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A new technique for infrared scintillation measurements
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Abstract

We propose a new technique to measure the infrared scintillation light yield of rare earth (RE) doped crystals by
comparing it to near UV-visible scintillation of a calibrated Pr:(Lu0.75Y0.25)3Al5O12 sample. As an example, we apply
this technique to provide the light yield in visible and infrared range up to 1700 nm of this crystal.
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1. Introduction

A new concept, all-optical particle radiation detector hasbeen very recently proposed based on the mechanism of
upconversion in RE-doped materials [1]. This process, in which low energy incident optical radiation (infrared light
- IR) is converted into higher energy emitted photons (visible light), is efficiently accomplished by incorporating RE
ions in inorganic matrices due to theirf -electrons configurations. In fact, ground state absorption (level 0) allows
the rare earth ions to reach a metastable intermediate state(level 1), characterized by relatively long lifetimes (≈ms),
then another photon delivered by a pump laser tuned to the transition 1→ 2 promotes the ion to a more energetic
state (level 2). Radiative transition from this latter excited state back to the ground state is then observed by means
of traditional detectors as photomultipliers (PMT) or photodiodes (PD). To date, this mechanism has been extensively
applied for the development of lasers and optical devices [2, 3] but its applicability in the field of particle detection
has not been deeply investigated.

The visible light yield (LY) of this novel device depends on the upconversion efficiency and on the number of
RE-ions excited into the metastable level 1 per energy unit of the particle. This latter quantity can be estimated by
studying the LY in the IR band which very few articles in literature are concerned with [4]. Actually, there is little
interest in the RE-doped crystals infrared scintillation for their long decay lifetimes and for the low quantum efficiency
of PMT in this spectral region.

The aim of this work is to propose a method that allows us to tackle a systematic investigation of the IR LY
in several different materials, composed of different matrices, dopants and concentrations. This method isbased on
the luminescence comparison with a reference Pr:(Lu0.75Y0.25)3Al5O12 single crystal whose light yield in the near
UV-visible is known. Moreover, this method is applied to this crystal, thereby yielding its IR LY.

2. Experimental setup

The mixed lutetium-yttrium aluminum garnet sample has beengrown via Czochralsky method at ITME, Warsaw
and its preparation is described elsewhere [5]. The interest in mixed Pr:LuYAG crystals is related to its much better
performance in terms of light yield and energy resolution ascompared to either Pr:LuAG or Pr:YAG. The 5× 5× 5
mm3 sample chosen for the present measurements has a reported light yield of 27 000ph/MeV and a 5.3 % energy
resolution in the UV-VIS range [5].

To investigate its light yield in the IR band, the Pr:LuYAG sample is excited by X-rays generated by an electron
gun that can be operated both in continuous and in pulsed modesweeping the electron beam at 100 Hz frequency [6].
The severalµA intense electron beam impinges on a∼10µm-thick tantalum foil placed in front of the sample to make
sure that the whole crystal is excited only by X-rays. The scintillation response of the crystal sample is measured
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using Si (mod. Hamamtsu S1337-1010BQ) and InGaAs (mod. Thorlabs DET20C) PDs. The small contribution to
the PD signal of the X-rays that are not absorbed in the crystal and reach the PD can be estimated and then subtracted
by covering the PD with an thin aluminum foil.

In order to verify that the radioluminescence is determinedby the Pr3+ ions emission, the X-rays excitation spectra
are compared with those obtained when the crystal is irradiated with a pulsed, frequency-quadrupled Nd:YAG laser
(266 nm). In fact, whereas the host matrix is transparent at this wavelength, the Pr3+ ions are directly excited into
4 f 5d levels, thus allowing us to simulate the energy transfer process from the electron-hole recombination to the RE
ions after the X-ray excitation.

3. Spectroscopic analysis

We have recorded spectra of the Pr:LuYAG emission due to X-ray and UV excitation (Fig.1). The OceanOptics
650 RedTide and OceanOptics NIRQuest512 spectrometers were used for the 200–850nm and 900–1700nm regions,
respectively.

In both spectra one can clearly see emissions related to the same Pr3+ energy levels. We observe a strong 4f 5d →
4 f 2 emission in the range from 300 to 450 nm and narrow lines in thevisible/near-infrared region due to emission
from levels3P0, 1D2, 1G4. The spectra below 850 nm are similar to those reported by previous authors in a Pr:LuAG
crystal [7]. The main near-infrared transitions that we identify are:1D2 →

3F3,4, 1G4 →
3H4 (900–1100nm) and

1D2 →
1G4 (1400–1600nm). The emission from1G4 is expected to be partially non radiatively quenched, whereas

the lower lying levels are strongly quenched in LuYAG matrix. As a consequence no mid-infrared emission is expected
from these latter levels.

4. Method

We measure the total number of charge carriers generated perX-ray pulse in the photodiodene = QdR0/Gτ with
Qd being the time integrated photodiode signal,R0 = 1 MΩ the impedance of oscilloscope,G = 0.25 mV/fC andτ ≈
480µs which are the gain and the time constant of the active integrator, respectively. If the PD quantum efficiencyη
is constant in the considered range,ne is also given by equation

ne = Ein · LY · η ·
∆Ω

4π
(1− R) (1)

whereEin is the energy deposited in the sample,R the crystal reflectivity,∆Ω = A/d2 is the solid angle subtended by
the PD with areaA located at a distanced from the crystal. Moreover, the measured charge per pulseQbs is related
through a proportionality constantk to the energy released by X-ray pulse in the crystal. In fact,as shown in the Fig.2,
the measured luminescenceQd linearly depends onQbs.

It is then possible to obtain a general expression for the measured light yield in a definite wavelength range:

LY =
Qd

Qbs
d2 4πR0

kGτ
1

η (1− R) A
. (2)

As in the point source approximation the following expression holds true

Qd(x)
Qbs

=

(

Qd

Qbs
d2

)

1

(x0 + x)2
=

a

(x0 + x)2
(3)

the parametersa =
Qd

Qbs
d2 and x0 can be obtained by a fit of data recorded at different relative distancesx of the

photodiode from the scintillating crystal, as shown in Fig.3.
We observe that in this type of measurements it crucial to precisely know the efficiency of the X-ray generation

process, related to the previously mentioned proportionality constantk. The latter can be estimated if the X-ray energy
is fully released in the sample and provided the LY and thea parameter of a generic crystal in any wavelength range
are known. As the sensitivity of the detector that has been used to measure the light yield of our LuYAG:Pr crystal
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reported in [5] peaks in the UV range, it is reasonable to expect that the reported light yield is mainly determined
by 4f 5d → 4 f 2 radiative transitions. In addition, due to fast integration time the slow components might have been
underestimated.

In order to select the photodiode signal component due to theUV scintillation, the previously described measure-
ments are repeated at a fixed distance with optical longpass filters (Thorlabs, FGL and FEL filter sets) located in front
of the photodiodes. The use of filters allows us to estimate the light yield in narrower bandwidths and with a better
accuracy by taking into account the wavelength dependence of the photodiode’s responsivity.

As the energy of the X-rays can be assumed to be in the range of few tens of keV, the LY of our sample measured
in [5] at 662 keV has to be reduced by 10%, in agreement with previously published data [8, 9, 10]. We report in Table
1 the results of the light yield measurements in several optical ranges.

Table 1: Measured light yield of the LuYAG:Pr crystal for different optical ranges.

Optical Band [nm] LY [ph/MeV]

200–495 24300
495–780 6700
780–1000 1000
1000–1100 1300
1100–1200 500
1200–1700 1100

5. Conclusions

We have demonstrated a practical way to accurately estimatethe infrared light yield of a RE-doped crystal by
comparison with the near UV-visible luminescence of a reference crystal. The presented method allows us to make
accurate LY measurements since it is based on the point-source approximation, as verified by performing measure-
ments at several distances from the source, and because it ispossible to vary the energy released per pulse in the
crystal and to average over several measurements. Furthermore, the use of several optical longpass filters reduces the
error due to the wavelength dependence of the photodiode quantum efficiency.

The method has been applied to a (Lu0.75Y0.25)3Al5O12 crystal whose emission in the UV range had been previ-
ously measured. In spite of its high LY in the UV, its emissionin the near infrared band is limited to a few thousands of
ph/MeV, probably due to the1G4 manifold quenching. Although the states of our interest3HJ and3FJ, characterized
by ms-long radiative lifetimes, are efficiently populated by the relaxation of the higher manifolds, no mid-infrared
emission is expected from them in this host matrix.

The data reported in this work can be used to extend the LY measurements up to the mid-infrared band, provided
that photodiodes with a lower band gap than InGaAs are used.

In order to identify the most suitable crystals for the development of the upconversion-based detector, several
RE-doped crystals are currently being investigated with the method described in this work. The preliminary results
obtained for Nd:YAG and Tm:YAG are particularly encouraging for our aims and will soon be published.
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Figure 1: Uncorrected emission spectra of Pr:LuYAG under 266 nm laser excitation(top) and X-ray excitation(bot-
tom).
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Figure 2: Linear dependence of the visible and infrared integrated luminescence signal on the charge collected at the
Farday cup. Different sets of longpass filters have been used to obtain the Si PD (left) data and the InGaAs(right)
data. The filter name contains the cut in wavelength in nm.
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Figure 3: Measurement of thea parameter with the Silicon(left) and the InGaAs(right) PD. The error bars are of the
same size as the symbols. The validity of the point source approximation is confirmed by the goodness of the fit.
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