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Abstract. We prove that in any Sobolev space which is subcritical with respect to the
Sobolev Embedding Theorem there exists a closed infinite dimensional linear subspace
whose non zero elements are nowhere bounded functions. We also prove the existence
of a closed infinite dimensional linear subspace whose non zero elements are nowhere Lq

functions for suitable values of q larger than the Sobolev exponent.

1. Introduction

Given l ∈ N, p ∈ [1,∞] and an open set Ω in RN , the Sobolev space W l,p(Ω) is defined
as the space of those real valued functions in Lp(Ω) with distributional derivatives in
Lp(Ω), up to order l endowed with the norm defined by ‖v‖W l,p(Ω) =

∑
0≤|α|≤l ‖Dαv‖Lp(Ω)

for all v ∈ W l,p(Ω).
Sobolev spaces play a prominent role in modern Mathematical Analysis and applications

to partial differential equations. In particular, they provide a natural setting for the study
of fundamental problems from Mathematical Physics, in which case the so-called energy
spaces are often identified with suitable closed subspaces of W l,2(Ω) containing C∞c (Ω),
see, e.g., [11, 15].

One of the main features of Sobolev spaces is their completeness. In fact, for p < ∞,
they can be defined as the completion of the space of smooth functions with respect to
the norm above, which clearly allows Sobolev spaces to posses badly behaved functions.

Nevertheless, the celebrated Sobolev Embedding Theorem gives sharp information on
the intrinsic regularity of the functions in Sobolev spaces, see [5, Chapter 4] for instance.
In particular, such theorem states that if Ω is a sufficiently regular open set (say, Ω satisfies
the cone condition) and pl > N for p 6= 1, or pl ≥ N for p = 1, thenW l,p(Ω) is continuously
embedded into Cb(Ω), where Cb(Ω) denotes the space of real valued, bounded, continuous
functions on Ω endowed with the usual sup-norm.

It is well-known that, in the subcritical case pl < N , the Sobolev spaceW l,p(Ω) contains
unbounded functions, as well as functions which are nowhere bounded in Ω. If Ω is
bounded, an example of a nowhere bounded function v in W l,p(Ω) can be easily provided
by considering a numerable dense subset {xn}n∈N of Ω and setting v(x) =

∑∞
n=1 |x −

Date: March 7, 2016.
2010 Mathematics Subject Classification. 46E35, 26B05, 26B40.
Key words and phrases. Spaceability, nowhere bounded functions, Sobolev spaces, Sobolev Embedding.
Acknowledgements. The authors are thankful to an anonymous referee for valuable comments, in

particular for considerations of terminological type. The authors are thankful to Professors Richard
M. Aron and Juan B. Seoane-Sepúlveda for bringing to attention their work with many references.
The authors are members of the Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le loro
Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM).

1



2 P. D. LAMBERTI AND G. STEFANI

xn|µ/2n for almost all x ∈ Ω, where µ ∈]l−N/p, 0[ (see also, e.g., [9, Example 4, p. 247];
see Section 2 below for the general case).

The aim of the present paper is to study such unbounded functions in the frame of a
comparatively new field of investigation devoted to the analysis of spaces of pathological
functions. In his seminal paper [10], Vladimir I. Gurariy proved the existence of a closed
infinite dimensional linear subspace of C([0, 1]) whose non zero elements are nowhere
differentiable functions. Following [10], a number of authors have addressed analogous
problems concerning that or other counterintuitive properties of functions, see e.g., [3,8] .
We refer to the recent monograph [1] for an extensive discussion of old and new results in
this topic as well as for references. We also refer to [7] for some historical and pedagogical
remarks in the realm of functions with strange properties.

In this paper, we prove that every Sobolev space W l,p(Ω) with pl ≤ N if p 6= 1,
and pl < N if p = 1, contains a closed infinite dimensional linear subspace whose non
zero elements are nowhere bounded functions. Actually, if pl < N with p ≥ 1, we
shall prove even more. Indeed recall that, in the case pl < N , the Sobolev Embedding
Theorem provides some additional integrability properties for the functions in W l,p(Ω).
More precisely, such theorem states that if Ω is a sufficiently regular open set as above
and pl < N , thenW l,p(Ω) is continuously embedded into Lq∗(Ω), where q∗ = Np/(N−pl)
is the celebrated Sobolev exponent. It is an exercise to prove that the Sobolev critical
exponent q∗ cannot be improved, that is, if pl < N andW l,p(Ω) is continuously embedded
into Lq(Ω) for some q ∈ [1,∞[, then q ≤ q∗. We plan to prove that this is true in a stronger
way.

Following [12], we say that a real valued function v defined on Ω is nowhere Lq for some
q ∈ [1,∞] if, for any non empty open subset U of Ω, v|U is not in Lq(U) (the case q =∞
is exactly the case of nowhere bounded functions mentioned above).

With this terminology, our main result is the following

Theorem 1. Let Ω be a non empty open set in RN and let l ∈ N, p ∈ [1,∞[. If pl < N
then, for every r ∈]lq∗,∞] fixed, the space W l,p(Ω) contains a closed infinite dimensional
linear subspace whose non zero elements are nowhere Lr functions. If pl = N with p 6= 1,
then the space W l,p(Ω) contains a closed infinite dimensional linear subspace whose non
zero elements are nowhere bounded functions.

Theorem 1 is proved in Section 2 where the required closed infinite dimensional linear
subspace ofW l,p(Ω) is defined as the image of a closed infinite dimensional linear subspace
of W l,p(Ω)∩W 1,pl(Ω) via a suitable compact perturbation of the identity. Such subspace
turns out to be a closed subspace also ofW l,p(Ω)∩W 1,pl(Ω), see Remark 1. By the Sobolev
Embedding Theorem the space W 1,pl(Ω) is embedded into Llq

∗

loc(Ω) and this explains why,
in Theorem 1, we require that r belongs to ]lq∗,∞], which is smaller than the interval
]q∗,∞] when l ≥ 2. We also note that our compact operator is defined by means of a
suitable composition operator and that the condition r ∈]lq∗,∞] is needed to make it
well-defined when l ≥ 2.

2. Proof of Theorem 1

In this section, we always assume that N , l, p and r are fixed and are as in Theorem 1.
Note that N ≥ 2. Moreover, we need to fix a number a in ]0, 1[ as follows. If pl < N and
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r <∞, we take a ∈]0, 1[ such that ar > lq∗; if pl = N or r =∞, a is any number in the
interval ]0, 1[.

We begin with some preliminaries. Let f ∈ W l,p(RN) be a function with compact
support, continuous in RN \ {0}, that does not change sign and such that |f(x)| → ∞
as x → 0. For reasons that will be clear later, in the case l ≥ 2 we also require in
addition that f ∈ W 1,pl(RN). In the case pl < N and r < ∞, we also require the extra
condition f /∈ Lq(RN) for any q ∈ [ar,∞]. The existence of such functions is well-known,
see [5, Example 8, p. 32].

Let {xn}n∈N be a numerable dense set in RN . Let u be the real valued function defined
in RN by

(2.1) u(x) =
∞∑
n=1

1

2n
f(x− xn),

for all x ∈ RN . It is an exercise to prove that the series in (2.1) is convergent inW l,p(RN),
as well as in W 1,pl(RN) if l ≥ 2. Moreover, such series also converges almost everywhere
in RN . Since f does not change sign, by (2.1) it follows that

(2.2) |u(x)| ≥ 1

2n
|f(x− xn)|,

for all n ∈ N almost everywhere on R. Thus u is nowhere bounded in RN and belongs to
W l,p(RN), and also to W 1,pl(RN) if l ≥ 2. Moreover, in the case pl < N , u is also nowhere
Lar in RN .

Let (an)n∈N ⊂]a, 1[ be a strictly decreasing sequence. Let us now define a sequence of
real valued functions {qn}n∈N on R by setting qn(t) = |t|an for all t ∈ R, n ∈ N. Note
that, for all n,m ∈ N,

(2.3)
∣∣∣∣ dmdtm qn(t)

∣∣∣∣ ≤ m! |t|an−m, ∀t 6= 0.

Let ψ ∈ C∞(R) be fixed in such a way that ψ(t) = 0 for all |t| ≤ 1 and ψ(t) = 1 for all
|t| ≥ 2. We set Qn = ψqn for all n ∈ N. Clearly Qn ∈ C∞(R) and by the Leibniz rule it
easily follows that, for every m ∈ N, there exists km > 0 independent of n such that∣∣∣∣ dmdtmQn(t)

∣∣∣∣ ≤ km,

for all t ∈ R, n ∈ N.
Thus, for any sequence c = (cn)n∈N ∈ `1(N), the function defined by

gc(t) =
∞∑
n=1

cnQn(t), t ∈ R,

belongs to C∞(R) and for every m ∈ N we have∣∣∣∣ dmdtm gc(t)
∣∣∣∣ =

∣∣∣∣∣
∞∑
n=1

cn
dm

dtm
Qn(t)

∣∣∣∣∣ ≤ km‖c‖`1(N),
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for all t ∈ R. Moreover, for any c ∈ `1(N) \ {0}, we have that

(2.4) |gc(t)| =

∣∣∣∣∣∑
n≥n̄

cn|t|an
∣∣∣∣∣ = |t|an̄

∣∣∣∣∣∑
n≥n̄

cn|t|an−an̄
∣∣∣∣∣ ≥ |cn̄|2

|t|a,

for any |t| sufficiently big, where n̄ = min{n ∈ N : cn 6= 0}.
We can now prove the following result, where W l,p(RN) ∩W 1,pl(RN) is endowed with

the usual norm obtained by summing the norms of W l,p(RN) and W 1,pl(RN). We set
bc = (bncn)n∈N ∈ `1(N) for all b, c ∈ `2(N) and we note that ‖bc‖`1(N) ≤ ‖b‖`2(N)‖c‖`2(N).

Lemma 2. Let u be as in (2.1) and let b = (bn)n∈N ∈ `2(N) be fixed with bn 6= 0 for all
n ∈ N. The linear operator Tu from `2(N) to W l,p(RN) ∩W 1,pl(RN) defined by

Tu(c) = gbc ◦ u =

(
∞∑
n=1

bncnQn

)
◦ u,

for all c = (cn)n∈N ∈ `2(N), is continuous, injective and compact. Moreover, Tu(c) is a
nowhere bounded function in RN for all c ∈ `2(N) \ {0} and, in the case pl < N , Tu(c) is
a nowhere Lr function in RN for all c ∈ `2(N) \ {0}.

Proof. Since gbc ∈ C∞(R) has bounded derivatives, gbc(0) = 0, u ∈ W l,p(RN) if l ≥ 1 and
u ∈ W l,p(RN) ∩W 1,pl(RN) if l ≥ 2, the function Tu(c) belongs to W l,p(RN) ∩W 1,pl(RN).
Indeed, the case l = 1 is a direct application of the chain rule, which also allows to easily
prove that

(2.5) ‖Tu(c)‖W 1,p(RN ) ≤ k1‖b‖`2(N)‖c‖`2(N)‖u‖W 1,p(RN ).

In the case l ≥ 2, one needs to use the condition u ∈ W l,p(RN)∩W 1,pl(RN) in a substantial
way, in order to avoid the possible appearance of the so called Dahlberg degeneracy phe-
nomenon, which prevents non trivial composition operators to preserve Sobolev spaces
W l,p when 1 + 1/p < l < N/p (including those with fractional order of smoothness).
For further details and discussions, we refer to [16, §5.2.5] and [6]. In particular, by es-
timate (2) in [16, §5.2.5], we can also immediately deduce that there exists a constant
K > 0, independent of u, b, and c, such that

(2.6) ‖Tu(c)‖W l,p(RN ) ≤ K max
i=1,...,l

ki ‖b‖`2(N)‖c‖`2(N)

(
‖u‖W l,p(RN ) + ‖u‖lW 1,pl(RN )

)
.

When l ≥ 2, similarly to (2.5), we also have

(2.7) ‖Tu(c)‖W 1,pl(RN ) ≤ k1‖b‖`2(N)‖c‖`2(N)‖u‖W 1,pl(RN ).

By (2.5), (2.6) and (2.7), we can conclude that the operator Tu is well defined and con-
tinuous.

By (2.2) combined with (2.4), we have that for any c ∈ `2(N) \ {0} and n ∈ N there
exists an open neighbourhood Un of xn and αn > 0 such that

(2.8) |Tu(c)| ≥ αn|u|a on Un.

By (2.8), it follows that Tu(c) is nowhere bounded and, if pl < N , Tu(c) is also nowhere
Lr for all c ∈ `2(N) \ {0}. In particular, the operator Tu is injective.
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It remains to prove that Tu is compact. For any k ∈ N, consider the linear continuous
operator T (k)

u from `2(N) to W l,p(RN) ∩W 1,pl(RN) defined by

T (k)
u (c) =

(
k∑

n=1

bncnQn

)
◦ u,

for all c ∈ `2(N). Note that T (k)
u is a finite rank operator. Then, by estimates analogous

to (2.5), (2.6) and (2.7) and by the Cauchy–Schwarz inequality, we get

‖Tu(c)− T (k)
u (c)‖W l,p(RN )∩W 1,pl(RN ) ≤ B

(
+∞∑

n=k+1

b2
n

) 1
2

‖c‖`2(N),

where B > 0 is a constant independent of c. Hence

lim
k→+∞

‖Tu − T (k)
u ‖`2(N)→W l,p(RN )∩W 1,pl(RN ) = 0,

where in the left-hand side we are using the standard operator norm of Tu − T (k)
u . Thus

Tu is approximated in norm by finite rank operators, hence it is compact. This concludes
the proof of Lemma 2. �

We can now prove our main result.

Proof of Theorem 1. Let x̄ ∈ Ω and let R > 0 be such that B(x̄, R) ⊂ Ω. Let A be the
open annulus defined by A = {x ∈ RN : R/2 < |x− x̄| < R}. We denote by W l,p

0 (A) the
standard Sobolev space defined as the closure of C∞c (A) in W l,p(A). We set

(2.9) X = {v ∈ W l,p
0 (A) : v is radial with respect to x̄},

where it is meant that a function v is radial with respect to x̄ if the value of v(x) depends
only on |x− x̄| for all x ∈ A. The space X can be naturally seen as a subspace of W l,p(Ω)
by extending functions by zero outside A. Moreover, it is straightforward that X is a
closed subspace of W l,p(Ω) with infinite dimension.

Since any function v in X is of the form v(x) = gv(|x − x̄|) for a suitable function gv
and is zero outside A, by the Radial Lemma (see [14, Lemma II.1]) it is easy to see that
X is continuously embedded into the space Cb(R/2, R) via the embedding v 7→ gv. In
particular, any function inX is bounded and continuous. Since Cb(R/2, R) is continuously
embedded into L2(R/2, R), which is a Hilbert space isometric to `2(N), we conclude that
there exists a continuous embedding J of X into `2(N).

Let R be the restriction operator from W l,p(RN) to W l,p(Ω) and let Tu be the operator
defined in Lemma 2 considered as an operator from `2(N) to W l,p(RN). It is obvious that
the operator R◦Tu ◦ J is injective because all the non zero functions in the image of the
operator Tu ◦ J are nowhere bounded. Thus R ◦ Tu ◦ J is a compact embedding of X
into W l,p(Ω). We now consider the operator I −R ◦ Tu ◦ J from X to W l,p(Ω), where I
denotes the identity operator of W l,p(Ω).

We note that ker(I−R◦Tu ◦J ) = {0}. Indeed, if v ∈ X is such that v = R◦Tu ◦J (v),
then R ◦ Tu ◦ J (v) is a bounded continuous function; but this implies that J (v) = 0,
hence v = 0 (in fact, otherwise, if v 6= 0 then R ◦ Tu ◦ J (v) would be nowhere bounded).

Let Y be the subspace of W l,p(Ω) defined by

(2.10) Y = (I −R ◦ Tu ◦ J )(X).
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Since I−R◦Tu◦J is a compact perturbation of the identity, by the Fredholm Alternative
Theorem (see, e.g., [4, Exercise 6.9, (4)]) it follows that Y is a closed subspace of W l,p(Ω).
In particular, since I −R ◦ Tu ◦ J is injective, dimY = dimX =∞.

Finally, we observe that any function in Y \{0} is nowhere bounded. Indeed, as observed
above, any function v ∈ X is bounded, while R ◦ Tu ◦ J (v) is nowhere bounded if v 6= 0.
Hence (I −R ◦ Tu ◦ J )(v) is nowhere bounded for all v ∈ X \ {0}. Moreover, in the case
pl < N , (I − R ◦ Tu ◦ J )(v) is nowhere Lr for all v ∈ X \ {0}, because R ◦ Tu ◦ J (v) is
nowhere Lr for all v ∈ X. This concludes the proof. �

Remark 1. Assume that l ≥ 2. In the proof of Theorem 1 one can replace the space
W l,p by W l,p ∩W 1,pl. Indeed, a simple argument allows to see that the space X in (2.9)
is a closed subspace also of W l,p(Ω) ∩ W 1,pl(Ω). Thus, by Lemma 2, one can consider
the operator T in the proof of Theorem 1 as an operator from X (considered as a closed
subspace of W l,p(Ω)∩W 1,pl(Ω)) to W l,p(Ω)∩W 1,pl(Ω), and conclude that the space Y in
(2.10) is also a closed subspace also of W l,p(Ω) ∩W 1,pl(Ω).

Remark 2. We briefly observe that the subcritical Sobolev space W l,p(Ω) contains also a
c-dimensional linear subspace and a countably generated algebra whose non zero elements
are nowhere bounded functions.

The existence of such a c-dimensional linear subspace follows immediately from the
fact that any infinite dimensional Banach space has Hamel dimension at least c, see [13].
Thus, in Theorem 1, it is possible to replace ‘closed infinite dimensional linear subspace’
with ‘c-dimensional linear subspace’. For a simpler construction, consider the vector space
generated by the functions hµ ◦ u, where hµ is a real valued function defined on R such
that hµ ∈ C l(R), hµ(0) = 0 and hµ(t) = |t|µ for |t| ≥ 1 for any µ ∈ [a, 1], where u is the
function defined in (2.1) and a ∈]0, 1[ is chosen as at the beginning of Section 2.

To prove the existence of a countably generated algebra of nowhere bounded functions,
it is enough to consider the algebra generated by the functions ln ◦ u, where ln is a real
valued function defined on R such that ln ∈ C l(R), ln(0) = 0 and ln(t) = log(1 + ln−1(t)),
l0(t) = t, for |t| ≥ 1 and n ∈ N. Therefore, in the case pl ≤ N for p 6= 1, or pl < N
for p = 1, W l,p(Ω) contains a countably generated algebra whose non zero elements are
nowhere bounded functions.
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