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Abstract

Much recent work has been devoted to approximate nearest neighbor queries.
Motivated by applications in recommender systems, we consider approximate
furthest neighbor (AFN) queries and present a simple, fast, and highly practical
data structure for answering AFN queries in high-dimensional Euclidean space.
The method builds on the technique of Indyk (SODA 2003), storing random
projections to provide sublinear query time for AFN. However, we introduce a
different query algorithm, improving on Indyk’s approximation factor and re-
ducing the running time by a logarithmic factor. We also present a variation
based on a query-independent ordering of the database points; while this does
not have the provable approximation factor of the query-dependent data struc-
ture, it offers significant improvement in time and space complexity. We give
a theoretical analysis, and experimental results. As an application, the query-
dependent approach is used for deriving a data structure for the approximate
annulus query problem, which is defined as follows: given an input set S and
two parameters r > 0 and w ≥ 1, construct a data structure that returns for
each query point q a point p ∈ S such that the distance between p and q is at
least r/w and at most wr.

1. Introduction

Similarity search is concerned with locating elements from a set S that are
close to a given query q. The query can be thought of as describing criteria
we would like returned items to satisfy approximately. For example, if a cus-
tomer has expressed interest in a product q, we may want to recommend other,
similar products. However, we might not want to recommend products that
are too similar, since that would not significantly increase the probability of a
sale. Among the points that satisfy a near neighbor condition (“similar”), we
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would like to return those that also satisfy a furthest-point condition (“not too
similar”), without explicitly computing the set of all near neighbors and then
searching it. We refer to this problem as the annulus query problem. We claim
that an approximate solution to the annulus query problem can be found by
suitably combining Locality Sensitive Hashing (LSH), which is an approxima-
tion technique commonly used for finding the nearest neighbor of a query, with
an approximation technique for furthest neighbor, which is the main topic of
this paper.

The furthest neighbor problem consists of finding the point in an input set
S that maximizes the distance to a query point q. In this paper we investigate
the approximate furthest neighbor problem in d-dimensional Euclidean space
(i.e., `d2), with theoretical and experimental results. We then show how to cast
one of our data structures to solve the annulus query problem. As shown in the
opening example, the furthest neighbor problem has been used in recommender
systems to create more diverse recommendations [23, 24]. Moreover, the furthest
neighbor is an important primitive in computational geometry, that has been
used for computing the minimum spanning tree and the diameter of a set of
points [2, 11].

Our focus is on approximate solution because the exact version of the fur-
thest neighbor problem would also solve exact similarity search in d-dimensional
Hamming space, and thus is as difficult as that problem [26, 3]. The reduction
follows from the fact that the complement of every sphere in Hamming space
is also a sphere. That limits the hope we may have for an efficient solution to
the exact version, so we consider the c-approximate furthest neighbor (c-AFN)
problem where the task is to return a point x′ with d(q, x′) ≥ maxx∈S d(q, x)/c,
with d(x, u) denoting the distance between two points. We will pursue random-
ized solutions having a small probability of not returning a c-AFN. The success
probability can be made arbitrarily close to 1 by repetition.

We describe and analyze our data structures in Section 2. We propose two
approaches, both based on random projections but differing in what candi-
date points are considered at query time. In the main query-dependent version
the candidates will vary depending on the given query, while in the query-
independent version the candidates will be a fixed set.

The query-dependent data structure is presented in Section 2.1. It returns
the c-approximate furthest neighbor, for any c > 1, with probability at least
0.72. When the number of dimensions is O(log n), our result requires Õ(n1/c2)

time per query and Õ(n2/c2) total space, where n denotes the input size.1 The-
orem 7 gives bounds in the general case. This data structure is closely similar
to one proposed by Indyk [16], but we use a different approach for the query
algorithm.

The query-independent data structure is presented in Section 2.2. When
the approximation factor is a constant strictly between 1 and

√
2, this approach

requires 2O(d) query time and space. This approach is significantly faster than

1The Õ() notation omits polylog terms.
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the query dependent approach when the dimensionality is small.
The space requirements of our data structures are quite high: the query-

independent data structure requires space exponential in the dimension, while
the query-dependent one requires more than linear space when c <

√
2. How-

ever, we claim that this bound cannot be significantly improved. In Section 2.3
we show that any data structure that solves the c-AFN by storing a suitable
subset of the input points must store at least min{n, 2Ω(d)}−1 data points when
c <
√

2.
Section 3 describes experiments on our data structure, and some modified

versions, on real and randomly-generated data sets. In practice, we can achieve
approximation factors significantly below the

√
2 theoretical result, even with

the query-independent version of the algorithm. We can also achieve good ap-
proximation in practice with significantly fewer projections and points examined
than the worst-case bounds suggested by the theory. Our techniques are much
simpler to implement than existing methods for

√
2-AFN, which generally re-

quire convex programming [9, 21]. Our techniques can also be extended to
general metric spaces.

Having developed an improved AFN technique we return to the annulus
query problem in Section 4. We present a sublinear time solution to the ap-
proximate annulus query problem based on combining our AFN data structure
with LSH techniques [14].

A preliminary version of our data structures for c-AFN appeared in the
proceedings of the 8th International Conference on Similarity Search and Ap-
plications (SISAP) [22].

1.1. Related work

Exact furthest neighbor. In two dimensions the furthest neighbor problem can
be solved in linear space and logarithmic query time using point location in a
furthest point Voronoi diagram (see, for example, de Berg et al. [5]). However,
the space usage of Voronoi diagrams grows exponentially with the number of
dimensions, making this approach impractical in high dimensions. More gen-
erally, an efficient data structure for the exact furthest neighbor problem in
high dimension would lead to surprising algorithms for satisfiability [26], so
barring a breakthrough in satisfiability algorithms we must assume that such
data structures are not feasible. Further evidence of the difficulty of exact fur-
thest neighbor is the following reduction: Given a set S ⊆ {−1, 1}d and a query
vector q ∈ {−1, 1}d, a furthest neighbor (in Euclidean space) from −q is a vector
in S of minimum Hamming distance to q. That is, exact furthest neighbor is at
least as hard as exact nearest neighbor in d-dimensional Hamming space, which
is also believed to be hard for large d and worst-case [26].

Approximate furthest neighbor. Agarwal et al. [2] proposes an algorithm for
computing the c-AFN for all points in a set S in time O

(
n/(c− 1)(d−1)/2

)
where

n = |S| and 1 < c < 2. Bespamyatnikh [6] gives a dynamic data structure for c-
AFN. This data structure relies on fair split trees and requires O

(
1/(c− 1)d−1

)
time per query and O (dn) space, with 1 < c < 2. The query times of both
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results exhibit an exponential dependency on the dimension. Indyk [16] pro-
poses the first approach avoiding this exponential dependency, by means of
multiple random projections of the data and query points to one dimension.
More precisely, Indyk shows how to solve a fixed radius version of the problem
where given a parameter r the task is to return a point at distance at least r/c
given that there exist one or more points at distance at least r. Then, he gives
a solution to the furthest neighbor problem with approximation factor c + δ,
where δ > 0 is a sufficiently small constant, by reducing it to queries on many
copies of that data structure. The overall result is space Õ(dn1+1/c2) and query

time Õ(dn1/c2), which improved the previous lower bound when d = Ω (log n).
The data structure presented in this paper shows that the same basic method,
multiple random projections to one dimension, can be used for solving c-AFN
directly, avoiding the intermediate data structures for the fixed radius version.
Our result is then a simpler data structure that works for all radii and, being
interested in static queries, we are able to reduce the space to Õ(dn2/c2).

Methods based on an enclosing ball. Goel et al. [13] show that a
√

2-approximate
furthest neighbor can always be found on the surface of the minimum enclosing
ball of S. More specifically, there is a set S∗ of at most d+1 points from S whose
minimum enclosing ball contains all of S, and returning the furthest point in S∗

always gives a
√

2-approximation to the furthest neighbor in S. This method is
query independent in the sense that it examines the same set of points for every
query. Conversely, Goel et al. [13] show that for a random data set consisting of
n (almost) orthonormal vectors, finding a c-approximate furthest neighbor for
a constant c <

√
2 gives the ability to find an O(1)-approximate near neighbor.

Since it is not known how to do that in time no(1) it is reasonable to aim for
query times of the form nf(c) for approximation c <

√
2.

Applications in recommender systems. Several papers on recommender systems
have investigated the use of furthest neighbor search [23, 24]. The aim there
was to use furthest neighbor search to create more diverse recommendations.
However, these papers do not address performance issues related to furthest
neighbor search, which are the main focus of our paper. The data structures
presented in this paper are intended to improve performance in recommender
systems relying on furthest neighbor queries. Other related works on recom-
mender systems include those of Abbar et al. [1] and Indyk et al. [17], which use
core-set techniques to return a small set of recommendations no two of which
are too close. In turn, core-set techniques also underpin works on approximating
the minimum enclosing ball [4, 19].

1.2. Notation

We use the following notation throughout:

• B(x, r) for the set of all points in a ball of radius r with center x.

• A(q, r, w) for the annulus between two balls, that is A(q, r, w) = B(q, rw)−
B(q, r/w). For an example, see Figure 1.2.
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Figure 1: The (r, w)-annulus query.

p

q

B(q, r/w)

B(q, rw)

• [n] for the integers 1, .., n.

• arg maxmS f(x) for the set of m elements from S that have the largest
values of f(x), breaking ties arbitrarily.

• N(µ, σ2) for the normal distribution with mean µ and variance σ2.

2. Algorithms and analysis

2.1. Furthest neighbor with query-dependent candidates

Our data structure works by choosing a random line and storing the order
of the data points along it. Two points far apart on the line are at least as far
apart in the original space. So given a query we can find the points furthest
from the query on the projection line, and take those as candidates to be the
furthest point in the original space. We build several such data structures and
query them in parallel, merging the results.

Given a set S ⊆ Rd of size n (the input data), let ` = 2n1/c2 (the number

of random lines) and m = 1 + e2` logc
2/2−1/3 n (the number of candidates to be

examined at query time), where c > 1 is the desired approximation factor. We
pick ` random vectors a1, . . . , a` ∈ Rd with each entry of ai coming from the
standard normal distribution N(0, 1).

For any 1 ≤ i ≤ `, we let Si = arg maxmx∈S ai · x and store the elements
of Si in sorted order according to the value ai · x. Our data structure for c-
AFN consists of ` subsets S1, . . . , S` ⊆ S, each of size m. Since these subsets
come from independent random projections, they will not necessarily be disjoint
in general; but in high dimensions, they are unlikely to overlap very much. At
query time, the algorithm searches for the furthest point from the query q among
the m points in S1, . . . , S` that maximize aix − aiq, where x is a point of Si
and ai the random vector used for constructing Si. The pseudocode is given in
Algorithm 1. We observe that although the data structure is essentially that of
Indyk [16], our technique differs in the query procedure.

Note that early termination is possible if r is known at query time.
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Algorithm 1 Query-dependent approximate furthest neighbor

1: initialize a priority queue of (point, integer) pairs, indexed by real keys
2: for i = 1 to ` do
3: compute and store ai · q
4: create an iterator into Si, moving in decreasing order of ai · x
5: get the first element x from Si and advance the iterator
6: insert (x, i) in the priority queue with key ai · x− ai · q
7: end for
8: rval ← ⊥
9: for j = 1 to m do

10: extract highest-key element (x, i) from the priority queue
11: if rval = ⊥ or x is further than rval from q then
12: rval ← x
13: end if
14: get the next element x′ from Si and advance the iterator
15: insert (x′, i) in the priority queue with key ai · x′ − ai · q
16: end for
17: return rval

Correctness and analysis. Our algorithm succeeds if and only if Sq contains a c-
approximate furthest neighbor. We now prove that this happens with constant
probability.

We make use of the following standard lemmas that can be found, for ex-
ample, in the work of Datar et al. [10] and Karger, Motwani, and Sudan [18].

Lemma 1 (See Section 3.2 of Datar et al. [10]). For every choice of vec-
tors x, y ∈ Rd:

ai · (x− y)

‖x− y‖2
∼ N(0, 1).

Lemma 2 (See Lemma 7.4 in Karger, Motwani, and Sudan [18]). For ev-
ery t > 0, if X ∼ N(0, 1) then

1√
2π
·
(

1

t
− 1

t3

)
· e−t

2/2 ≤ Pr[X ≥ t] ≤ 1√
2π
· 1

t
· e−t

2/2

The next lemma follows, as suggested by Indyk [16, Claims 2-3].

Lemma 3. Let p be a furthest neighbor from the query q with r = ‖p−q‖2, and
let p′ be a point such that ‖p′ − q‖2 < r/c. Let ∆ = rt/c with t satisfying the

equation et
2/2tc

2

= n/(2π)c
2/2 (that is, t = O

(√
log n

)
). Then, for a sufficiently

large n, we have

Pr
a

[a · (p′ − q) ≥ ∆] ≤ logc
2/2−1/3 n

n

Pr
a

[a · (p− q) ≥ ∆] ≥ (1− o(1))
1

n1/c2
.
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Proof. Let X ∼ N(0, 1). By Lemma 1 and the right part of Lemma 2, we
have for a point p′ that

Pr
a

[a · (p′ − q) ≥ ∆] = Pr
a

[X ≥ ∆/‖p′ − q‖2] ≤ Pr
a

[X ≥ ∆c/r] = Pr
a

[X ≥ t]

≤ 1√
2π

e−t
2/2

t
≤
(
t
√

2π
)c2−1 1

n
≤ logc

2/2−1/3 n

n
.

The last step follows because et
2/2tc

2

= n/(2π)c
2/2 implies that t = O

(√
log n

)
,

and holds for a sufficiently large n. Similarly, by Lemma 1 and the left part of
Lemma 2, we have for a furthest neighbor p that

Pr
a

[a · (p− q) ≥ ∆] = Pr
a

[X ≥ ∆/‖p− q‖2] = Pr
a

[X ≥ ∆/r] = Pr
a

[X ≥ t/c]

≥ 1√
2π

(
c

t
−
(c
t

)3
)
e−t

2/(2c2) ≥ (1− o(1))
1

n1/c2
.

�

Theorem 4. The data structure when queried by Algorithm 1 returns a c-AFN
of a given query with probability 1− 2/e2 > 0.72 in

O
(
n1/c2 logc

2/2−1/3 n(d+ log n)
)

time per query. The data structure requires O(n1+1/c2(d+ log n)) preprocessing
time and total space

O
(

min
{
dn2/c2 logc

2/2−1/3 n, dn+ n2/c2 logc
2/2−1/3 n

})
.

Proof. The space required by the data structure is the space required for
storing the ` sets Si. If for each set Si we store the m ≤ n points and the
projection values, then O (`md) memory words are required. On the other
hand, if pointers to the input points are stored, then the total required space is
O (`m+ nd). The representations are equivalent, and the best one depends on
the value of n and d. The claim on space requirement follows. The preproceesing
time is dominated by the computation of the n` projection values and by the
sorting for computing the sets Si. Finally, the query time is dominated by the
at most 2m insertion or deletion operations on the priority queue and the md
cost of searching for the furthest neighbor, O (m(log `+ d)).

We now upper bound the success probability. As in the statement of Lemma 3,
we let p denote a furthest neighbor from q, r = ‖p − q‖2, p′ be a point such

that ‖p′ − q‖2 < r/c, and ∆ = rt/c with t such that et
2/2tc

2

= n/(2π)c
2/2.

The query succeeds if: (i) ai(p − q) ≥ ∆ for at least one projection vector ai,
and (ii) the (multi)set Ŝ = {p′|∃i : ai(p

′ − q) ≥ ∆, ‖p′ − q‖2 < r/c} contains
at most m − 1 points (i.e., there are at most m − 1 near points each with a
distance from the query at least ∆ in some projection). If (i) and (ii) hold,
then the set of candidates examined by the algorithm must contain the furthest
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neighbor p since there are at most m−1 points near to q with projection values
larger than the maximum projection value of p. Note that we do not consider
points at distance larger than r/c but smaller than r: they are c-approximate
furthest neighbors of q and can only increase the success probability of our data
structure.

By Lemma 3, event (i) happens with probability 1/n1/c2 . Since there are

` = 2n1/c2 independent projections, this event fails to happen with probability

at most (1 − 1/n1/c2)2n1/c2 ≤ 1/e2. For a point p′ at distance at most r/c

from q, the probability that ai(p
′ − q) ≥ ∆ is less than (logc

2/2−1/3 n)/n for
Lemma 3. Since there are ` projections of n points, the expected number of

such points is ` logc
2/2−1/3 n. Then, we have that |Ŝ| is greater than m− 1 with

probability at most 1/e2 by the Markov inequality. Note that a Chernoff bound
cannot be used since there exists a dependency among the projections onto the
same random vector ai. By a union bound, we can therefore conclude that the
algorithm succeeds with probability at least 1− 2/e2 ≥ 0.72. �

2.2. Furthest neighbor with query-independent candidates

Suppose instead of determining the candidates depending on the query point
by means of a priority queue, we choose a fixed candidate set to be used for every
query. The

√
2-approximation the minimum enclosing sphere is one example

of such a query-independent algorithm. In this section we consider a query-
independent variation of our projection-based algorithm.

During preprocessing, we choose ` unit vectors y1, y2, . . . , y` independently
and uniformly at random over the sphere of unit vectors in d dimensions. We
project the n data points in S onto each of these unit vectors and choose the
extreme data point in each projection; that is,{

arg max
x∈S

x · yi
∣∣∣∣ i ∈ [`]

}
.

The data structure stores the set of all data points so chosen; there are at
most ` of them, independent of n. At query time, we check the query point q
against all the points we stored, and return the furthest one.

To prove a bound on the approximation, we will use the following result
of Böröczky and Wintsche [7, Corollary 1.2]. Note that their notation differs
from ours in that they use d for the dimensionality of the surface of the sphere,
hence one less than the dimensionality of the vectors, and c for the constant,
conflicting with our c for approximation factor. We state the result here in
terms of our own variable names.

Lemma 5 (See Corollary 1.2 in Böröczky and Wintsche [7]). For any an-
gle ϕ with 0 < ϕ < arccos 1/

√
d, in d-dimensional Euclidean space, there exists

a set V of at most Cd(ϕ) unit vectors such that for every unit vector u, there
exists some v ∈ V with the angle between u and v at most ϕ, and

|V | ≤ Cd(ϕ) = γ cosϕ · 1

sind+1 ϕ
· (d+ 1)

3
2 ln(1 + (d+ 1) cos2 ϕ) , (1)
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Figure 2: Choosing ϕc.

where γ is a universal constant.

Let ϕc = 1
2 arccos 1

c ; that is half the angle between two unit vectors whose dot
product is 1/c, as shown in Figure 2. Then by choosing ` = O(Cd(ϕc) · logCd(ϕc))
unit vectors uniformly at random, we will argue that with high probability we
choose a set of unit vectors such that every unit vector has dot product at least
1/c with at least one of them. Then the data structure achieves c-approximation
on all queries.

Theorem 6. With ` = O(f(c)d) for some function f of c and any c such that
1 < c < 2, with high probability over the choice of the projection vectors, the
data structure returns a d-dimensional c-approximate furthest neighbor on every
query.

Proof. Let ϕc = 1
2 arccos 1

c . Then, since 1
c is between 1

2 and 1, we can apply
the usual half-angle formulas as follows:

sinϕc = sin
1

2
arccos

1

c
=

√
1− cos arccos 1/c√

2
=

√
1− 1/c√

2

cosϕc = cos
1

2
arccos

1

c
=

√
1 + cos arccos 1/c√

2
=

√
1 + 1/c√

2
.

Substituting into (1) from Lemma 5 gives

Cd(ϕc) = γ
2d/2

√
1 + 1/c

(1− 1/c)(d+1)/2
(d+ 1)

3/2
ln

(
1 + (d+ 1)

1 + 1/c

2

)
= O

((
2

1− 1/c

)(d+1)/2

d3/2 log d

)
.
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Let V be the set of Cd(ϕc) unit vectors from Lemma 5; every unit vector on
the sphere is within angle at most ϕc from one of them. The vectors in V are
the centres of a set of spherical caps that cover the sphere.

Since the caps are all of equal size and they cover the sphere, there is prob-
ability at least 1/Cd(ϕc) that a unit vector chosen uniformly at random will
be inside each cap. Let ` = 2Cd(ϕc) lnCd(ϕc). This ` = O(f(c)d). Then for
each of the caps, the probability none of the projection vectors yi is within that
cap is (1− 1/Cd(ϕc))

`, which approaches exp(−2 lnCd(ϕc)) = (Cd(ϕc))
−2. By

a union bound, the probability that every cap is hit is at least 1 − 1/Cd(ϕc).
Suppose this occurs.

Then for any query, the vector between the query and the true furthest
neighbor will have angle at most ϕc with some vector in V , and that vector
will have angle at most ϕc with some projection vector used in building the
data structure. Figure 2 illustrates these steps: if Q is the query and P is the
true furthest neighbor, a projection onto the unit vector in the direction from
Q to P would give a perfect approximation. The sphere covering guarantees
the existence of a unit vector S within an angle ϕc of this perfect projection;
and then we have high probability of at least one of the random projections also
being within an angle ϕc of S. If that random projection returns some candidate
other than the true furthest neighbor, the worst case is if it returns the point
labelled R, which is still a c-approximation. We have such approximations for all
queries simultaneously with high probability over the choice of the ` projection
vectors. �

Note that we could also achieve c-approximation deterministically, with
somewhat fewer projection vectors, by applying Lemma 5 directly with ϕc =
arccos 1/c and using the centres of the covering caps as the projection vectors
instead of choosing them randomly. That would require implementing an ex-
plicit construction of the covering, however. Böröczky and Wintsche [7] argue
that their result is optimal to within a factor O(log d), so not much asymptotic
improvement is possible.

2.3. A lower bound on the approximation factor

In this section, we show that a data structure aiming at an approximation
factor less than

√
2 must use space min{n, 2Ω(d)} − 1 on worst-case data. The

lower bound holds for those data structures that compute the approximate fur-
thest neighbor by storing a suitable subset of the input points.

Theorem 7. Consider any data structure D that computes the c-AFN of an
n-point input set S ⊆ Rd by storing a subest of the data set. If c =

√
2(1 − ε)

with ε ∈ (0, 1), then the algorithm must store at least min{n, 2Ω(ε2d)}−1 points.

Proof. Suppose there exists a set S′ of size r = 2Ω(ε′2d) such that for any
x ∈ S′ we have (1 − ε′) ≤ ‖x‖22 ≤ (1 + ε′) and x · y ≤ 2ε′, with ε′ ∈ (0, 1). We
will later prove that such a set exists. We now prove by contradiction that any
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data structure requiring less than min{n, r} − 1 input points cannot return a√
2(1− ε)-approximation.

Assume n ≤ r. Consider the input set S consisting of n arbitrary points of
S′ and set the query q to −x, where x is an input point not in the data structure.
The furthest neighbor is x and it is at distance ‖x− (−x)‖2 ≥ 2

√
1− ε′. On the

other hand, for any point y in the data structure, we get

‖y − (−x)‖2 =
√
‖x‖22 + ‖y‖22 + 2x · y ≤

√
2(1 + ε′) + 4ε′.

Therefore, the point returned by the data structure cannot be better than a c′

approximation with

c′ =
‖x− (−x)‖2
‖y − (−x)‖2

≥
√

2

√
1− ε′
1 + 3ε′

. (2)

The claim follows by setting ε′ = (2ε− ε2)/(1 + 3(1− ε)2).
Assume now that n > r. Without loss of generality, let n be a multiple

of r. Consider as input set the set S containing n/r copies of each vector
in S′, each copy expanded by a factor i for any i ∈ [n/r]; specifically, let
S = {ix|x ∈ S′, i ∈ [n/r]}. By assumption, the data structure can store at most
r−1 points and hence there exists a point x ∈ S′ such that ix is not in the data
structure for every i ∈ [1, n/r]. Consider the query q = −hx where h = n/r. The
furthest neighbor of q in S is −q and it has distance ‖q − (−q)‖2 ≥ 2h

√
1− ε′.

On the other hand, for every point y in the data structure, we get

‖y − (−hx)‖2 =
√
h2‖x‖22 + ‖y‖22 + 2hx · y ≤

√
2h2(1 + ε′) + 4h2ε′.

We then get the same approximation factor c′ given in equation 2, and the claim
follows.

The existence of the set S′ of size r follows from the Johnson-Lindenstrauss
lemma [20]. Specifically, consider an orthornormal base x1, . . . xr of Rr. Since
d = Ω

(
log r/ε′2

)
, by the Johnson-Lindenstrauss lemma there exists a linear map

f(·) such that (1 − ε′)‖xi − xj‖22 ≤ ‖f(xi) − f(xj)‖22 ≤ (1 + ε)‖xi − xj‖22 and
(1 − ε′) ≤ ‖f(xi)‖22 ≤ (1 + ε′) for any i, j. We also have that f(xi) · f(xj) =
(‖f(xi)‖22 +‖f(xj)‖22−‖f(xi)−f(xj)‖22)/2, and hence −2ε ≤ f(xi) ·f(xj) ≤ 2ε.
It then suffices to set S′ to {f(x1), . . . , f(xr)}. �

The lower bound translates into the number of points that must be read by
each query. However, this does not apply for query dependent data structures.

3. Furthest neighbor experiments

We implemented several variations of furthest neighbor query in both the C
and F# programming languages. This code is available online2. Our C imple-
mentation is structured as an alternate index type for the SISAP C library [12],
returning the furthest neighbor instead of the nearest.

2https://github.com/johanvts/FN-Implementations
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Figure 3: Experimental results for 10-dimensional uniform distribution

We selected five databases for experimentation: the “nasa” and “colors” vec-
tor databases from the SISAP library; two randomly generated databases of 105

10-dimensional vectors each, one using a multidimensional normal distribution
and one uniform on the unit cube; and the MovieLens 20M dataset [15]. The
10-dimensional random distributions were intended to represent realistic data,
but their intrinsic dimensionality as measured by the ρ statistic of Chávez and
Navarro [8] is significantly higher than what we would expect to see in real-life
applications.

For each database and each choice of ` from 1 to 30 and m from 1 to 4`,
we made 1000 approximate furthest neighbor queries. To provide a represen-
tative sample over the randomization of both the projection vectors and the
queries, we used 100 different seeds for generation of the projection vectors, and
did 10 queries (each uniformly selected from the database points) with each
seed. We computed the approximation achieved, compared to the true furthest
neighbor found by brute force, for every query. The resulting distributions are
summarized in Figures 3–7.

We also ran some experiments on higher-dimensional random vector databases
(with 30 and 100 dimensions, in particular) and saw approximation factors very
close to those achieved for 10 dimensions.
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Figure 4: Experimental results for 10-dimensional normal distribution

` vs. m tradeoff. The two parameters ` and m both improve the approximation
as they increase, and they each have a cost in the time and space bounds. The
best tradeoff is not clear from the analysis. We chose ` = m as a typical value,
but we also collected data on many other parameter choices.

Figure 8 offers some insight into the tradeoff: since the cost of doing a
query is roughly proportional to both ` and m, we chose a fixed value for their
product, ` ·m = 48, and plotted the approximation results in relation to m given
that, for the database of normally distributed vectors in 10 dimensions. As the
figure shows, the approximation factor does not change much with the tradeoff
between ` and m.

Query-independent ordering. The furthest-neighbor algorithm described in Sec-
tion 2.1 examines candidates for the furthest neighbor in a query dependent
order. In order to compute the order for arbitrary queries, we must store m
point IDs for each of the ` projections, and use a priority queue data structure
during query, incurring some costs in both time and space. It seems intuitively
reasonable that the search will usually examine points in a very similar order
regardless of the query: first those that are outliers, on or near the convex hull
of the database, and then working its way inward.

We implemented a modified version of the algorithm in which the index stores
a single ordering of the points. Given a set S ⊆ Rd of size n, for each point x ∈ S
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Figure 5: Experimental results for SISAP nasa database

let key(x) = maxi∈1...` ai · x. The key for each point is its greatest projection
value on any of the ` randomly-selected projections. The data structure stores
points (all of them, or enough to accomodate the largest m we plan to use)
in order of decreasing key value: x1, x2, . . . where key(x1) ≥ key(x2) ≥ · · · .
Note that this is not the same query-independent data structure discussed in
Section 2.2; it differs both in the set of points stored and the order of sorting
them.

The query examines the first m points in the query independent ordering and
returns the one furthest from the query point. Sample mean approximation
factor for this algorithm in our experiments is shown by the dotted lines in
Figures 3–8.

Variations on the algorithm. We have experimented with a number of practical
improvements to the algorithm. The most significant is to use the rank-based
depth of projections rather than the projection value. In this variation we sort
the points by their projection value for each ai. The first and last point then have
depth 0, the second and second-to-last have depth 1, and so on up to the middle
at depth n/2. We find the minimum depth of each point over all projections
and store the points in a query independent order using the minimum depth
as the key. This approach seems to give better results in practice. A further
improvement is to break ties in the minimum depth by count of how many
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Figure 6: Experimental results for SISAP colors database

times that depth is achieved, giving more priority to investigating points that
repeatedly project to extreme values. Although such algorithms may be difficult
to analyse in general, we give some results in Section 2.2 for the case where the
data structure stores exactly the one most extreme point from each projection.

The number of points examined m can be chosen per query and even during
a query, allowing for interactive search. After returning the best result for some
m, the algorithm can continue to a larger m for a possibly better approximation
factor on the same query. The smooth tradeoff we observed between ` and m
suggests that choosing an ` during preprocessing will not much constrain the
eventual choice of m.

Discussion. The main experimental result is that the algorithm works very well
for the tested datasets in terms of returning good approximations of the furthest
neighbor. Even for small ` and m the algorithm returns good approximations.
Another result is that the query independent variation of the algorithm returns
points only slighly worse than the query dependent. The query independent
algorithm is simpler to implement, it can be queried in time O (m) as opposed
to O (m log `+m) and uses only O (m) storage. In many cases these advances
more than make up for the slightly worse approximation observed in these ex-
periments. However, by Theorem 7, to guarantee

√
2 − ε approximation the

query-independent ordering version would need to store and read m = n − 1
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Figure 7: Experimental results for MovieLens 20M database

points.
In data sets of high intrinsic dimensionality, the furthest point from a query

may not be much further than any randomly selected point, and we can ask
whether our results are any better than a trivial random selection from the
database. The intrinsic dimensionality statistic ρ of Chávez and Navarro [8]
provides some insight into this question. Note that instrinsic dimensionality as
measured by ρ is not the same thing as, and for real data sets is often much
smaller than, the number of coordinates in a vector. Intrinsic dimensionality
also applies to data sets that are not vectors and do not have coordinates. Skala
proves a formula for the value of ρ on a multidimensional normal distribution [25,
Theorem 2.10]; it is 9.768 . . . for the 10-dimensional distribution used in Figure 4.
With the definition µ2/2σ2, this means the standard deviation of a randomly
selected distance will be about 32% of the mean distance. Our experimental
results come much closer than that to the true furthest distance, and so are
non-trivial.

The concentration of distances in data sets of high intrinsic dimensionality
reduces the usefulness of approximate furthest neighbor. Thus, although we
observed similar values of c in higher dimensions to our 10-dimensional ran-
dom vector results, random vectors of higher dimension may represent a case
where c-approximate furthest neighbor is not a particularly interesting problem.
Fortunately, vectors in a space with many dimensions but low intrinsic dimen-
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Figure 8: The tradeoff between ` and m on 10-dimensional normal vectors

sionality, such as the colors database, are more representative of real application
data, and our algorithms performed well on such data sets.

The experimental results on the MovieLens 20M data set [15], which were
not included in the conference version of the present work, show some interesting
effects resulting from the very high nominal (number of coordinates) dimension-
ality of this data set. The data set consists of 20000263 “ratings,” representing
the opinions of 138493 users on 27278 movies. We treated this as a database
of 27278 points (one for each movie) in a 138493-dimensional Euclidean space,
filling in zeroes for the large majority of coordinates where a given user did not
rate a given movie. Because of their sparsity, vectors in this data set usually
tend to be orthogonal, with the distance between two simply determined by
their lengths. Since the vectors’ lengths vary over a wide range (length pro-
portional to number of users rating a movie, which varies widely), the pairwise
distances also have a large variance, implying a low intrinsic dimensionality. We
measured it as ρ = 0.263.

The curves plotted in Figure 7 show similar behaviour to that seen for ran-
dom distributions in Figures 3 and 4. Approximation factor improves rapidly
with more projections and points examined, in the same pattern as but to a
greater degree than in the 10-coordinate vector databases, which have higher
intrinsic dimensionality. However, here there is no noticeable penalty for using
the query-independent algorithm. The data set appears to be dominated (inso-
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Algorithm 2 Query-independent approximate furthest neighbor

1: rval ← ⊥
2: for j = 1 to m do
3: if rval = ⊥ or xj is further than rval from q then
4: rval ← xj
5: end if
6: end for
7: return rval

far as furthest neighbours are concerned) by a few extreme outlier: movies rated
very differently from any others. For almost any query, it is likely that one of
these will be at least a good approximation of the true furthest neighbour; so
the algorithm that identifies a set of outliers in advance and then chooses among
them gives essentially the same results as the more expensive query-dependant
algorithm.

4. Annulus query

In this section we return to the problem of annulus query. Using the AFN
data structure in combination with LSH techniques we present a sub-linear time
data structure for solving the approximate annulus query problem (AAQ) with
constant failure probability in Euclidean space. Let’s begin by defining the exact
and approximate annulus query problem:

Annulus query : Consider a set of points S in (X,D) and r > 0, w > 1.
The exact (r, w)-annulus query is defined as follows: Given a query point q,
return a point p ∈ S ∩ A(q, r, w). That is, we search for p ∈ S such that
r/w ≤ D(p, q) ≤ wr. If no such point exists in S the query returns null. An
alternative definition returns all points in S ∩ A(q, r, w), but we will focus our
attention on the definition above.

Approximate annulus query : For a set of points S in (X,D), r > 0 and
c, w > 1. The (c, r, w)-approximate annulus query (AAQ) is defined as follows:
Given a query point q, if there exists p ∈ S ∩ A(q, r, w), then return a point
p̂ ∈ S ∩ A(q, r, cw). If no such p exists we can return either null or any point
within A(q, r, cw).

4.1. Solving the (c, w, r)-AAQ

We now show how to solve the (c, w, r)-AAQ with constant failure probabil-
ity in Rd by combining the furthest neighbor technique with locality sensitive
hashing methods [14]. Consider an LSH function family H = {Rd → U}. We
say that H is (r1, r2, p1, p2)-sensitive for (Rd, `2) if:

1. PrH[h(q) = h(p)] ≥ p1 when ‖p− q‖2 ≤ r1

2. PrH[h(q) = h(p)] ≤ p2 when ‖p− q‖2 > r2
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Figure 9: Illustration of a bucket for {x1, x2, x3, x5} ⊂ S. ` = 3.
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Theorem 8. Consider a (wr,wcr, p1, p2)-sensitive hash family H for (Rd, l2)

and let ρ = log 1/p1
log 1/p2

. For any set S ∈ Rd of at most n points there exists a data

structure for (c, w, r)-AAQ such that:

• Queries can be answered in time O
(
dn1/c2 log(1−1/c2)/2 n

)
.

• The data structure takes space O
(
n2(ρ+1/c2) log1−1/c2 n

)
in addition to

storing S.

The failure probability is constant and can be reduced to any δ > 0 by in-
creasing the space and time cost by a constant factor.

We will now give a description of such a data structure and then prove that
it has the properties stated in Theorem 8.

4.2. Annulus query data structure

Let k, ` and L be integer parameters to be chosen later We construct a
function family G = g : Rd → Uk by concatenating k members of H. Choose L
functions g1, .., gL from G and pick ` random vectors a1, .., a` ∈ Rd with entries
sampled independently from N (0, 1).

4.2.1. Preprocessing

During preprocessing, all points x ∈ S are hashed with each of the functions
g1, .., gL. We say that a point x is in a bucket Bj,i if gj(x) = i. For every point
x ∈ S the ` dot product values ai · x are calculated. These values are stored in
the bucket along with a reference to x. Each bucket consists of ` linked lists,
list i containing the entries sorted on ai ·x, decreasing from the head of the list.
See Figure 9 for an illustration where pi,j is the tuple (ai ·xj , ref(xj)). A bucket
provides constant time access to the head of each list. Only non-empty buckets
are stored.
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4.2.2. Querying

For a given query point q the query procedure can be viewed as building the
set Sq of points from S within B(q, rcw) with the largest ai∈[`] · (p − q) values
and computing the distances between q and the points in Sq. At query time q
is hashed using g1, .., gL. From each bucket Bj,gj(q) the top pointer is selected
from each list. The selected points are then added to a priority queue with
priority ai · (p− q). This is done in O(L`) time. Now we begin a cycle of adding
and removing elements from the priority queue. The largest priority element is
dequeued and the predecessor link is followed and the returned pointer added
to the queue. If the pointer just visited was the last in its list, nothing is added
to the queue. If the priority queue becomes empty the algorithm fails. Since r
is known at query time in the (c, w, r)-AAQ it is possible to terminate the query
procedure as soon as some point within the annulus is found. Note that this
differs from the general furthest neighbor problem. For the analysis however we
will consider the worst case where only the last element in Sq lies in the annulus
and bound |Sq| to achieve constant success probability.

Proof of Theorem 8. Fix a query point q. By the problem definition, we
may assume |S∩A(q, r, w)| ≥ 1. Define Sq ⊆ S to be the set of candidate points
for which the data structure described in section 4.2 calculates the distance to q
when queried. The correctness of the algorithm follows if |Sq ∩A(q, r, cw)| ≥ 1.

To simplify the notation let Pnear = S ∩ B(q, r/(cw)) and Pfar = S −
B(q, r/w). Points in the these two sets have useful properties. Let t be the
solution to the equality:

1√
2π

e
−t2

2

t
=

1

n

If we set ∆ = rt
cw , we can use the ideas from Lemma 3 to conclude that:

Pr[ai(p− q) ≥ ∆] ≤ 1

n
, for p ∈ Pnear

Also, for p ∈ Pfar the lower bound gives:

Pr[ai(p− q) ≥ ∆] ≥ 1

(2π)(1−1/c2)/2
n−1/c2t(1−1/c2)

(
1− c2

t2

)
By definition, t ∈ O(

√
log n), so for some function φ ∈ O(n1/c2 log(1−1/c2)/2 n)

we get:

Pr[ai(p− q) ≥ ∆] ≥ 1

φ
, for p ∈ Pfar.

Now for large n, let D be the set of points that hashed to the same bucket as q
for at least one hash function and projected above ∆ on at least one projection
vector.

D = {x ∈ S|∃j, i : gj(x) = gj(q) and ai · (x− q) ≥ ∆}

Let ` = 2φ,m = 1 + e2` and L = dnρ/p1e. Using the probability bound (1) we
see that E[|D ∩ Pnear|] ≤ 1

nn` = `. So Pr[|D ∩ Pnear| ≥ m] < 1/e2 by Markov’s
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inequality. By a result of Har-Peled, Indyk, and Motwani [14, Theorem 3.4], the
total number of points from S−B(q, rcw) across all gi(q) buckets is at most 3L
with probability at least 2/3. So Pr[|D − B(q, rcw) > 3L] < 1/3. This bounds
the number of too far and too near points expected in D.

Pr[|D \A(q, r, cw)| ≥ m+ 3L] ≤ 1/3 + e−2

By applying [14, Theorem 3.4] again, we get that for each x ∈ A(q, r, w) there
exists i ∈ [L] such that gi(x) = gi(q) with probability at least 1 − 1/e. Con-
ditioning on the existence of this hash function, the probability of a point pro-
jecting above ∆ is at least 1 − (1 − 1/φ)2φ ≥ 1 − 1

e2 . Then it follows that
Pr[|D∩A(q, r, w)| < 1] < 1/e+ 1/e2. The points in D will necessarily be added
to Sq before all other points in the buckets; then, if we allow for |Sq| = m+ 3L,
we get

Pr[|Sq ∩A(q, r, cw)| ≥ 1] ≥ 1− (1/3 + 1/e+ 2/e2) > 0.02.

�
The data structure requires us to store the top O (mL) points per projection

vector, per bucket, for a total space cost of O(m`L2), in addition to storing the
dataset, O(nd). The query time is O (`L+m(d+ log `L)). The first term is for
initializing the priority queue, and the second for constructing Sq and calculating

distances. Substituting in L ∈ O(nρ) and `,m ∈ O(n1/c2 log(1−1/c2)/2 n) we get
query time:

O
(
nρ+1/c2 logλ n+ n1/c2 logλ n

(
d+ log (nρ+1/c2 logλ n)

))
, (3)

where λ = (1− 1/c2)/(2). Depending on the parameters different terms might
dominate the cost, but for large d we can simplify to the version stated in the
theorem. The hash buckets take space:

O
(
n2(ρ+1/c2) log1−1/c2 n

)
. (4)

Depending on c, we might want to bound the space by O(n`L) instead, which

yields a bound of O(n1+ρ+1/c2 log(1−1/c2)/2 n). �

5. Conclusions and future work

We have proposed a data structure for AFN with theoretical and experimen-
tal guarantees. We have introduced the approximate annulus query and given
a theoretical sublinear time solution. Although we have proved that it is not
possible to use less than min{n, 2Ω(d)} − 1 total space for c-AFN when the c
approximation factor is less than

√
2, it is an open problem to close the gap

between this lower bound and the space requirements of our result. Another
interesting problem is to apply our data structure to improve the output sensi-
tivity of near neighbor search based on locality-sensitive hashing. By replacing
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each hash bucket with an AFN data structure with suitable approximation fac-
tors, it is possible to control the number of times each point in S is reported.

Our data structure extends naturally to general metric spaces. Instead of
computing projections with dot product, which requires a vector space, we could
choose some random pivots and order the points by distance to each pivot. The
query operation would be essentially unchanged. Analysis and testing of this
extension is a subject for future work.
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