuracy (ACCsl), defined as: 

𝐴𝐶𝐶!" =  !
!

𝑇𝑃!!
!!!   (8) 

where TPl and FNl are true positive and false negatives for the label l, 
respectively, and m is the number of different labels. 

3 Results 

3.1 Single- and multi-label performance of SChloro on 
the SCEXP2016 dataset 

Table 3 lists the 10-fold cross-validation results obtained using 
different input features and evaluated on the SCEXP2016 da-
taset. Both single- and multi-label scoring indexes are reported. 
The baseline predictor (first row in Table 3) does not include 
information about targeting signals and membrane interaction  
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Table 3. Single- and multi-label performance with different combinations of input features on the SCEXP2016 dataset by adopting a 10-fold cross-
validation procedure. 

 Multi-label prediction  Single-label prediction 

Input features ACCml mlACC mlPRE mlREC mlF1  ACCsl(I) ACCsl(O) ACCsl(S) ACCsl(L) ACCsl(M) ACCsl(P) ACCsl 

Basic 0.50 0.57 0.59 0.63 0.61  0.33 0.26 0.65 0.65 0.60 0.52 0.60 
Basic+target+mem (predicted) 0.65 0.79 0.80 0.94 0.86  0.66 0.63 0.91 0.92 0.84 0.81 0.92 
Basic+target+mem (observed) 0.79 0.87 0.89 0.94 0.91  0.79 0.75 0.99 1.0 0.92 0.89 0.97 

Basic=PSSM+Hydrophobicty; target=[p(c),p(t)]; mem=[p(s),p(m),p(r)]. Scoring indexes are defined as in Section 2.3. In single-label scoring indexes, I, O, S, L, M and P 
stand for inner membrane, outer membrane, stroma, thylakoid lumen, thylakoid membrane and plastoglobule, respectively. 
 
 
and it was trained/tested using the basic feature encoding (con-
sisting of average PSSM and hydrophobicity computed on the 
entire protein sequence. In this case, only the second layer of the 
SVM system is used).  
When predicted probabilities of targeting signals and membrane 
interaction are included, the prediction performance significantly 
improves (compare rows 1 and 2, in Table 3).  In particular, we 
observe a general improvement in performance, with ACCml in-
creasing up to 0.65 and ACCsl up to 0.92. Furthermore, also in-
dividual single-label accuracies improve, suggesting a general 
positive contribution of the five predicted features. 

For sake of comparison, we also report results obtained when 
the real information about targeting signals and membrane inter-
action is included in the second step of the procedure (i.e. in both 
training and testing, predicted probabilities are replaced by bina-
ry features derived from the true annotation of each protein). The 
reported performance scores represent the maximum theoretical 
accuracy that can be achieved on this dataset assuming a perfect 
targeting and membrane interaction prediction. This theoretical 
predictor achieves very high overall accuracies (ACCml=0.79 
and ACCsl=0.97), suggesting that the proposed approach builds 
on top of sound bases and that the prediction performance might 
be further improved by providing more accurate first-level fea-
ture predictors. 

Table 4.  10Fold cross-validation performance of SChloro classifiers for 
targeting signals and membrane interactions  

Classifier AUC MCC 

Chloroplast targeting 0.96 0.85 

Thylakoid targeting 0.95 0.76 

Single-pass membrane 0.88 0.51 

Multi-pass membrane 0.95 0.79 

Peripheral membrane 0.82 0.44 

 
Finally, for sake of completeness, in Table 4 we also report the 
performance of individual first-layer classifiers devised to pre-
dict sorting signals and membrane interaction. Considering the 
results and the inherent difficulty of each prediction task, it ap-

pears that the effectiveness of individual predictors is strongly 
affected by the corresponding abundance of the annotated data in 
the dataset (compare Tables 2 and 4).  

3.2 Comparison with other single- and multi-label methods 
In Table 5 we report a comparative benchmark of different 
methods on the S60 dataset (Du et al., 2009). For sake of com-
parison, results of SChloro were computed using a jackknife test, 
while performance scores for other methods were taken from 
literature (Wang et al., 2015). In particular, we report overall 
single-label accuracies using the same annotation scheme con-
sisting of four different labels (E=envelope, S=stroma, L=lumen, 
M=thylakoid membrane), respectively, for our method and for 
other five different single-label methods available in literature: 
SubChlo (Du et al., 2009), ChloroRF (Tung et al., 2010), Su-
bIdent (Shi et al., 2011), BS-KNN (Hu and Yan, 2012) and Mul-
tiP-Schlo (Wang et al., 2015). The results indicate that SChloro 
provides in general more balanced predictions compared to oth-
ers. Other methods tend to over-predict the more abundant labels 
in the dataset (i.e. thylakoid membrane and stroma), whereas 
SChloro scores, on average, better on overall accuracy and in all 
the remaining compartments (e.g, compare accuracy results for 
the lumen and envelope labels). 

Table 5. Comparison of  single-label performance of different methods 
on the S60 dataset adopting a jackknife test. 

Method ACCsl ACCsl(E) ACCsl(S) ACCsl(L) ACCsl(M) 

SChloro 0.90 0.93 0.96 0.98 0.89 

MultiP-Schlo* 0.89 0.73 0.96 0.61 1.0 

SubChlo* 0.67 0.40 0.67 0.43 0.84 

ChloroRF* 0.67 0.48 0.57 0.39 0.88 

SubIdent* 0.89 0.80 0.86 0.64 0.98 

BS-KNN* 0.76 0.48 0.74 0.78 0.85 

Scoring indexes are defined in Section 2.3. Labels E, S, L, and M stand for enve-
lope, stroma, thylakoid lumen and thylakoid membrane, respectively. * Data taken 
from Wang et al., (2015) 
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Finally, multi-label prediction performances are reported in Ta-
ble 6. Here we compare SChloro with MultiP-Schlo (Wang et 
al., 2015). In this case, results reported for our method are com-
puted using the same annotation scheme of MultiP-Schlo, in-
cluding five compartments: envelope, stroma, lumen, thylakoid 
membrane and plastoglobule.  In this benchmark, we obtain a 
significant improvement. SChloro outperforms MultiP-Schlo in 
all scoring indexes reported, achieving an improvement of about 
12% in overall multi-label accuracy. 

Table 6.  Comparison of multi-label performance of MultiP-Schlo and 
our method on the MSchlo578 dataset 

Method ACCml mlACC mlPRE mlREC mlF1 

SChloro 0.74 0.76 0.78 0.78 0.78 
MultiP-Schlo 0.56 0.63 0.64 0.71 0.67 

Scoring indexes are defined in Section 2.3. The comparison adopts a jackknife test.  

Conclusion 
Assessing the protein sub-cellular localization is an important 
step toward protein function prediction. The rapid pace at which 
new proteomes become available through NGS technologies re-
quires the availability of effective computational tools for as-
sessing protein localization and function to fill the gaps of the 
experimental knowledge.  

In this paper we presented SChloro, a novel approach to pre-
dict protein sub-chloroplastic localization into six main com-
partments including inner and outer membranes, stroma, plasto-
globule, lumen and thylakoid membrane. Our method is based 
on the recognition of sequence signals that define target specific-
ity (chloroplast and thylakoid targeting signals) as well as on the 
prediction of the potential type of interaction with chloroplast 
membranes (single-pass, multi-pass and peripheral interaction). 
We show that this information can be profitably incorporated 
into a two-level SVM-based algorithm to predict both single and 
multiple protein sub-chloroplastic localizations with high accu-
racy. In fact, SChloro significantly outperforms the available 
state-of-the-art methods, both in single and multi-label settings. 
Furthermore, our method introduces the possibility of discrimi-
nating six different types of sub-chloroplast localization. This 
suggests SChloro as a good candidate for the integration into a 
more comprehensive pipeline for the annotation of sub-cellular 
localization of protein in viridiplant organisms. 
The complete prediction system is available as web-server at 
http://schloro.biocomp.unibo.it. 
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