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Abstract 

The implementation of probabilistic algorithms by deterministic hardware is demanding and requires 

hundreds of instructions to generate pseudo-random sequence of numbers. On the contrary, the 

dynamics at the molecular scale is physically governed by probabilistic laws because of the stochastic 

nature of thermally activated and quantum processes. By simulating the exciton transfer dynamics in a 

multi-chromophoric system we demonstrate the implementation of a random walk that samples the 

possible pathways of a traveler through a network and can be probed by time resolved fluorescence 

spectroscopy. The ability of controlling the spatial arrangement of the chromophores allows us to 

design the “landscape” in which the traveler is moving and therefore to program the molecular device. 
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1. Introduction 

Random walks and Markov chains are one of the cornerstones of computer science.[1] As 

algorithmic tools they are applied to solve central problems like searching and ranking contents 

through the web[2], analyzing social behaviors[3] or modelling the evolution of DNA and protein 

sequences.[4] They provide a general paradigm for sampling and exploring combinatorial structures by 

using a sequence of simple, local transitions.[5] The implementation of probabilistic algorithms by 

deterministic hardware is highly inefficient, requiring significant overhead at each step. For example, 

the mere sampling a pseudo-random number from a probability distribution requires hundreds of 

instructions. A natural alternative is to propose computing hardware whose physical dynamics are 

ruled by probabilistic law.[6] Physical systems satisfying this requirement are indeed quite common at 

the nano-scale where randomness is associated with both the variability of nano-devices in terms of 

structure and properties[7] and to the fundamental stochastic nature of thermally activated and 

quantum processes. As we will discuss in detail throughout this work, the dynamics of molecular 

systems is often a rather straightforward implementation of a random walk algorithm. The challenge 

resides in how to control and set up an application-specific algorithm and how to extract the relevant 

information as output from a molecular system. In this contribution, we discuss a possible route to 

exploit the randomness of a realistic chemical system: the exciton transfer dynamics in multi-

chromophore molecular aggregates. Multi-chromophore compounds have been already recognized as 

promising candidates for photonics applications in molecular based logic[8], data storage[9], sensing[10] 

and light harvesting devices.[11] Central to their technological relevance is the ability of positioning 

fluorophores with a spatial precision down to 4 Å. Many of the multi-chromophoric systems that have 

been designed and experimentally realized, see for example refs.[11a-c, 12], took advantage of the 

impressive developments of the DNA nanotechnology.[13] DNA scaffolds provide a flexible means for 

organizing fluorophores into specific patterns to create useful functionality. Further, the ability to 

program DNA into complex three-dimensional shapes[14] allows the fluorophore network to be 

configured into virtually any three -dimensional arrangement. Moreover, specialized fluorescent 

molecules for DNA labelling are commercially available, they can be covalently conjugated to one or 

more nucleotides via aliphatic linkers or bound to the DNA scaffold through non-covalent interaction 

including intercalation[15]. Time-resolved fluorescence analyses by time correlated single-photon 

counting (TCSPC) and streak camera techniques are able to reveal the cascading energy transfer 



 3 

processes between different dyes typically on the picosecond time scale and even at the single 

molecule level.[16] 

In this work, we will show that the hopping dynamics of excitons in a multi-chromophore system 

implements a random walk that samples the possible pathways of a traveler through a network of 

cities. The ability of controlling the spatial arrangement of the chromophores allows us to program the 

“landscape” in which the traveler is moving and the connections between cities. Time (and frequency) 

resolved fluorescence spectra are the output of the multi-chromophore device. We will show how 

time resolved fluorescence signal encodes the relevant information about the possible pathways 

followed by the traveler: the probability of reaching a specific city, the time that it will likely take and 

the effect of starting the journey from different locations. We present a proof of principle by 

considering a rather simple chromophoric system composed of a triad of dyes. However, the same 

concepts can be easily applied to systems of complex and customizable topology. For example, natural 

light-harvesting systems consist of hundreds of thousands scaffolded chromophores.  

The paper is organized as follows: in the next section we outline the physical description of the 

energy transfer dynamics in multi-chromophore systems based on Förster theory[17] and how such 

dynamics determines the time resolved fluorescence signal. In section 3 we discuss in details the 

correspondence between the physical process of exciton transfer and the implementation of a Markov 

chain that realizes a random walk. In section 4 we demonstrate that the physical implementation of 

the algorithm can be applied to solve a real life-like problem through the analysis of the possible paths 

through the state space of the problem. In the concluding section, we outline the possible 

developments of our approach to logic processing at the molecular scale.  

 

2. Förster energy transfer in chromophoric networks  

Upon photoexcitation, a dye molecule is in its electronic excited state and therefore an exciton is 

created. Multiple de-excitation mechanisms are in principle possible depending on the nature of the 

chromophore and its environment. The processes that are of interest to us are emission by 

fluorescence, non-radiative decay and energy transfer to other dye molecules. In the absence of any 

inter-chromophore transfer, the intensity of the fluorescence emission is proportional to the quantum 

yield of the dye  i nr,i iKi     , where i  is the emission rate and nr,iK  the rate of non-
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radiative decay. The fluorescence signal decays in time exponentially according to the lifetime of the 

excited state  
1

nr,i iKi


   . If the electronic coupling between different dyes in the system is 

weak compared to the homogeneous spectral line broadening, which is appropriate for inter-dye 

separations on the order of or greater than ∼2 nm,[18] energy migration may accurately be described 

using FRET (Förster resonant energy transfer) theory. [17, 19] In a multi-chromophore system of n dyes, 

each dye is energetically coupled to the other n-1 dyes. The temporal evolution of the exciton 

population 
ip , with i=1,…,n, is described by a kinetic equation,   

, ,

K K K
n n

i ij j ji i ii i

i j i i j i

dp dt p p p
 

                                                                                             (1)                                 

The first two terms on the r.h.s of eq.(1) account for the energy transferred to dye i from other dyes 

j i and the energy transferred from dye i to other dyes. The third term nr,iK Kii i    describes 

the energy loss because of exciton recombination either by emission (with rate i ) or non-radiative 

decay (with rate nr,iK ). The off diagonal components of the kinetic matrix K of eq.(1) are the energy 

transfer rates between dyes and they are given explicitly as 

6

0,1
K

ij

ij

j ij

R

r

 
 
 
 

                         (2) 

where j  is the lifetime of the chromophore that acts as donor, 0,ijR is the critical Förster distance, 

that is the distance at which the transfer efficiency is 50%, and ijr  is the distance between the two 

chromophores. The parameter 0,ijR  depends on the photo-physical properties of the dyes and their 

respective orientation, namely 
23 2 4 1/6

0, [8.8 10 ]ij j ijR n J        were ijJ  denotes the 

monomeric spectral overlap,   the dipole orientation factor (that we will set equal to 2/3 assuming 

the validity of an isotropic average on the relative orientations) and n is the refractive index of the 

surrounding medium.  

Let us introduce our simple logic units composed by three chromophores. In this case, we have 

three excited state populations and the kinetic matrix K is a 3 by 3 matrix. Similarly to the model of 

light harvesting antenna assembled by Dutta et al in a DNA scaffold,[11b] we choose three dyes 
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characterized by well separated excitation/emission spectra (reported in Figure 1A), namely Pacific 

Blue (Blue) Alexa Fluor 555 (Yellow) and Alexa Fluor 647 (Red). With this choice, we can selectively 

excite only one of the three dyes by tuning the excitation wavelength and we can selectively read out 

the fluorescence emitted by a specific dye by reading the signal at the corresponding emission 

frequency. This will be important for the logic application discussed below since it allows controlling 

the inputs (excitation) and provides a direct reading of the output (fluorescence) of our molecular 

device. The dynamics of the exciton transfer clearly depends on the spatial arrangements of the dyes 

as the transfer rates eq. (2) strongly depends on the inter-dye distances. We start by considering a 

triangular geometry as depicted in figure 1B. The elements of the kinetic matrix are calculated from 

the photo-physical properties of the dyes (see table 1). 

Table 1: Photo-physical properties of the dyes used in our model. Data of the Pacific Blue dye (Blue) are 
taken from[11d] while data of the Alexa Fluor dyes (Yellow and Red) were retrieved from Invitrogen web-
site.[20]   

 Ф τ(ns) λmax  Abs (nm) λmax  Em (nm) 

Blue (PB) 0.75 2.6 416 451 

Yellow (AF555) 0.1 0.3 555 565 

Red (AF647) 0.33 1.0 647 668 

 

The macroscopic output of the multi-chromophore network is given by the time resolved fluorescence 

signal.[21] Time Correlated Single Photon Counting (TCSPC) measurements are based on the detection 

of the arrival times of individual photons after optical excitation of a sample. It makes use of a pulsed 

excitation source (typically laser or LED). Production of a light pulse triggers the timing electronics that 

are stopped by a signal from the detector when a fluorescence photon is recoded. The photons are 

binned according to their arrival time giving the histogram of the time resolved photon counts. By 

using a streak camera to detect photons the signal is dispersed by wavelength so that the entire two-

dimensional (spectro-temporal) data is collected in a single experiment. Additionally, streak camera is 

faster than TCSPC allowing time resolution down to 1 ps. The expected photon counts at the emission 

wavelength λ at time t is proportional to the excited state populations  

     , i i ii
I t p t Em             (3) 
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where  iEm   is the normalized emission spectra at the detection wavelength and the time evolution 

of the populations is given by the rate equation (1). The steady state emission spectrum is recovered 

by taking the long time integral of eq. (3). Figures 1C and D shows the calculated time resolved 

fluorescence spectrum of the chromophore triad for two different geometrical arrangements by 

setting the excitation wavelength to the absorption of Pacific blue. The inset on each panel shows the 

corresponding steady state fluorescence spectrum. In the first geometry, the distance r between the 

yellow dye (AF647) and the red dye (AF555) is set equal to 3nm (while the other two distances are 2.5 

nm and 3nm, see figure 1B). The fluorescence of Pacific blue decays during the first 200ps after 

excitation and the fluorescence of the red dye increase reaching their maximum in the same 

timescale. The signal of the yellow dye is very weak reflecting a small exciton population of its excited 

state. In the nanosecond timescale the fluorescence signal extinguishes in agreement with the lifetime 

of the excited state of the red dye. By moving the yellow dye further apart from the red dye (r=5nm) 

without changing the other distances we obtain a nearly linear arrangement. The time resolved 

fluorescence signal changes as shown in panel D: the signal of pacific blue is practically unaffected 

while the fluorescence of red dye increases on a slower time-scale. Now the yellow fluorescence is 

enhanced reflecting an increasing population of the AF555 excited state. Clearly the excitons that 

reach the yellow dye are now less easily transferred to the red dye because of the increased distance 

between them.  
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Figure 1: Absorption (dotted line) and emission (solid line) spectra of the three chromophores: Pacific Blue, Alexa 
Fluor 555 (AF555) and Alexa Fluor 647 (AF647), the spectra were taken from the Invitrogen website[20]. B) Energy 
transfer pathways between the three dyes in a triangular geometry. Structures of Pacific Blue and AF555 were 
taken from ChEBI database[22]. C-D) Time and frequency resolved fluorescence spectra of the chromophore 
network for two different spatial arrangements of the three dyes: r=3nm (C) and r=5nm (D). 

 

3. The random walk of excitons and the outputting of the arrival time distribution 

The exciton hopping dynamics described by the Förster theory can be formalized as a continuous 

time Markov chain (CTMC). Markov chains are stochastic processes   : 0X t t   where the random 

variable  X t  is the state occupied by the chain at time t. The times between successive transitions 

are independent exponential random variables with means that depend only on the state from which 

the transition is being made. To build the state space of the CTMC that corresponds to the exciton 

dynamics we associate three discrete states of the chain to each chromophore in the network: the i-th 

dye is described by the state I, representing its excited state, the state FI, corresponding to emission by 

fluorescence and the state GI identified with non-radiative decay of the excitation. Referring to the 

triad of dyes of figure 1B this description generates 9 states that we label as B, Y, R (excited states of 
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the blue, yellow and red dye, respectively), FB, FY and FR (emission of the photon with blue, yellow 

and red wavelength, respectively) and the states GB, GY and GR (non-radiative de-excitation to the 

ground state of each chromophore). Since the identity of the non-radiative decay states is not relevant 

for the dynamics nor for the calculation of the fluorescence signal we lump them together in a unique 

state of the chain that is labelled as G. The resulting state space of the chain is made of 7 states and 

the corresponding graph is shown in figure 2A. The absorption of one photon initialize the chain in 

one of the excited states (B,Y or R depending on the excitation wavelength). The created exciton is a 

walker that explores the graph according to a set of probabilistic rules. The edges of the graph are 

labelled by the transition rates that determines the probability,
 
P

ab
t( ) , of moving from one node of 

the graph to the others 

      Prob abX s t a X s b t             (4) 

for all states a, b and for all times s>0 and t>0. The transition probabilities are independent on s 

(because we are dealing with a stationary process) and they are explicitly given in matrix form as  

    2 21
exp ...

2
t t t t     Q I Q Q         (5) 

where Q is the analog of the rate matrix K  for the populations in eq. (1), but in the basis of the 7 

states of the Markov chain, that is  

3 4

4 4

0 0

0 0

0 0

B

Y

R

nr,B nr,Y nr,RK K K





 
 
 

  
 

 
 
 

Κ 0

Q 0          (6) 

where the states are ordered as (B, Y, R, FB, FY, FR, G). Notice that the transition matrix eq .(5) involves 

all the powers of the infinitesimal generator of the process Q. In practice, if we choose to discretize 

time[23] the first order approximation works well for a small time interval h  

   21ij ij li ij

l

h Q h Q h O h
 

     
 
         (7) 
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Excited states B, Y and R are transient states of the chain having both incoming and outgoing edges. 

The remaining states FB, FY, FR and G are absorbing states for which 1ii  , meaning that when the 

walker hits one of these states it cannot leave it. A main result concerning absorbing Markov chains 

states that, no matter where the process starts, the probability after n transitions that the chain is in 

an absorbing state tends to 1 as n tends to infinity. The physical meaning of this theorem in our system 

is clear: before or later the created exciton recombines irreversibly either by emission of a photon or 

by non radiative dissipation. The time dependent probability of the states is given by the solution of 

the rate equation 

 
 

P
P

d t
t

dt
Q           (8) 

which gives 

     0P Pt t             (9) 

Figure 2B) shows the evolution of the probability of each state of the Markov chain describing the 

chromophore triad by assuming that a t=0 only Pacific Blue (B) is excited, using the topology of Figure 

1C. Shortly after excitation, the probability of remaining in the excited state B drops exponentially 

while the probability of the excited states of the yellow and the red dyes increase because of the 

possible energy transfer from the blue dye. As the time increases, probability of being in any excited 

state tends to zero while the probabilities of having emitted a photon of a specific color (dashed 

colored lines) or having decayed non radiatively (dashed black line) approach their steady state values. 

From the solution of eq.(8), the probability of photon emission from the dye i up to time t  reads 

    
0

' 'P P
t

Fi i it t dt             (10) 

For t   the steady state probability Pst

Fi  of being absorbed in the state Fi determines the intensity 

of fluorescence measured in steady state condition at the emission wavelength of the i-th dye 

   lim P Pem st

i t Fi FiI t            (11) 

When no inter-chromophoric energy transfer processes are active, the steady state population of the 

fluorescence state corresponds to the quantum yield of the dye. Notice that the sum of the steady 
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state probabilities of the absorbing states is one. The time resolved signal is proportional to the (un-

normalized) probability density of the walker to hit the Fi state at a given time instant. This is obtained 

as the time derivative of eq. (10), that is 

 
 

 ,
P

= Pem Fi

i i i

d t
I t t

dt
            (12) 

Therefore we recover the direct proportionality of the time resolved fluorescence emission on the 

transient population of the excited states, eq.(3).  

Strictly speaking, equation (8) that defines the random walk of the exciton gives the probability over 

the possible states upon the absorption of a single photon. We might ask what is the relation between 

such a description and the probability of detecting n photons emitted by dye i up to time t,  ,p n t , 

which is the quantity experimentally accessible in a photon counting experiment. It turns out that if 

we excite the system N times and we can consider the random walk of each exciton as independent 

(condition that can be achieved by setting properly the rate of the excitation pulses), then the number 

of detected photons follows a binomial distribution 

      , 1P P
N nn

Fi Fi

N
p n t t t

n

 
  
 

            (13) 

The average number of detected photon is thus simply    PFin t N t  while the deviation from 

the average scaled as N , ensuring that working with the average is a good approximation which is 

getting better as the number of collected photons increases. To illustrate this point, figure 2C shows 

the average time resolved emission from the red dye calculated according eq. (12) (dotted line) and 

the photon counts obtained by the simulation of 104 (black staircase) and 107(red staircase) absorption 

events. In conclusion, we showed that the dynamics of the excitons through the chromophoric 

network realizes a physical random walk on the corresponding state space. Time resolved fluorescence 

spectra encodes information not only on the probability of ending up in a specific absorbing state but 

also on the time that it will likely take to reach such a state. In the next section, we will use this 

information to show that a properly designed network can be used to solve a real life-like problem.   
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Figure 2: A) graphical representation of the CTMC implemented by three chromophores. B) Time evolution of the 
probabilities of the states of the Markov chain, in the inset a magnification of the short time behavior is shown. 
C) Time resolved fluorescence signal at the emission wavelength of the red chromophore (668nm): blue dotted 
line is the asymptotic signal, black staircase line is the photon counts obtained with 104 photons and red 
staircase line is the counts obtained with 107 photons. 
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4. Analysis of multiple travelling pathways 

We are now in the position of exploiting the random walk of exciton in the multi-chromophore 

network for logic processing. To illustrate the potentialities of the CTMC inherently implemented in 

our system we will formulate the problem in the following terms: a professor is invited to give a talk at 

the University of Munich but for the scheduled day only flights for Milan and for Paris are available. 

Therefore, she will have to land in one of these two cities and then reach Munich by other means. The 

driving distance between Paris and Munich is 826 km while Milan is closer with a driving distance of 

557 km. However, there is a fast train line between Paris and Munich and not between Milan and 

Munich. Where should the professor land?  

The problem is implemented in our chromophore triad spatially arranged as shown in the upper 

scheme of Figure 3A) where Pacific Blue (B) represents Milan, AF555(Y) Paris and AF647 (R) is Munich. 

The relative distance between the chromophores rij reflects the driving distance between the cities. 

The presence of a fast train line between Paris and Munich is physically encoded by the longer Förster 

distance of the Y-R pair ( 0,RYR =51Å) compared to the B-R pair ( 0,RBR  37.5Å). Remember that the 

transfer rate between two dyes j and i is determined by a combination of the two parameters rij and 

0,ijR  according to eq.(2). In the corresponding CTMC (see figure 2A) the starting states of the chain 

are either B (Milan) or Y (Paris) that can be populated selectively by exciting the system at their 

specific excitation wavelength. The state FR represents the professor safely arrived in Munich so that 

the relevant output is the fluorescence at the emission wavelength of the red dye. In particular, the 

intensity of the steady state fluorescence spectra at λ=668nm is directly proportional to the total 

probability of arriving in Munich, eq.(11), while the time-resolved fluorescence emission gives the 

probability density of arrival at a certain time t, eq. (12). Figure 3B shows the time resolved 

fluorescence signal from the red dye for the two different excitation conditions as input (solid line “a” 

for the excitation of the yellow dye, and “b” for the excitation of the blue dye). The fluorescence 

response encodes the analysis of the arrival probability in Munich of our travelling professor. While 

the total probability of arriving (proportional to the integral of the time resolved signal) is practically 

independent on the starting city (0.305 starting from Milan against 0.309 starting from Paris), the time 

resolved signal shows that the travelling time is likely to be shorter when starting from Paris. Let us 

now suppose that the fast line train connecting Paris to Munich has some trouble because of an 

accident. The probability to get stuck in Paris then increases and we have to update the transition 
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probability of the CTMC accordingly. One way to do so is to increase the distance between the yellow 

and the red chromophore as depicted in the bottom scheme of figure 3A, resulting in a smaller 

transfer rate according to eq.(2). The corresponding fluorescence output is shown in figure 3B (dashed 

lines c and d). In this second case starting from Milan assures a higher value of the maximum 

probability density and a higher total probability of ever arriving in Munich. However, the most likely 

arrival time is still longer than by starting from Paris. Based on these results the traveler Professor will 

make her choice. The time dependent fluorescence signal of the multi-chromophore system offers a 

rather detailed analysis of the efficiency of different travelling pathways. Figures 3C and D show the 

total arrival probability, the maximum value of the probability density and the corresponding arrival 

time starting from the two different locations (Paris or Milan) as a function of the distance between 

the Yellow and the Red chromophores r. The modulation of this distance is only one of the parameters 

that can be changed to simulate several situations affecting the relative transfer rates.[12c] Other 

distances, the chemical nature of the chromophores, the presence of quenchers and changes in the 

chemical environment represents other controllable parameters that can be used to program the 

Markov chain that is implemented by the system. 
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Figure 3: A) scheme of two geometrical arrangements of the chromophore triad and B) corresponding time 
resolved emission at the emission wavelength of the red chromophore (668nm) for two excitation conditions: 
selective excitation of the blue chromophore (blue lines) and selective excitation of the yellow chromophore 
(yellow lines). C) Total probability and maximum probability density of arriving in the state of the chain FR by 
starting from the state B (blue line) and Y (yellow line) as a function of the distance r between the yellow and the 
red dyes. D) Arrival time corresponding to the maximum of the probability density.    

 

5. Concluding Remarks 

We showed that exciton transfer dynamics in multi-chromophore molecular aggregates 

implements at the hardware level a Markov chain performing a random walk through a network. Non-

trivial information about the possible pathways of the random walk, namely the probability of hitting 

different absorbing states and the time likely required to reach these states depending on the starting 

condition is encoded in the experimentally accessible time resolved fluorescence spectra. By selecting 

the dye molecules and controlling their spatial arrangement, the molecular device can be 

programmed to simulate Markov chains addressing specific problems. We discussed the solution of a 

prototype problem requiring the analysis of different pathways that a traveler can take to reach a 

target city. Limitations on the implementable network topologies are imposed by the tridimensional 

structures of the molecular system that are realizable.  Even if this is still a small fraction of the infinite 

variety of possible topologies, the capability of designing and synthetizing multi-chromophore 

structures make them promising building blocks for the efficient implementation of probabilistic 

algorithms. Experimental realization of molecular devices built by assembling DNA bricks in 

programmable nanobreadboards on which chromophores can be rapidly and easily repositioned has 

been recently demonstrated.[12a] An important point to consider in the practical implementation of the 

proposed logic scheme is the overlap between the spectral features of the different chromophores. 

Ideally, the dyes which we want to selectively excite and the target dye whose populations needs to be 

monitored in time should have absorption and emission wavelengths, respectively, that are distinct 

from the others. When this is not strictly realizable, a complete photo-physical characterisation of the 

system is required to estimate the specific chromophore contribution to the collected signal. To 

evaluate the effective FRET rates, a suitable averaging procedure should be implemented, depending 

on the relative timescales of the dye rotational and translational dynamics relative to the FRET 

timescale. Indeed, the orientation factor   influencing the rate of the excitation transfer between two 

interacting dyes adopts a range of values depending on the dye configurations sampled. In our model, 
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we consider dyes which are covalently conjugated to nucleotides via C3 or C6 flexible linkers, for which 

isotropic averaging is appropriate in most cases and 2 3  . However, other fluorescent probes have 

been designed for allowing the control of both their position and mutual orientation, such as the tC 

dye family,[24] intercalating dyes from the YO (oxazole yellow) and TO (thiazole orange) families and 

intercalated and covalently-conjugated porphyrins[25]. The control over relative orientations allows 

enhancing or suppressing the rate of specific energy transfer pathways by changing the value of the 

orientation factor   and it is another means to tune the rate parameters of the random walk 

dynamics. 

Our implementation of probabilistic algorithms points out that molecular devices can perform 

logic functionalities that go far beyond the execution of molecular gates. Further developments of this 

idea are expected to emerge by considering the optical response at the single molecule level.[26] By 

measuring the emission of single FRET pairs, a distribution of energy transfer efficiency is obtained 

rather than its average value.[27] This might empower the logic capabilities of the molecular system, for 

example by allowing the introduction of a degree of uncertainty on the parameters of the logic 

problem. However, this possibility will come at the cost of a less straightforward interpretation of the 

output. Coherent energy transfer may additionally emerge when chromophores interact at close 

range, requiring quantum mechanical modeling and allowing the implementation of quantum 

stochastic walk.[28] New features stemming from quantum mechanical coherences and single molecule 

detection will be the subject of future research.  
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TOC graphics 

 

A probabilistic algorithm implemented in a molecular system shows that molecular 

devices can have logic functionalities going beyond the execution of binary gates. The 

hopping dynamics of excitons in a multi-chromophore system (see figure) realizes a 

random walk that samples the possible pathways of a traveler and outputs useful 

information through the time-resolved fluorescence signal. 

 

 

 

 

 

 

 

 

 



 17 

References 

[1] a) R. Motwani, P. Raghavan, Randomized Algorithms, Cambridge University Press, 1995; b) T. 

L. Booth, Sequential Machines and Automata Theory, John Wiley and Sons, Inc., 1967. 

[2] F. Li, K. Shim, K. Zheng, G. Liu, Web Technologies and Applications: 18th Asia-Pacific Web 

Conference, APWeb 2016, Suzhou, China, September 23-25, 2016. Proceedings, Springer 

International Publishing, 2016. 

[3] a) M. Rosvall, C. T. Bergstrom, Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 1118-1123; b) C. C. 

Aggarwal, Social Network Data Analytics, Springer US, 2011. 

[4] a) K. C. Chipman, A. K. Singh, BMC Bioinformatics 2009, 10, 17; bW. Peng, J. Wang, Z. 

Zhang, F. Wu, Curr. Bioinform. 2016, 11, 211-220. 

[5] A. Sinclair, Algorithms for Random Generation and Counting: A Markov Chain Approach, 

Birkhäuser Boston, 1993. 

[6] B. Fresch, J. Bocquel, S. Rogge, R. D. Levine, F. Remacle, Nano Lett. 2017. 

[7] a) C. Javier, A. M. José, M. Salvador, Nanotechnology 2009, 20, 465202; b) C. Javier, A. M. 

José, M. Salvador, Nanotechnology 2011, 22, 435201; c) B. Fresch, H.-G. Boyen, F. Remacle, 

Nanoscale 2012, 4, 4138-4147; d) B. Fresch, E. Hanozin, F. Dufour, F. Remacle, EPJ D 2012, 

66; e) B. Fresch, F. Remacle, J. Phys. Chem. C 2014, 118, 9790-9800. 

[8] a) S. Buckhout-White, J. C. Claussen, J. S. Melinger, Z. Dunningham, M. G. Ancona, E. R. 

Goldman, I. L. Medintz, RSC Adv. 2014, 4, 48860-48871; b) B. Fresch, D. Hiluf, E. Collini, R. 

D. Levine, F. Remacle, Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 17183-17188; c) T.-M. Yan, B. 

Fresch, R. D. Levine, F. Remacle, J. Chem. Phys. 2015, 143; d) M. F. Budyka, V. M. Li, 

ChemPhysChem 2017, 18, 260-264; e) L. Olejko, P. J. Cywinski, I. Bald, Nanoscale 2016, 8, 

10339-10347; f) B. Fresch, M. Cipolloni, T.-M. Yan, E. Collini, R. D. Levine, F. Remacle, J. 

Phys. Chem. Lett. 2015, 6, 1714-1718. 

[9] M. D. Mottaghi, C. Dwyer, Adv. Mater. 2017, 25, 3593-3598. 

[10] Y. N. Teo, E. T. Kool, Chem. Rev. 2012, 112, 4221-4245. 

[11] a) P. K. Dutta, S. Levenberg, A. Loskutov, D. Jun, R. Saer, J. T. Beatty, S. Lin, Y. Liu, N. W. 

Woodbury, H. Yan, J. Am. Chem. Soc. 2014, 136, 16618–16625; b) P. K. Dutta, R. Varghese, J. 

Nangreave, S. Lin, H. Yan, Y. Liu, J. Am. Chem. Soc. 2011, 133, 11985–11993; c) J. S. 

Melinger, R. Sha, C. Mao, N. C. Seeman, M. G. Ancona, J. Phys. Chem. B 2016, 120, 12287–

12292; d) J. G. Woller, J. K. Hannestad, B. Albinsson, J. Am. Chem. Soc. 2013, 135, 2759-2768. 

[12] a) B. L. Cannon, D. L. Kellis, P. H. Davis, J. Lee, W. Kuang, W. L. Hughes, E. Graugnard, B. 

Yurke, W. B. Knowlton, ACS Photonics 2015, 2, 398-404; b) J. S. Melinger, A. Khachatrian, M. 

G. Ancona, S. Buckhout-White, E. R. Goldman, C. M. Spillmann, I. L. Medintz, P. D. 

Cunningham, ACS Photonics 2016, 3, 659-669; c) K. Pan, E. Boulais, L. Yang, M. Bathe, 

Nucleic Acids Res. 2014, 42, 2159-2170. 

[13] a) C.-H. Lu, B. Willner, I. Willner, ACS Nano 2013, 7, 8320-8332; b) J. Elbaz, O. 

Lioubashevski, F. Wang, F. Remacle, R. D. Levine, I. Willner, Nat. Nanotech . 2010, 5, 417-

422; c) C. H. Lu, A. Cecconello, X. J. Qi, N. Wu, S. S. Jester, M. Famulok, M. Matthies, T. L. 

Schmidt, I. Willner, Nano Lett. 2015, 15, 7133-7137; d) J. Elbaz, A. Cecconello, Z. Fan, A. O. 

Govorov, I. Willner, Nat. Commun. 2013, 4, 2000; e) C.-H. Lu, A. Cecconello, J. Elbaz, A. 

Credi, I. Willner, Nano Lett. 2013, 13, 2303-2308. 

[14] a) P. Rothemund, Nature 2006, 440, 297-302; b) A. Pinheiro, D. Han, W. Shih, H. Yan, Nat. 

Nanotechnol. 2011, 6, 763-772. 

[15] B. Fresch, F. Remacle, Phys. Chem. Chem. Phys. 2014, 16, 14070-14082. 

[16] A. K. Luong, C. C. Gradinaru, D. W. Chandler, C. C. Hayden, J. Phys. Chem. B 2005, 109, 

15691-15698. 

[17] a) T. Förster, Ann. Phys. 1948, 437, 55-75; b) T. Forster, Disc. Faraday Soc. 1959, 27, 7-17. 



 18 

[18] a) Y. R. Khan, T. E. Dykstra, G. D. Scholes, Chem. Phys. Lett. 2008, 461, 305-309; b) R. 

Ziessel, M. A. H. Alamiry, K. J. Elliott, A. Harriman, Angew. Chem. Int. Ed. 2009, 48, 2772-

2776. 

[19] G. D. Scholes, Ann. Rev. Phys. Chem. 2003, 54, 57-87. 

[20] http://www.thermofisher.com/it/en/home/life-science/cell-analysis/labeling-

chemistry/fluorescence-spectraviewer.html. 

[21] J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Kluwer Academic/Plenum, 1999. 

[22] J. Hastings, P. de Matos, A. Dekker, M. Ennis, B. Harsha, N. Kale, V. Muthukrishnan, G. Owen, 

S. Turner, M. Williams, C. Steinbeck, Nucleic Acids Res. 2013, 41, D456-463. 

[23] B. Doytchinov, R. Irby, Pi Mu Epsilon Journal 2010, 13, 69-82. 

[24] S. Preus, K. Kilså, F.-A. Miannay, B. Albinsson, L. M. Wilhelmsson, Nucleic Acids Res. 2013, 

41, e18-e18. 

[25] L.-A. Fendt, I. Bouamaied, S. Thöni, N. Amiot, E. Stulz, J. Am. Chem. Soc. 2007, 129, 15319-

15329. 

[26] a) F. Kulzer, M. Orrit, Annu. Rev. Phys. Chem. 2004, 55, 585-611; b) E. Barkai, Y. J. Jung, R. 

Silbey, Annu. Rev. Phys. Chem. 2004, 55, 457-507. 

[27] A. A. Deniz, M. Dahan, J. R. Grunwell, T. J. Ha, A. E. Faulhaber, D. S. Chemla, S. Weiss, P. G. 

Schultz, Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 3670-3675. 

[28] a) J. D. Whitfield, C. A. Rodríguez-Rosario, A. Aspuru-Guzik, Phys. Rev. A 2010, 81, 022323; 

b) M. Mohseni, P. Rebentrost, S. Lloyd, A. Aspuru-Guzik, J. Chem. Phys. 2008, 129, 174106; 

c) F. Caruso, A. Crespi, A. G. Ciriolo, F. Sciarrino, R. Osellame, Nat. Commun. 2016, 7, 11682. 

 

http://www.thermofisher.com/it/en/home/life-science/cell-analysis/labeling-chemistry/fluorescence-spectraviewer.html
http://www.thermofisher.com/it/en/home/life-science/cell-analysis/labeling-chemistry/fluorescence-spectraviewer.html

