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Abstract. We define a homogeneous parabolic De Giorgi class of order 2

which suits a mixed type class of evolution equations whose simplest example

is µ(x) ∂u
∂t

−∆u = 0 where µ can be positive, null and negative. The functions
belonging to this class are local bounded and satisfy a Harnack type inequality.

Interesting by-products are Hölder-continuity, at least in the “evolutionary”

part of Ω and in particular in the interface I where µ change sign, and an
interesting maximum principle.

1. Introduction. In the paper [7] (see also [6]), given Ω open subset of Rn and
T > 0, we studied some properties of mixed type equations of the type

µ(x)
∂u

∂t
− div

(
A(x, t, u,Du)

)
= 0 in Ω× (0, T ) (1)

where µ ∈ L1
loc(Ω) may be positive, negative and null and A satisfies

λ(x)|ξ|2 ≤
(
A(x, t, u, ξ), ξ

)
≤ C λ(x)|ξ|2 (2)

for every ξ ∈ Rn and for a.e. (x, t) ∈ Ω × (0, T ) and u ∈ R, for a given positive
constant C.

In particular we study local solutions of (1), in fact a wider class which can
contain also functions which are not solutions, a suitable De Giorgi class of functions
containing the solutions of (1), showing first a local boundedness result and then a
suitable Harnack inequality for that class.

As a byproduct we get Hölder-continuity for the functions belonging to that class,
at least in the region where µ 6= 0 (see Section 6), and so in particular in the regions
where µ changes sign.

Here we give some equivalent formulations of the Harnack inequality and, as a
consequence, we show that a maximum principle holds. The interesting thing is
that if µ takes both the positive and the negative sign the maximum principle we
get is similar to the analogous result in the elliptic case. This means that it is
sufficient for a function u to have an interior maximum, or minimum, point to get
that u is constant in the whole Ω× (0, T ).
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2. Preliminaries and assumptions. We start recalling the definition of Mucken-
houpt weight, where by weight we mean an almost everywhere non-negative function
in L1

loc(Rn). Obviously if ω and ω−1 are weights then ω > 0 almost everywhere.
Sometimes we will write

ω(A) instead of

∫
A

ω(x) dx , A ⊂ Rn .

Definition 2.1. Let p > 1, K > 0 be constants, ω a weight. We say that ω belongs
to the class Ap(K) if(∫

−
B

ω dx

)1/p(∫
−
B

ω−1/(p−1)dx

)(p−1)/p

≤ K for every ball B ⊂ Rn

We say that ω belongs to the class A∞(K, ς) if (by ω(B) we will denote the quantity∫
B
ω dx)

ω(S)

ω(B)
≤ K

(
|S|
|B|

)ς
for every ball B and every measurable set S ⊂ B.

We denote byAp =
⋃
K≥1Ap(K). It turns out (see, e.g., [2]) thatA∞ =

⋃
p>1Ap.

Another condition useful below (essentially to get the Sobolev-Poincaré inequal-
ity) is the following.

Definition 2.2. For a pair of weights ν, ω in Rn and p, q with 1 < p < q, K > 0
we will write

(ν, ω) ∈ Bp,q(K)

if for every pair of balls Br(x̄), Bρ(x̄) with r < ρ and x̄ ∈ Rn(
|Br(x̄)|
|Bρ(x̄)|

)α/n(
ν(Br(x̄))

ν(Bρ(x̄))

)1/q (
ω(Br(x̄))

ω(Bρ(x̄))

)−1/p

≤ K .

Given two weights ν ≥ 0 and ω > 0 a.e. and the quantity

‖u‖2ν,ω :=

∫
Ω

u2(x)ν(x) dx+

∫
Ω

|Du|2(x)ω(x) dx

one can define a weighted Sobolev space

H1(Ω; ν, ω)

as the completion of {
u ∈ C1(Ω)

∣∣ ‖u‖ν,ω < +∞
}

even if ν ≥ 0 (see [5]).

Assumptions about µ and λ. Now consider two functions µ and λ, which will
be the ones appearing in (1) and (2), defined in Rn, λ positive almost everywhere,
while µ may be positive, null and negative, we define

µλ :=

{
µ if µ 6= 0,

λ if µ = 0.
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Once considered Ω on open subset of Rn and T > 0 we require µ and λ to satisfy
what follows: there is q > 2 such that

(H.1) λ ∈ A2(K1) ,

(H.2) (|µ|λ, λ) ∈ B1
2,q(K2) ,

(H.3) |µ|λ ∈ A∞(K3, ς) .

These conditions garantee the validity of the Sobolev-Poincaré type inequality[ 1

|µ|λ(Bρ)

∫
Bρ

|u(x)|2κ|µ|λ(x)dx
]1/2κ

≤ γ1 ρ
[ 1

λ(Bρ)

∫
Bρ

|Du(x)|2λ(x)dx
]1/2

(3)

for some κ ∈ (2, q) and of some consequent results. Moreover (H.1) and (H.3) (see,
e.g., [6]) implies that λ and |µ|λ are doubling, i.e. there is a constant q such that

|µ|λ
(
B2ρ(x)

)
≤ q |µ|λ

(
Bρ(x)

)
,

λ
(
B2ρ(x)

)
≤ qλ

(
Bρ(x)

) (4)

for every x ∈ Ω and ρ > 0 for which B2ρ(x) ⊂ Ω.
Moreover by (H.1) and (H.3) one gets that there are two constants κ and τ such

that
λ(S)

λ(B)
≤ κ

(
|µ|λ(S)

|µ|λ(B)

)τ

,
|µ|λ(S)

|µ|λ(B)
≤ κ

(
λ(S)

λ(B)

)τ

for every measurable S ⊂ B, for every B ball of Rn. Finally by (H.2) garantees the

existence of α̃ ∈ (0, 1), K̃2 > K2 and q̃ ∈ (2, q) such that

(H.2)
′

(|µ|λ, λ) ∈ Bα̃2,q̃(K̃2) ⊂ Bα̃2,2(K̃2) .

Geometric assumptions about the interfaces. By “interfaces” we mean the
set where µ changes sign and is the set I defined by

I+ = ∂Ω+ ∩ Ω , I− = ∂Ω− ∩ Ω , I0 = ∂Ω0 ∩ Ω , I := I+ ∪ I− ∪ I0 , (5)

where

Ω+ := {x ∈ Ω |µ(x) > 0}, Ω− := {x ∈ Ω |µ(x) < 0} and Ω0 := Ω \
(
Ω+ ∪ Ω−

)
We will also suppose that Ω+, Ω− and Ω0 \ I are the union of a finite number of
open and connected subsets of Ω, i.e.

Ω+ = ∪i=N+A
+
i , Ω− = ∪i=N−A

−
i , Ω0 = ∪i=N0Bi . (6)

Defining the non-negative function

λ0 :=

{
λ in Ω0

0 in Ω \ Ω0

we can split the weight |µ|λ as the sum of three different non-negative functions as
follows

|µ|λ = |µ|+ λ0 = µ+ + µ− + λ0

where for a given function f we will denote

f+ and f−

respectively the positive and the negative part of f .
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About the three functions splitting |µ|λ we will assume that (with the same
constant q as in (4))

(H.4)

∣∣∣∣∣∣∣
µ+

(
B2ρ(x)

)
≤ qµ+

(
Bρ(x)

)
for every x ∈ Ω+ ∪ I+,

µ−
(
B2ρ(y)

)
≤ qµ−

(
Bρ(y)

)
for every y ∈ Ω− ∪ I−,

λ0

(
B2ρ(z)

)
≤ qλ0

(
Bρ(z)

)
for every z ∈ Ω0 ∪ I0,

(H.5) I is a such that lim
ε→0+

|Iε| = 0,

where (H.4) holds for every ρ > 0 for which B2ρ(x) ⊂ Ω and Iε is the open ε-
neighbourhood of I defined in by

Iε :=
{
x ∈ Ω

∣∣ dist(x, I) < ε
}
.

Assumption (H.4) is deeply connected to a geometric requirement about the set I
of interfaces since it has to hold in particular for points belonging to I. Moreover
notice that (H.5) is weaker than the requirement that I is a Hn−1-rectifiable set
because I could be also not rectifiable. But for more details we refer to the last
section, where some examples could better clarify these comments.

3. De Giorgi classes. In this section we define a suitable De Giorgi class for the
equations (1). Honestly, compared with the following definition, in [7] a wider class
is considered. In the following definition, which is simpler compared to the one
given in [7], we consider a generic test function ζ while in [7] we consider only some
particular ζ’s.

As already said, for a given function f we will denote

f+ and f−

the positive and the negative part of f . Writing f± we will mean or the positive
either the negative part of f .

Definition 3.1. Consider Ω an open subset of Rn and T > 0 and a point x0, ρ > 0,
t1, t2 ∈ (0, T ) with t1 < t2 and a positive constant γ. We say that a function

u ∈ L2
loc(0, T ;H1

loc(Ω, |µ|, λ)) ∩ L∞loc((0, T );L2
loc(Ω, |µ|λ))

belongs to the De Giorgi class DG+(Ω, T, µ, λ, γ) if∫
Bρ(x0)

(u−k)2
+(x, t2)ζ2(x, t2)µ+(x) dx+

∫
Bρ(x0)

(u−k)2
+(x, t1)ζ2(x, t1)µ−(x) dx+

+

∫ t2

t1

∫
Bρ(x0)

|D(u− k)+|2ζ2λ dxdt ≤

≤ γ
∫ t2

t1

∫
Bρ(x0)

(u− k)2
+(|Dζ|2λ+ ζζtµ) dxdt+

+

∫
Bρ(x0)

(u− k)2
+(x, t2)ζ2(x, t2)µ−(x) dx+

+

∫
Bρ(x0)

(u− k)2
+(x, t1)ζ2(x, t1)µ+(x) dx

for every k ∈ R, every ζ ∈ Lip(Ω× (0, T )) such that ζ(·, t) ∈ Lipc(Ω) and for every
Bρ(x0)× (t1, t2) ⊂ Ω× (0, T ).
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Similarly the class DG−(Ω, T, µ, λ, γ) will be defined in the same way taking into
account (u− k)− in the place of (u− k)+.

Finally the classDG(Ω, T, µ, λ, γ) will be defined asDG+(Ω, T, µ, λ, γ)∩DG−(Ω,
T, µ, λ, γ).

A typical choice of a function ζ will be done in such a way that

0 ≤ ζ ≤ 1 , ζtµ ≥ 0 ,

|Dζ|2λ
(
Bρ(x0)

)
and ζζt µ

(
Bρ(x0)

)
.

1

(ρ− r)2
λ
(
Bρ(x0)

)
, (7)

t2 − t1 ∼
|µ|λ (Bρ(x0))

λ (Bρ(x0))
ρ2 ,

where in (7) we precisely mean that ζ(·, t) ∈ Lipc(Ω) for every time t ∈ (0, T ) and
for r ∈ (0, ρ)

0 ≤ ζ ≤ 1 in Bρ(x0)× (t1, t2) and ζ(·, t) ≡ 0 outside of Bρ(x0),

0 ≤ |Dζ| ≤ 1

ρ− r
, 0 ≤ |ζt| ≤

1

(ρ− r)2

λ (Bρ(x0))

|µ|λ (Bρ(x0))

in such a way that both the quantities in (7) are controlled by the same bound

1

(ρ− r)2
λ
(
Bρ(x0)

)
.

By ∼ we mean that t2 − t1 has to be proportional to
|µ|λ(Bρ(x0))
λ(Bρ(x0)) ρ2.

Notice that also test functions ζ independent of time are admitted. Anyway for
a detailed and clearer definition of the De Giorgi class we refer to [7]. From now on
we will denote by h the following function

h(x0, ρ) :=
|µ|λ (Bρ(x0))

λ (Bρ(x0))
.

In this way the choice of ζ (which depends on its support) will be done in such a
way that 0 ≤ |ζt| ≤ 1

(ρ−r)2
1

h(x0,ρ)
and

t2 − t1 ∼ h(x0, ρ) ρ2 .

4. Local boundedness. Here we state one of the principal results contained in [7],
a result which show local boundedness of a function belonging to DG(Ω, T, µ, λ, γ).

Theorem 4.1. Suppose u ∈ DG(Ω, T, µ, λ, γ) and consider (x0, t0) ∈ Ω × (0, T ).
Then there is a constant c∞ depending only on γ, γ1, κ (γ1, κ appearing in (3)) such
that:

i ) for every BR(x0)× (t0, t0 +h(x0, R)R2) ⊂ Ω× (0, T ) if µ+(BR(x0)) > 0 we have

ess supB+
R/2

(x0)×(t0+ 1
2 h(x0,R)R2, t0+h(x0,R)R2)|u| ≤

≤ c∞

[
1

h(x0, R)R2 |µ|λ(BR(x0))

∫∫
B+

3R
2

(x0)×(t0, t0+h(x0,R)R2)

u2µ+ dxdt+

+
1

h(x0, R)R2 λ(BR(x0))

∫∫
B+

3R
2

(x0)×(t0, t0+h(x0,R)R2)

u2λ+ dxdt

]1/2

;
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ii ) for every BR(x0)× (t0−h(x0, R)R2, t0) ⊂ Ω× (0, T ) if µ−(BR(x0)) > 0 we have

ess supB−
R/2

(x0)×(t0−h(x0,R)R2, t0− 1
2 h(x0,R)R2)|u| ≤

≤ c∞

[
1

h(x0, R)R2 |µ|λ(BR(x0))

∫∫
B−

3R
2

(x0)×(t0−h(x0,R)R2, t0)

u2µ− dxdt+

+
1

h(x0, R)R2 λ(BR(x0))

∫∫
B−

3R
2

(x0)×(t0−h(x0,R)R2, t0)

u2λ− dxdt

]1/2

;

iii ) for every BR(x0)× (σ1, σ2) ⊂ Ω× (0, T ), σ2 − σ1 = R2, if λ0(B0
R(x0)) > 0

ess supB0
R/2

(x0)×(σ1,σ2)|u| ≤ c∞

 1

R2λ(BR(x0))

∫∫
B0

3R
2

(x0)×(σ1,σ2)

u2λ0 dxdt

1/2

.

In the following picture there is an example of the sets involved in the previous
statement in the case µ 6= 0.
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Figure 1. The sets involved in the estimates of points i ) and ii )
of Theorem 4.1

5. The Harnack type inequality. In this section we state two results, the first
of which is the main result of [7].

Notice the dependence of the constants c+, c−, c0: they depend on many param-
eters, but we want to remark here that if

λ ≡ 1 and µ takes values in the set {−1, 0, 1}
than

K1 = K2 = K3 = τ = κ = ς = 1

and for every x ∈ Ω and every ρ > 0 such that Bρ(x) ⊂ Ω we have

h(x, ρ) = 1 .

Theorem 5.1. Assume u ∈ DG(Ω, T, µ, λ, γ), u ≥ 0, (xo, to) ∈ Ω × (0, T ) and fix
ρ > 0.
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i ) Suppose xo ∈ Ω+ ∪ I+. For every ϑ+ ∈ (0, 1] for which B5ρ(xo) × [to −
h(xo, ρ)ρ2, to + 16h(xo, 4ρ)ρ2 +ϑ+h(xo, ρ)ρ2] ⊂ Ω× (0, T ) there exists c+ > 0
depending (only) on γ1, γ, q, κ, α, κ, τ,K1,K2,K3, q, ς, ϑ

+, ρ such that

u(xo, to) ≤ c+ inf
B+
ρ (xo)

u(x, to + ϑ+ρ2h(xo, ρ)).

ii ) Suppose xo ∈ Ω− ∪ I−. For every ϑ− ∈ (0, 1] for which B5ρ(xo) × [to −
16h(xo, 4ρ)ρ2 +ϑ−h(xo, ρ)ρ2, to +h(xo, ρ)ρ2] ⊂ Ω× (0, T ) there exists c− > 0
depending (only) on γ1, γ, q, κ, α, κ, τ,K1,K2,K3, q, ς, ϑ

−, ρ such that

u(xo, to) ≤ c− inf
B−
ρ (xo)

u(x, to − ϑ−ρ2h(xo, ρ)).

iii ) Suppose xo ∈ Ω0 ∪ I0. Suppose B5ρ(xo) ⊂ Ω. Then there is c0 depending
(only) on K1,K2,K3, q, ς, κ, γ1, γ, q, ρ such that for almost every t ∈ (0, T )

sup
B0
ρ(xo)

u(·, t) ≤ c0 inf
B0
ρ(xo)

u(·, t).

One can also prove the following theorems, which can be derived as a consequence
of Theorem 5.1.

Theorem 5.2. Assume u ∈ DG(Ω, T, µ, λ, γ), u ≥ 0, (xo, to) ∈ Ω × (0, T ) and fix
ρ > 0.

i ) Suppose xo ∈ Ω+ ∪ I+. For every ϑ+ ∈ (0, 1] for which B5ρ(xo) × [to −
16h(xo, 4ρ)ρ2 +ϑ−h(xo, ρ)ρ2, to +h(xo, ρ)ρ2] ⊂ Ω× (0, T ) there exists c+ > 0
depending (only) on γ1, γ, q, κ, α, κ, τ,K1,K2,K3, q, ς, ϑ

+, ρ such that

c+ sup
B+
ρ (xo)

u(x, to − ϑ+ρ2h(xo, ρ)) ≤ u(xo, to).

ii ) Suppose xo ∈ Ω− ∪ I−. For every ϑ− ∈ (0, 1] for which B5ρ(xo) × [to −
h(xo, ρ)ρ2, to + 16h(xo, 4ρ)ρ2 +ϑ+h(xo, ρ)ρ2] ⊂ Ω× (0, T ) there exists c− > 0
depending (only) on γ1, γ, q, κ, α,κ, τ,K1,K2,K3, q, ς, ϑ

−, ρ such that

c− sup
B−
ρ (xo)

u(x, to − ϑ−ρ2h(xo, ρ)) ≤ u(xo, to).

Corollary 1. Under the same assumptions of Theorem 5.1, fix R > 0. Then

i ) there is c+, depending on the same constants (but ρ) as above and on R, such
that

u(xo, to) ≤ c+ inf
P+

R,ϑ+
(xo,to)

u

where

P+
R,ϑ+(xo, to) =

⋃
ρ∈(0,R]

B+
ρ (xo)× {to + ϑ+ρ2h(xo, ρ)}

ii ) there is c−, depending on the same constants (but ρ) as above and on R, such
that

u(xo, to) ≤ c− inf
P−
R,ϑ−

(xo,to)
u

where

P−R,ϑ−(xo, to) =
⋃

ρ∈(0,R]

B−ρ (xo)× {to − ϑ−ρ2h(xo, ρ)}
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Proof. The proof is immediate since it is sufficient considering, for point i ) for
instance, for each ρ ∈ (0, R] the constant c+ of Theorem 5.1 and then taking the
supremum with respect to ρ ∈ (0, R]. Notice that also ρ = 0 can be considered, but
in that case the inequality becomes trivial with c+ = 1, so in fact one is taking the
supremum with respect to ρ in the compact [0, R].

Corollary 2. Under the same assumptions of Theorem 5.1

i ) for every ϑ+
1 , ϑ

+
2 with 0 < ϑ+

1 < ϑ+
2 one has c+, depending on the same

constants as above and moreover on ϑ+
1 , ϑ

+
2 , such that

sup
B+
ρ (xo)×(to−ϑ+

2 ρ
2h(xo,ρ),to−ϑ+

1 ρ
2h(xo,ρ))

u ≤ c+ inf
B+
ρ (xo)×(to+ϑ+

1 ρ
2h(xo,ρ),to+ϑ+

2 ρ
2h(xo,ρ))

u;

ii ) for every ϑ−1 , ϑ
−
2 with 0 < ϑ−1 < ϑ−2 one has c−, depending on the same

constants as above and moreover on ϑ−1 , ϑ
−
2 , such that

sup
B−
ρ (xo)×(to+ϑ−

1 ρ
2h(xo,ρ),to+ϑ−

2 ρ
2h(xo,ρ))

u ≤ c− inf
B−
ρ (xo)×(to−ϑ−

2 ρ
2h(xo,ρ),to−ϑ−

1 ρ
2h(xo,ρ))

u.

The following result is an evident consequence of Theorem 5.1, but we state it to
show expressly the Harnack type inequality in a point xo belonging to the interface
I.

Theorem 5.3. Assume u ∈ DG(Ω, T, µ, λ, γ), u ≥ 0. Fix ρ > 0 and ϑ ∈
(0, 1] for which B5ρ(xo) × [to − 16h(xo, 4ρ)ρ2 − ϑh(xo, ρ)ρ2, to + 16h(xo, 4ρ)ρ2 +
ϑh(xo, ρ)ρ2] ⊂ Ω × (0, T ). Suppose xo ∈ I. Then there exists c > 0 depending on
γ1, γ, q, κ, α,κ, τ,K1,K2,K3, q, ς, ϑ, ρ such that

u(xo, to) ≤ c inf
Bρ(xo)

ũ(x)

where

ũ(x) =


u(x, to + ϑh(xo, ρ)ρ2) if x ∈ B+

ρ (xo)

u(x, to − ϑh(xo, ρ)ρ2) if x ∈ B−ρ (xo)

u(x, to) if x ∈ B0
ρ(xo)

(xo ∈ I) .

Comments. If µ > 0 almost everywhere Theorem 5.1 and Corollary 2 reduces
to point i ) which is a standard parabolic Harnack’s inequality which, only for the
solutions and not for the De Giorgi class, of linear equations is contained in the
paper [4].

Clearly if µ < 0 almost everywhere we have the analogous result for backward
parabolic equations.

Finally if µ ≡ 0 we have a family of elliptic Harnack’s inequalities, which gives a
regularity (only in space) result which generalizes the one contained in [1].

6. Some consequences: Hölder continuity and a maximum principle.

Local Hölder-continuity. Mimicking the Moser’s proof of local Hölder estimates
derived from the elliptic Harnack’s inequality (see, e.g., the comments in Chapter 7
in [3]) one can get from Theorem 5.1, Corollary 2 and Theorem 5.3 the local Hölder
continuity for the functions in DG(Ω, T, µ, λ, γ). Precisely one gets that

u is locally Hölder continuous in
(
Ω+ ∪ Ω−

)
× (0, T )

and for almost every t ∈ (0, T )

u(·, t) is locally Hölder continuous in Ω0 .
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One in particular gets (by Corollary 2) that

u is Hölder continuous in I × (0, T ) ,

while to get continuity in time in Ω0 × (0, T ) is hopeless as the following example
shows.

Consider n = 1, Ω = (0, 1) and the solution of the problem

d2u

dx2
= 0 in Ω× (0, T )

u(0, t) = 0 for t ∈ [0, T ]

u(0, t) = 1 for t ∈ [0, T/2)

u(0, t) = 2 for t ∈ [T/2, T ] .

The solution is given by

u(x, t) = x in Ω× [0, T/2) and u(x, t) = 2x in Ω× [T/2, T ]

which belong to the De Giorgi class defined in Definition 3.1 and which clearly is
discontinuous in t = T/2.

A “local” maximum principle. First we give a partial result for points belonging
to the interface I defined in (5).

In [7] the following fact is proved (see Remark 2.7): for every x ∈ Ω, r,R > 0 for
which r < R and BR(x) ⊂ Ω one has that the function

f̃(x, ρ) = ρ2α̃h(x, ρ) = ρ2α̃ |µ|λ(Bρ(x))

λ(Bρ(x))
,

where α̃ < 1 is the constant appearing in (H.2)′, satisfies

f̃(x, r) = r2α̃h(x, r) ≤ K̃2
2 R

2α̃h(x,R) = K̃2
2 f̃(x,R) .

By that we derive that

lim sup
ρ→0+

f̃(x, ρ) < +∞

and in particular

lim
ρ→0+

f(x, ρ) = 0 where f(x, ρ) := ρ2h(x, ρ) . (8)

Moreover notice that for every x ∈ Ω

ρ 7→ f̃(x, ρ) is continuous in (0, R]

and, by (8), one gets that

ρ 7→ f(x, ρ) is continuous in [0, R] and f(x, 0) = 0 , (9)

but not necessarily increasing.
Thanks to (9) the sets P+

R,ϑ+ and P−R,ϑ− (defined in Corollary 1) could be like

the example in the following picture, where for simplicity we have chosen n = 1,
(xo, to) = (0, 0), µ > 0 for x < 0 and µ < 0 for x > 0.

Now consider (xo, to) ((0, 0) in the picture) and suppose

(xo, to) ∈ I × (0, T ),



862 FABIO PARONETTO

−1 −0.5 0.5 1

−1

−0.5

0.5

1

x

t

is a maximum point. In particular it is a local maximum point and then for every
ρ > 0 such that

B5ρ(xo)× [to − 17h(xo, 4ρ)ρ2, to + 17h(xo, ρ)ρ2] ⊂ Ω× (0, T )

there is δ > 0 such that

M = u(xo, to) ≥ u(x, t) for every (x, y) ∈ Bρ(xo)× (to − δ, to + δ) .

Then, once defined v := M −u, since v ∈ DG(Ω, T, µ, λ, γ) for some γ > 0, v ≥ 0 in
Bρ(xo)× (to− δ, to + δ), M −u(xo, to) = 0, applying Corollary 1 with ϑ = ϑ+ = ϑ−

and Theorem 5.1, point iii ), we get that there is c, depending in particular on ϑ,
such that

v(xo, to) ≤ c inf
Cϑρ,δ(xo,to)

v

where c = max{c+, c−, c0} and

Cϑρ,δ (xo, to) :=

:=
((
P+
R,ϑ(xo, to) ∪ P−R,ϑ(xo, to)

)
∩
(
Bρ(xo)× (to − δ, to + δ)

))
∪
(
B0
ρ(xo)× {to}

)
.

Then we deduce that
v = 0 in Cϑρ,δ(xo, to) (10)

provided that assumptions of Theorem 5.1 are satisfied, i.e.

B5ρ(xo)× [to − 17h(xo, 4ρ)ρ2, to + 17h(xo, ρ)ρ2] ⊂ Ω× (0, T ).

Now fix a point

(x̄, t̄) ∈
(
B+
ρ (xo)× (to, to + δ)

)
∪
(
B−ρ (xo)× (to − δ, to)

)
.

Since (10) is true for every ϑ > 0, taking ϑ small enough it is possible to get that
(x̄, t̄) ∈ Cϑρ,δ(xo, to) for some ϑ, and then conclude that v(x̄, t̄) = 0, i.e. u(x̄, t̄) = M .
Then one can conclude that

if xo ∈ I is such that (xo, to) is a maximum point, u(xo, to) = M,

then there are ρ, δ > 0 such that (11)

then u(x, t) = M in
(
B+
ρ (xo)× (to − δ, to)

)
∪
(
B−ρ (xo)× (to, to + δ)

)
∪

∪
(
B0
ρ(xo)× {to}

)
.

The analogous result holds if (xo, to) is a minimum point.



A HARNACK TYPE INEQUALITY AND A MAXIMUM PRINCIPLE FOR ... 863

A maximum principle. Now consider

(xo, to) ∈ Ω× (0, T ),

and suppose it is a maximum point for a function u ∈ DG(Ω, T, µ, λ, γ), u(xo, to) =
M . We suppose here that Ω is connected and, for simplicity, that Ω+, Ω−, Ω0 are
connected, but one could consider the more general case described in (6).
1. Suppose first that

xo ∈ Ω+ .

Since in particular
u ∈ DG(Ω+, T, µ, λ, γ)

which is a parabolic (forward-parabolic) De Giorgi class. By point i ) of Theorem
5.2 combined with the argument used to show the “local” maximum principle we
get that there are ρ > 0 and δ > 0 such that

Bρ(xo)× (to − δ, to) ⊂ Ω+ × (0, to) , u ≡M in Bρ(xo)× (to − δ, to) . (12)

Now consider the set

CM :=
{

(x, t) ∈ Ω+ × (0, to]
∣∣u(x, t) = M

}
which, by the continuity of u (see the first subsection of the present section) has to
be a closed subset of Ω+ × (0, to] (closed in the topology induced in Ω+ × (0, to] by
Rn+1), but because of (12) we have

CM ) {(xo, to)} .
Now suppose, by contradiction, that CM is strictly included in Ω+ × (0, to]. If this
were true, since CM is closed we could find a point (x̄, t̄),

(x̄, t̄) ∈ ∂CM ,
(notice that this is a maximum point for u) for which one could repeat the argument
as before and find r > 0 and ε > 0 such that

Br(x̄)× (t̄− ε, t̄) ⊂ Ω+ × (0, t̄) ,

Br(x̄)× (t̄− ε, t̄) * CM
u ≡M in Br(x̄)× (t̄− ε, t̄) ,

but this would be impossible. Then

CM = Ω+ × (0, to] .

As a consequence one gets in particular that

u = M in I+ × (0, to] .

If Ω+ = Ω we have nothing else to prove, otherwise I+ ∩ (I− ∪ I0) 6= ∅ and

u = M in I+ ∩ (I− ∪ I0)× (0, to] .

Then we can find a point
x̄ ∈ I+ ∩ (I− ∪ I0) .

1.1. Suppose first
I+ ∩ I− 6= ∅ .

Then x̄ ∈ I−. Then for every s ∈ (0, to] we can repeat the argument as above and
in an analogous way we get that

u = M in Ω− × [s, T )

for every s > 0, and then

u = M in Ω− × (0, T ) .
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Since in particular we have

u = M in
(
∂Ω− ∩ ∂Ω+)× (0, T )

we can also derive with the usual argument that

u = M in Ω+ × (0, T ) .

Then finally we conclude that

u = M in
(
Ω+ ∩ Ω−

)
× (0, T ) .

1.2. Suppose now
I+ ∩ I0 6= ∅ .

Then by (11) and the classical argument (see, e.g., Theorem 7.12 in [3]) we derive
that

u = M in
(
Ω+ ∪ Ω0

)
× (0, to] . (13)

Now if
I0 ∩ I− 6= ∅

then we can argue as in point 1.1 and conclude first that

u = M in Ω− × (0, T )

and finally
u = M in Ω× (0, T ) ,

otherwise only (13) holds.
2. If xo ∈ Ω− we can argue similarly as before. Suppose now

xo ∈ Ω0 \ I .
Then, since u is continuous, we conclude (see, e.g., Theorem 7.12 in [3]) that

u(·, to) = M in Ω0 .

If Ω0 = Ω we can prove nothing else, but if

I0 ∩ I+ 6= ∅ or I0 ∩ I− 6= ∅
we reach the boundary of Ω+ or of Ω− and using the local result and arguing as in
point 1.1 we get something more. Precisely

I0 ∩ I+ 6= ∅ =⇒ u = M in
(
Ω+ ∪ Ω0

)
× (0, to] ,

I0 ∩ I− 6= ∅ =⇒ u = M in
(
Ω− ∪ Ω0

)
× [to, T ) ,

I0 ∩ I+ 6= ∅ and I0 ∩ I− 6= ∅ =⇒ u = M in Ω× (0, T ) .

Combining these informations if Ω+ 6= ∅, Ω− 6= ∅, Ω0 6= ∅ one can reach that

u = M in Ω× (0, T ) .

3. If xo ∈ I we can use the local maximum principle to find an open set in which
u is constant, then proceed as above.

The same conclusions hold if (xo, to) is a minimum point.
Summing up the following result holds.

Theorem 6.1. Suppose Ω, Ω+, Ω−, Ω0 are connected. Consider u ∈ DG(Ω, T, µ, λ,
γ) and suppose (xo, to) ∈ Ω× (0, T ) is a maximum (or a minimum) point for u in
Ω× (0, T ). Then

i ) if Ω+ 6= ∅, Ω− = ∅, then u is constant in Ω× (0, to];
ii ) if Ω+ = ∅, Ω− 6= ∅, then u is constant in Ω× [to, T );
iii ) if Ω+ = ∅, Ω− = ∅, Ω0 6= ∅ then u is constant in Ω× {to};
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iv ) if Ω+ 6= ∅, Ω− 6= ∅, then u is constant in Ω× (0, T ).

Notice that points i ), ii ), iv ) are independent of Ω0: this could be empty or
not.

One can adapt this result to a more general result in which each set among Ω+,
Ω−, Ω0 can have more than one connected component, as assumed in (6).

µ = −1
µ = 1

−1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

Example. Here we give an example to show that point iii ) of the previous theorem
is sharp, in the sense that the conclusion, in general, is the best one can get.
Consider the family of elliptic problems

d2u

dx2
(x, t) = 0 in (−1, 1)× (0, 2π)

u(−1, t) = 2 sin t t ∈ (0, 2π)

u(1, t) = 2 t ∈ (0, 2π)

whose solution is

u(x, t) = (1− sin t)x+ 1 + sin t .

This function has a maximum point in (0, π/2). It is constant in (−1, 1) × {π/2},
but it not constant in no other bigger set.

Example. We conclude with an example of a possible interface to explain assump-
tions (H.4). Suppose Ω ⊂ R2 and suppose I is the image of a curve, which has
a cusp. Assuming, for simplicity, that µ takes only the two values 1 and −1, in
this case not always the Lebesgue measure restricted to one of the two part of Ω
delineated by the curve satisfies (H.4). Suppose the curve below if the union of the
graphs of two functions f and g. For instance, if f(x) = xn and g(x) = −xn (x ≥ 0)

assumption (H.4) is satisfied, if f(x) = e−
1
x and g(x) = −e− 1

x (x > 0) assumption
(H.4) is not.

In the first case I is an admitted interface, and so the Harnack inequality and all
the consequences hold, in the second case I is not an admitted interface, but we do
not know if in such a case Harnack’s inequality fails to hold.
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