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Tunicates are the closest relatives of vertebrates, and their peculiar phylogenetic position 
explains the increasing interest toward tunicate immunobiology. They are filter-feeding 
organisms, and this greatly influences their defense strategies. The majority of the stud-
ies on tunicate immunity were carried out in ascidians. The tunic acts as a first barrier 
against pathogens and parasites. In addition, the oral siphon and the pharynx represent 
two major, highly vascularized, immune organs, where circulating hemocytes can sense 
non-self material and trigger immune responses that, usually, lead to inflammation and 
phagocytosis. Inflammation involves the recruitment of circulating cytotoxic, phenoloxi-
dase (PO)-containing cells in the infected area, where they degranulate as a consequence 
of non-self recognition and release cytokines, complement factors, and the enzyme PO. 
The latter, acting on polyphenol substrata, produces cytotoxic quinones, which polym-
erize to melanin, and reactive oxygen species, which induce oxidative stress. Both the 
alternative and the lectin pathways of complement activation converge to activate C3: 
C3a and C3b are involved in the recruitment of hemocytes and in the opsonization of 
foreign materials, respectively. The interaction of circulating professional phagocytes with 
potentially pathogenic foreign material can be direct or mediated by opsonins, either 
complement dependent or complement independent. Together with cytotoxic cells, 
phagocytes are active in the encapsulation of large materials. Cells involved in immune 
responses, collectively called immunocytes, represent a large fraction of hemocytes, 
and the presence of a cross talk between cytotoxic cells and phagocytes, mediated by 
secreted humoral factors, was reported. Lectins play a pivotal role as pattern-recognition 
receptors and opsonizing agents. In addition, variable region-containing chitin-binding 
proteins, identified in the solitary ascidian Ciona intestinalis, control the settlement and 
colonization of bacteria in the gut.

Keywords: tunicates, immune responses, complement, lectins, inflammation, chemical defense

iNTRODUCTiON

Tunicates or urochordates are marine, filter-feeding invertebrates, members of the phylum 
Chordata. They owe their name to the tunic that embeds the larval and adult body. Tunicates 
(ca 3,000 species) include Ascidiacea (benthic and sessile), Thaliacea (pelagic), and Larvacea or 
Appendicularia (pelagic).

Ascidians have a free-swimming, tadpole-like larva whereas adults have sac-like bodies with 
two siphons, allowing water flux, and a large branchial basket provided with a ventral endostyle 
secreting the mucous net required for filtration. They include Phlebobranchia, Aplousobranchia, 
and Stolidobranchia, previously grouped as Enterogona (Phlebobranchia and Aplousobranchia) and 
Pleurogona (Stolidobranchia).
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FigURe 1 | Phylogenetic tree of Tunicates [according to Ref. (1)].
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Thaliaceans have barrel-like bodies; they include Pyrosomida 
(colonial), Doliolida (solitary/colonial), and Salpida (solitary/
colonial). All Thaliaceans but Doliolida are devoid of larval 
stages. Larvaceans or appendicularians are similar to ascidian 
larvae, hence their name: they secrete a gelatinous house con-
taining traps for food particles and use their tail to move water 
for filtration. Today, Larvaceans are considered a sister group 
of the remaining tunicates and Thaliaceans as a sister group of 
Enterogona (Figure 1).

Tunicates are the closest relatives to vertebrates (2), and this 
explains the increasing interest toward this group of animals. Like 
other invertebrates, tunicates rely only on innate immunity that 
lacks somatic recombination and long-term immune memory 
and has a limited array of effector responses.

Ascidians include about 2,300 species and are the most studied 
tunicates. Accordingly, the majority of the information on tuni-
cate immune responses comes from studies on these organisms. 
In addition, ascidian innate immune genes did not undergo the 
expansions reported in other invertebrate deuterostomes, such 
as amphioxus and sea urchin (3, 4). This review, then, will focus 
mainly on the ascidian strategies of immune defense. Where 

available, information on immune responses of pelagic tunicates 
will be added.

THe SiTeS OF iMMUNe ReSPONSeS

The marine habitat contains 105–106 microbes/ml in the water 
column and much more in the sediments (5); the amount of 
viruses is 10 times higher (6). Tunicates, therefore, require an 
efficient immune system in order to prevent the risk of infections 
and select appropriate mutualistic bacterial strains for gut coloni-
zation (see below). The sites where the ascidian immune system is 
alerted by the contact with non-self molecules include the tunic, 
the hemolymph, and the digestive tract.

Tunic
The tunic represents the first outpost against pathogens and 
parasites and its damage, as in the soft tunic syndrome, can lead 
the organism to death (7). It is mainly of epidermal origin and 
resembles the vertebrate connective tissue in consisting of an 
amorphous matrix containing fibers and interspersed cells (8). 
The tunic can contain spicules, acting as physical defense against 
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predators and varying in morphology, size, and mineral content 
(8). Molecules with antibacterial and anti-inflammatory activity 
are usually present in the matrix (9, 10). The tunic fibrous com-
ponents include tunicin, a cellulose-like polysaccharide, collagen, 
and elastin (8, 11). Intermediate filaments (12) and mucopolysac-
charides (9) contribute to the structural integrity of the tunic. The 
outermost compact layer, known as the cuticle, is continuous with 
the tunic matrix and frequently presents minute protrusions or 
spines (8, 13–15).

Tunic cells derive from both the epidermis and the hemocytes that 
can enter the tunic in response to infections (8, 16, 17). Hemocytes 
include spreading and round phagocytes, always present, cytotoxic 
granulocytes, widely found, and other cell types in some particular 
taxa, such as net cells and cells storing acid or pigments (8, 17–21), 
all contributing to protect the organism from predators, pathogens, 
or parasites. Phagocytes ingest foreign cells having entered the tunic 
(17, 22), and tunic phagocytes are the main effectors of allorecogni-
tion in the colonial species Aplidium yamazii (23). Granulocytes 
frequently contain and release antimicrobial peptides (24) and the 
enzyme phenoloxidase (PO) (25). Bladder cells store acid that, once 
released, decreases the pH of the tunic, disinfects the wounds, and 
exerts antifouling activity (17, 26, 27); net cells allow the shrinkage 
of the tunic in wound areas (17). PO-containing granulocytes can 
contribute to tunic formation or regeneration via degranulation 
and release of tunichromes, likely fragments of DOPA-containing 
proteins, that, once oxidized, cross-link tunicin fibers (28, 29). Tunic 
phagocytes and net cells are present also in Thaliaceans, although 
their role in defense has been poorly investigated. In pyrosomes, the 
density of tunic cells is comparable to that of ascidians (30), whereas 
doliolids and salps have a lower number of cells in their tunic (14, 
17, 21). Larvaceans or appendicularians have no tunic, but tunicin 
is present in their house, secreted by specialized portions of the 
trunk epithelium (31).

Hemolymph
Ascidians have an open circulatory system and a colorless hemo-
lymph, isotonic with seawater. The beating of a tubular heart guar-
antees the circulation in blood sinuses and lacunae. It periodically 
reverses the direction of the peristaltic waves thus inverting the 
hemolymph flow (8, 13). Circulating hemocyte types differ in 
morphology and ultrastructure. Various authors proposed unify-
ing classification schemes [Figure 2; Table 1; references therein 
(32)], but uncertainties and doubts persist on terminology, 
hemocyte relationships, and differentiation pathways.

Ascidian hemocytes, involved in immune responses (immuno-
cytes), represent a relevant fraction of circulating hemocytes (32), 
synthesize most of the pattern-recognition receptors (Table  2) 
and actively transcribe genes required for immune defense (60, 
61): they include phagocytes and cytotoxic cells. Phagocytes are 
wandering, spreading cells that actively move toward foreign cells 
or particles and ingest them. Upon the ingestion of foreign mate-
rial, phagocytes withdraw their projections and assume a round 
morphology. Spreading phagocytes can reach 20  µm in length 
and have a well-defined actin cytoskeleton, with abundance 
of stress fibers (25). They contain fine cytoplasmic granules, 
unresolvable under the light microscope, showing positivity for 
lysosomal enzyme activities (32). Round phagocytes are large 

cells (15–20  µm in diameter) with one or more phagosomes 
containing the ingested material as well as hydrolytic enzymes, 
lipids, and lipofuscins (32). In the colonial ascidian, Botryllus 
schlosseri, the presence of a static and a mobile population of 
phagocytes was described: the former adhere to the basal lamina 
of the peribranchial epithelium and form the ventral islands, on 
both sides of the endostylar sinus (62).

Cytotoxic cells are granular cells, 10–15 µm in diameter; their 
cytoplasm is filled with large granules containing the inactive 
form of PO (34). They frequently constitute the most abundant 
circulating hemocyte type (32). In most of the studied species, 
cytotoxic cells assume a typical berry-like morphology after 
aldehyde fixation and are called morula cells (MCs).

As regards pelagic tunicates, Cima et al. (21) reported the char-
acterization of circulating hemocytes of Thalia democratica oozo-
oids: they include phagocytes that contain hydrolytic enzymes in 
their cytoplasm and can migrate into the tunic. Larvaceans have 
no hemocytes (21).

Hemocytes containing histamine and heparin inside their 
granules were observed in both ascidians and Thaliaceans: the 
molecules can either stabilize the granular content or, when 
released, modulate the inflammatory reaction by inducing tunic 
vessel-contraction and inhibition of phagocytosis (21, 63).

Digestive System
The oral and the atrial (cloacal) siphons are preferential ways of 
entrance of microorganisms. Here, a population of phagocytes is 
exposed to seawater, adhering to the internal tunic. Such sentinel 
or guard cells can recognize and ingest foreign particles or cells, 
thus preventing their entrance in the pharynx or in the atrium 
(64); they were found also in Thaliaceans (21).

In the solitary ascidian Ciona intestinalis, both the endostyle 
and the gastric epithelium constitutively transcribe genes involved 
in the inflammatory response triggered by the injection of LPS 
in the body wall (11, 65, 66), suggesting the importance of the 
alimentary tract in the recognition and the clearance of non-self 
material. This assumption is corroborated by the reported tran-
scription of genes for Toll-like receptors (TLRs), mannose-binding 
lectins (MBLs), and MBL-associated serine proteases (MASPs) in 
both the stomach and the intestine, in addition to hemocytes, in 
accordance with the important immunosurveillance role of the 
alimentary tract (48, 58). In addition, variable region-containing 
chitin-binding proteins (VCBPs), secreted in the gut lumen and 
recognizing the surface of Gram (+) and Gram (−) bacteria  
(see below), probably exert a pivotal function in the maintenance 
of a stable commensal gut microbial flora. This is consistent with 
the hypothesis of a role of the immune system in both protecting 
host tissues from pathogenic attack and supporting the growth 
of the mutualistic microbiota (67). In B. schlosseri, gut epithelial 
cells are involved in the clearance of neighboring apoptotic cells 
during the generation change (68).

HUMORAL DeFeNSive RePeRTOiRe

Phenoloxidase
The presence of PO activity in ascidian hemolymph has been 
widely reported in both solitary and colonial species [references 
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FigURe 2 | Main ascidian hemocytes. (A) Undifferentiated cells. (B–F) Immunocytes. (B,C) Botryllus schlosseri spreading and round phagocytes, respectively;  
(D) Polyandrocarpa misakiensis speading and round phagocyte with ingested yeast cells; (e) B. schlosseri morula cells (MCs); (F) P. misakiensis MCs; (g–J) storage 
cells. (g) B. schlosseri blue pigment cells; (H) P. misakiensis trophocyte; (i) P. misakiensis pigment cell and trophocyte; (J) B. schlosseri nephrocyte. (A–C,e,H) 
aldehyde-fixed cells stained with hematoxylin–eosin; (D,F,g,i,J) living cells. Scale bar: 10 µm.
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therein (34)]. PO is assumed located as inactive proenzyme 
(probably, proPO), inside the granules of PO-containing hemo-
cytes and activated by serine proteases once released outside the 
cells (35, 69). PO-containing hemocytes of C. intestinalis store 
also serine proteases that, once released, are activated by LPS and 
laminarin shortly before the activation of PO (70, 71). A soluble 
serine protease is present also in B. schlosseri hemolymph (72). 
This support the idea of an activation of PO mediated by serine 
proteases, analogous to what is reported in arthropods (73).

Phenoloxidase is involved in cytotoxic responses of ascidians. 
In colonial botryllid ascidians, the enzyme contributes to the 
formation of the necrotic spots along the border of contacting, 
genetically incompatible colonies (34). According to the analysis 
of nucleotide and predicted amino-acid sequences, ascidian PO 
shows high similarity with arthropod hemocyanins (74, 75).

Phenoloxidase substrates are likely represented by tuni-
chromes, or other phenol-containing peptides, contained inside 
the hemocyte (mainly MC) granules (29, 35, 76–79). The enzyme 
produce quinones, that polymerize to melanin, and reactive 
oxygen species (ROS), that induce oxidative stress and related 
toxicity in neighboring cells (35).

Lectins
Ascidian immunocytes can synthesize and release humoral lectins 
with various molecular features and carbohydrate specificities 
(36, 80–84). Some of them have a clear role in the recognition 
of foreign molecules or in the modulation of immune responses 
(36, 65, 85–88). In most cases, they enhance the phagocytosis 
of microorganisms acting as opsonins (86, 87, 89, 90). Lectins 
can also trigger the respiratory burst and act as molecules able to 
influence the behavior of other immunocytes, as in the case of the 
Botryllus rhamnose-binding lectin (BsRBL) (37), or to activate 
the complement system (46).

A subset of B. schlosseri blood cells, probably phagocytes, 
express an ortholog of the vertebrate CD94 receptor on 
NK cells, a type II transmembrane protein with a C-type lectin 
domain (91). A second ortholog in C. intestinalis (CiCD94-1) 
contain a C-type lectin domain without carbohydrate-binding 
capability: it probably recognizes peptides instead of carbohy-
drates and is expressed in the same cell type engaged in the 
production of PO, also recognized by the anti-CiCD94-1 anti-
body. The fraction of cells positive to the CiCD94-1-1 antisense 
riboprobe increases after LPS exposure. The anti-CiCD91-1 
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TABLe 2 | Ascidian main pattern-recognition receptors.

Name Location Role Reference

Lectins

Galectins Granulocytes, phenoloxidase (PO)-containing 
hemocytes

Mediators of inflammation (36)

Rhamnose-binding lectins Phagocytes Phagocyte activation, opsonins, hemocyte recruitment, 
PO-containing cell degranulation

(37)

Sialic acid receptor (unknown) Phagocyte surface Recognition of sialic acid (do not eat me signal) on  
the surface of healthy cells

(38)

CD91 Surface of PO-containing cells Indirect activation of phagocytes (39)

vCBPs

VCBP-A, -B, -C Hemocytes, epithelial cells of stomach  
and intestine

Opsonins, control of the gut microbiota (40, 41)

Complement factors

Mannose-binding lectins PO-containing hemocytes Activation of the lectin pathway of complement activation (42–49)

Ficolins PO-containing hemocytes Activation of the lectin pathway of complement activation (49–52)

C1q Presumably PO-containing hemocytes Complement activation by binding to pentraxins (53–55)

Integrins Presumably phagocytes Complement receptor(s) (32, 46, 56, 57)

Toll-like receptors Phagocyte surface and endosomes Recognition of non-self (48, 58)

CD36 Phagocyte surface Recognition of oxidized lipids on apoptotic cells (59)

Phosphatidylserine receptor 
(unknown)

Presumably phagocyte surface Recognition of apoptotic cells (38, 59)

TABLe 1 | Ascidian main hemocyte and tunic cell categories.

Cell types (synonyms) Role Reference

Hemocytes

Undifferentiated cells Hemoblasts (lymphocyte-like cells) Considered hemocyte precursor cells (8, 32)

Immunocytes Phagocytes (hyaline amebocytes, 
macrophage-like cells, spreading  
and round phagocytes)

Phagocytosis; encapsulation; synthesis and release of lectins (8, 13, 32, 33)

Cytotoxic cells [phenoloxidase (PO)-
containing cells, morula cells (MCs),  
granular amebocytes]

Cell-mediated cytotoxicity; synthesis and release of: cytokines,  
complement factors, antimicrobial peptides, and collagen

(8, 13, 32, 34, 35)

Storage cells Pigments cells Zooid pigmentation (8, 13, 32)

Trophocytes Storage and transport of nutrients (32)

Nephrocytes Storage of uric acid crystals (8, 32)

Vanadocytes Storage of vanadium (8, 32)

Tunic cells

Immunocytes Phagocytes Ingestion of foreign material having entered the tunic; guard cells  
(external to the tunic and exposed to the environment in  
the siphonal areas) controlling the entrance to the pharynx or the atrium

(8, 17, 22, 23)

Cytotoxic cells (PO-containing cells,  
MCs, granulocytes)

Cell-mediated cytotoxicity; synthesis and release of: cytokines,  
complement factors, antimicrobial peptides; crosslinking of  
tunicin fibers through the oxidation of tunichromes by PO

(8, 13, 24, 25, 28, 29)

Bladder cells Acid storage (17, 26, 27)

Net cells Allow the shrinkage of the tunic in wound areas (17)

Pigment cells Tunic pigmentation (17)
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antibody inhibits phagocytosis, suggesting that the interac-
tion of CiCD94-1 with its ligand(s) can indirectly stimulate 
phagocytes (39, 92), probably through the release of cytokines 
(see below).

immunoglobulin (ig) Domain-Containing 
Proteins
Despite the lack of orthologs of genes for major histocompat-
ibility complex proteins, T-cell receptors, and Igs, transcripts for 
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FigURe 3 | Ascidian complement-activation pathways: complement components of both the alternative and the lectin pathway [C3, Bf, mannose-binding lectins 
(MBLs), ficolins, MBL-associated serine proteases (MASPs)] are released by morula cells that also express the receptor for C3a (see text), whereas the receptor(s) 
for C3b [complement receptor (CR)] are probably located on the surface of phagocytes as the activation of C3 increases the phagocytic activity.
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putative molecules with Ig domains were identified in tunicates 
(93, 94). Three novel genes for VCBPs, containing two N-terminal, 
variable-type Ig domains, were described in C. intestinalis. 
VCBP-A, -B, and -C are synthesized by epithelial zymogenic 
cells of the stomach and the intestine, as well as by a fraction of 
circulating hemocytes (40, 95). VCBPs can bind Gram (+) and 
Gram (−) bacteria with the variable-type Ig domains and sig-
nificantly increase microbe phagocytosis by hemocytes, acting as 
opsonins (40), whereas the chitin-binding domain interacts with 
the chitin-rich mucus along the intestinal wall, thus influencing 
the settlement of bacterial communities and the colonization 
of the intestinal lumen by the microbiota. Indeed, VCBP-C can 
enhance the in vitro production of biofilms by bacteria previously 
identified in the gut of Ciona (41).

Complement System
Both the alternative and lectin complement-activation pathways 
are present in ascidians [Figure 3; (46, 96)]. Genes for C3 were 

identified in all the ascidian species investigated so far (97–100). 
They are active in the adult (98), and their transcription rate 
increases after LPS injection in the tunic; similar behavior is 
reported for the C3-a fragment deriving from the cleavage of C3 
in the presence of non-self (101). C3-a can recruit hemocytes to 
the inflammation site (102) via its binding to a G protein-coupled 
receptor, constitutively expressed in PO-containing hemocytes 
(103). C3b, the main C3 fragment, can adhere to the microbial 
surfaces and exert an opsonic role enhancing the recognition and 
ingestion of bacteria by phagocytes (89, 97, 98, 100, 104).

The transcription of C3 genes occurs in hemocytes, mainly 
PO-containing hemocytes (97, 100, 101). In Styela plicata, 
hemocytes secrete a protein recognized by anti-C3 antibodies, the 
concentration of which increases in the culture supernatant after 
the exposure to non-self molecules (105). In Pyura stolonifera, 
the incubation of hemolymph with LPS induces the release of a 
chemotactic protein recognized by anti-human C3 antibody (99). 
In Halocynthia roretzi, also cells of the stomach wall transcribe  
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C3 (97), whereas, in Ciona, even ciliated cells bordering the 
branchial stigmata contain C3 mRNA (101).

Transcripts for Bf, a component of the alternative activation 
pathway, were identified in various ascidian species (100, 106, 107).  
Genes for MBLs, C-type lectins members of the collectin family 
and involved in the lectin pathway of complement activation, are 
present in the C. intestinalis genome (42, 44, 46–48) and over-
transcribed during inflammatory reactions (42). Transcripts for 
MBLs were identified also in other ascidian species (43, 45, 49). In 
S. plicata (108, 109), an increase in the secretion of collectins and 
in the fraction of hemocytes immunopositive to anti-collectin 
antibody is observable during inflammatory responses (110). 
Transcripts for ficolins, also components of the lectin pathway, 
are present in H. roretzi (50), Botrylloides leachii (51), and  
B. schlosseri (49, 52). The transcription of H. roretzi ficolin 3 gene 
is significantly impaired in organisms with the soft tunic disease 
(7). A C-type lectin, interacting with MASP, is involved in the 
recognition of microbial surfaces and the activation of C3 in H. 
roretzi (111). Transcripts for MASPs were widely described in 
ascidians (43–46, 48, 49, 55, 96, 104, 112, 113).

C1q-like transcripts were found in C. intestinalis (53, 54) and 
B. schlosseri (55). In vertebrates, C1q, a component of the classi-
cal activation pathway, can bind pentraxins (mainly C-reactive 
protein). These molecules were identified in Ciona (53) and 
Didemnum candidum (83), suggesting the interaction with pen-
traxins as the original role of C1q in invertebrate chordates (53). 
In B. schlosseri, the transcription of genes for C1q, MASPs, Bf, and 
ficolins is upregulated during the allorejection reaction (55); in 
addition, genes for C3, Bf, ficolin, MASPs, and a putative CR1 are 
over-transcribed during the recurrent generation changes (113).

As regards complement regulators, in B. schlosseri, cDNAs for 
a putative complement-control protein (CCP), featuring CCP 
domains, were isolated (114). Genes for α2-macroglobulin, able 
to inhibit MASPs, and for various putative molecules with the 
CCP domain(s), were reported in C. intestinalis (44).

C6/C9-like transcripts for proteins containing the membrane-
attack complex/perforin domain were described in C. intestinalis 
(44, 46, 47); whether or not a cytolytic pathway is present ascid-
ians, is still a matter of debate.

In Ciona, integrin α and β subunits, part of a complement 
receptor (CR) and showing homology with mammalian CR3 or 
CR4, are expressed on the surface of hemocytes (46, 56, 57).

Chemical Defense
Ascidians are the source of a great variety of bioactive molecules 
of potential interest in the sanitary field; some of them have also 
entered human clinical trials (115). Many compounds act as anti-
viral or repellents against foulants, predators, and competitors 
(116–120). Acid substances and metals stored in vacuoles within 
tunic cells can contribute to additional protection (26, 121, 122). 
The tunic may host prokaryotes that produce many of the above-
reported products (115, 121).

Ascidians produce also molecules with antimicrobial activ-
ity (123–126). Most of them are peptides; in many cases, they 
are synthesized by hemocytes, mostly PO-containing cells. In  
H. roretzi, halocyamines A and B are synthesized by MCs (127), and 
their cytotoxic activity is likely related to the presence of diphenol 

rings that render them substrates for PO. S. clava MCs produce 
clavanins A–D, histidine-rich, α-helix peptides, and clavaspirin 
(128, 129). In the same species, five styelins, cationic antimicro-
bial peptides, were identified and isolated from hemocyte lysates 
(130, 131). In C. intestinalis, PO-containing hemocytes synthesize 
two families of α-helix antimicrobial peptides and the injection 
of non-self material in the body wall enhances the transcription 
of the corresponding genes (24, 132–134). Anticancer derivatives 
were also described (135, 136), and ascidian tunichromes can 
exert a cytotoxic activity (28). A gene homologous to mammalian 
EB1, a protein with tumor suppressing effect, was described in  
B. schlosseri (137).

Cytokines and Cross Talk between 
immunocytes
Despite the common opinion that invertebrate cytokines share 
no homologies with their vertebrate counterparts (138, 139), 
putative genes for IL1 and TNF receptors were identified in 
the Ciona genome (44, 61). A gene for a TNFα homolog, the 
transcription of which increases in Ciona hemocytes after LPS 
injection in the body wall, was also cloned (11, 140): it probably 
exerts a role in recruiting hemocytes to the inflamed area (141). 
Genes for a putative IL17 receptor and three IL17 homologs were 
identified in Ciona (3, 60, 61): their expression (in hemocytes) is 
also upregulated after LPS injection in the tunic (142).

In B. schlosseri, MCs are the main source of molecules recog-
nized by antibodies raised against mammalian pro-inflammatory 
cytokines, secreted upon the recognition of foreign molecules 
(143). They induce phagocytes to synthesize and release BsRBL, 
with opsonic activity [Figure 4; (144)]. Anti-cytokine antibodies 
prevent the increase in phagocytosis observed when hemocytes 
are incubated in the supernatants of hemocytes cultures previously 
challenged with yeast (Saccharomyces cerevisiae) cells (145). In 
botryllid ascidians, during the allorejection reaction, MCs produce 
and release molecules immunopositive to anti-IL1α and anti-TNFα 
antibodies (25, 100, 146). They are involved in the recruitment of 
these cells to the ampullae of the contact region (see below), as 
demonstrated by the inhibition of the MC chemotaxis, induced by 
cell-free hemolymph from incompatible colonies, in the presence 
of the above-reported antibodies (146, 147). In B. schlosseri, the 
gene for an IL-17 ortholog is over-transcribed during the genera-
tion change: it probably modulates the cellular events occurring 
during this phase of the colonial life cycle and mediates the cross 
talk between MCs and phagocytes (113). A cooperation between 
MCs and phagocytes was reported also in C. intestinalis (70).

vARieTY OF CeLL-MeDiATeD iMMUNe 
ReSPONSeS iN ASCiDiANS

Hemocyte Aggregation
Tunicate lack a coagulation system and hemocytes migrate and 
aggregate to plug the injured sites and prevent hemolymph leak-
age. Hemocyte aggregation was particularly studied in the solitary 
ascidian H. roretzi (148) where a membrane glycoprotein, active 
in both phagocytosis and hemocyte aggregation was identified 
(149). It contains two immunoreceptor tyrosine-based activation 
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FigURe 4 | Cross talk between immunocytes in the colonial ascidian Botryllus schlosseri. Cytotoxic, phenoloxidase (PO)-containing cells are the first cells to sense 
non-self material and, as a consequence, they synthesize and release cytokines, antimicrobial peptides, and complement C3. Cytokines act on both morula cells 
(MCs) themselves, inducing their chemotaxis, and on phagocytes triggering the synthesis and the release of lectins, mainly rhamnose-binding lectin (RBL), that bind 
carbohydrates on the microbial surfaces and exert a complement-independent opsonic role. C3 is cleaved to C3a, which cooperates in recruiting MCs, and C3b, 
which interacts with the microbial surface and acts as opsonin.
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motifs (ITAMs) and associates with phosphorylated and unphos-
phorylated proteins, strongly suggesting its involvement in 
triggering signal transduction pathways (150). Further analyses 
demonstrated that, during hemocyte aggregation, it induces gene 
transcription through the activation of phosphatidylinositol-3 
kinase (PI3K) and cytosolic calcium rise (151).

endocytosis
In ascidians, the ingestion of foreign materials occurs through 
either macropinocytosis or phagocytosis. In both cases, integ-
rins and molecules containing the Arg–Gly–Asp (RGD) motif  
(e.g., fibronectin or fibrinogen) are involved (25). Pattern-
recognition receptors allow the direct interaction of circulating 

professional phagocytes with potentially pathogenic foreign 
material. As an alternative, they recognize opsonins covering 
the microbial surfaces and enhancing phagocytosis. Opsonin-
mediated phagocytosis can be either complement-dependent or 
complement-independent (Figure 4). A transient rise in cytosolic 
Ca2+ concentration is required for the ingestion, whereas a sustained 
increase lowers the extent of phagocytosis (25). The interaction 
of phagocytes with non-self particles triggers a respiratory burst, 
with the activation of both a membrane oxidase and an inducible 
nitric oxide (NO) synthase that leads to the production of ROS and 
reactive nitrogen species with microbicidal activity (152).

As for receptors involved in endocytosis, in C. intestinalis, 
two TLR genes were identified (60) and fully characterized: the 
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corresponding proteins have cytoplasmic TIR, transmembrane, 
and extracellular LRR domains and are located in both the plasma 
membrane and the endosome membrane of phagocytes (58). In 
addition, Ciona also possesses a rich repertoire of transcripts of 
genes involved in signal transduction, including those for pro-
teins with immunoreceptor tyrosine-based inhibition motifs and 
ITAMs, MyD88, IL1 receptor-associated kinase, TNF receptor-
associated factor, nuclear factor κB (NF-κB), and inhibitor of 
κB (44, 53, 60). In the colonial B. schlosseri, TLRs are present on 
the surface and the interior of phagocytes (25). Here, the signal 
transduction pathways triggered by non-self recognition, include 
the activation of trimeric G-proteins, protein kinase A, protein 
kinase C, PI3K, mitogen-activated protein kinases (MAPKs), and 
NF-κB (25, 153, 154).

Phagocytosis of apoptotic cells is a common event in botryllid 
ascidians, where cyclical generation of new zooids by budding 
occurs, and old zooids are periodically resorbed (155). Generation 
change or take-over implies massive apoptosis in the tissues of 
old zooids and the clearance of dying cells by professional and 
occasional phagocytes (68, 156–158). Phagocytes recognize 
phosphatidylserine and the lack of sialic acid on the surface of 
effete cells and corpses (38, 59) and avidly ingest them: because 
of the sudden increase of oxygen consumption and the related 
oxidative stress, they undergo phagocytosis-induced apoptosis 
and are, in turn, ingested by other phagocytes (159). Clearance 
of dying cells requires also the presence of CD36, a scavenger 
receptor able to recognize oxidized lipids, on the phagocyte sur-
face (59); a putative CD36 ortholog was identified in the Ciona 
genome (44). In B. schlosseri, the clearance of apoptotic cells by 
phagocytes is necessary for the completion of the take-over and 
the progression of bud development (160). The opposite is also 
true: buds are required for the clearance of cell corpses as they 
recycle the nutrients deriving from their digestion by phagocytes 
(161, 162).

encapsulation
Foreign material too large to be ingested by phagocytosis is 
usually encapsulated by circulating hemocytes. The formation 
of multi-layered capsules was observed around parasitic crusta-
ceans, and both phagocytes and cytotoxic MCs can be involved 
in capsule formation (33). In C. intestinalis, intratunical injection 
of mammalian erythrocytes or non-self molecules results in mas-
sive recruitment of hemocytes to the inoculum site and capsule 
formation (11).

In B. scalaris, unlike other botryllid ascidians (see below), 
encapsulation plays a pivotal role in allorecognition. Here, the 
circulatory systems fuse during allorejection and blood exchange 
begins. Phagocytes crowd inside the fused vessels and stimulate 
the aggregation of hemocytes into large clusters, finally encapsu-
lated by other phagocytes, so to plug the lumen of the vessels and 
interrupt the hemolymph flow in a few minutes (163).

Cytotoxicity
A Ca2+-dependent cytotoxic activity against mammalian erythro-
cytes or tumor cells, inhibited by sphingomyelin, was described 
in C. intestinalis and S. plicata (164–166). In C. intestinalis, 
cytotoxicity against mammalian cells requires the activity of the 

enzyme phospholipase A2, modulated by lectins with specificity 
for galactosides (167). A cytotoxic reaction, called contact reaction, 
occurs in allogeneic or xenogeneic combinations of hemocytes 
from various solitary ascidians (168). In B. schlosseri, cytotoxic-
ity can be observed in  vitro by exposing hemocytes to non-self 
molecules or cell-free hemolymph of incompatible colonies (79). 
In all the above cases, cytotoxicity is consequent to the release of 
active PO in the medium upon degranulation of PO-containing 
hemocytes and the oxidation of polyphenol substrata, leading to 
the production of toxic quinones and ROS (34). In B. schlosseri, NO 
is also involved in the induction of cell death (146). The production 
of NO by hemocytes, after their exposure to either LPS or zymosan, 
was reported also in S. plicata and Phallusia nigra (169, 170).

inflammation
Inflammation is characterized by the recruitment of circulat-
ing hemocytes, extravasation, cell degranulation, induction of 
cytotoxicity, and phagocytosis (or encapsulation) of the foreign 
material. Inflammation-related cytotoxicity requires the recruit-
ment of PO-containing hemocytes and the release of active PO 
in the infected area (142, 171, 172). It was particularly studied in  
C. intestinalis, after the injection of foreign material in the tunic 
(11). Circulating hemocytes of treated animals increase the 
transcription of genes involved in the recognition of non-self and 
tissue repair (11, 173–175).

Inflammation in Tissue Transplantation
Tissue transplantation represents a cause of inflammation. In  
solitary species, higher recruitments of hemocytes occur in the case 
of allografts with respect to autografts, leading to allograft rejec-
tion. The latter is more rapid in primed animals, having previously 
received (and rejected) a similar graft (176–178). Graft rejection 
relies on PO-containing hemocytes reaching the inflamed area  
and the induction of cytotoxicity (179). In C. intestinalis, the 
products of a polymorphic gene, structurally similar to a vertebrate 
CR and containing CCP domains, were proposed as individuality 
markers. They are synthesized by hemocytes, with various splice 
variants and high interindividual variability (180, 181).

Inflammation in Allorecognition
In botryllid ascidians, inflammatory events are the consequence 
of allorecognition between incompatible colonies, probably 
to prevent the risk of somatic/germ cell parasitism in geneti-
cally unrelated colonies (182, 183). In Botryllus primigenus and  
B. schlosseri, a highly polymorphic fusibility/histocompatibility 
(Fu/HC) gene with codominant alleles controls the outcome of 
the colony contact (184, 185). When colonies share no alleles at 
the Fu/HC locus, partial fusion of the facing tunics occurs as well 
as the leakage of soluble histocompatibility factors, recognized 
by MCs (186). Activated MCs release chemotactic cytokines able 
to recruit other MCs in the peripheral blind endings of the tunic 
vasculature (ampullae) of the contact region (147), from which 
they enter the tunic and degranulate, thus releasing the enzyme 
PO and its polyphenol substrata. A series of melanic cytotoxic 
foci, called points of rejection, appear along the contact border 
as a result of cytotoxicity [Figure 5; (34, 79, 146, 187)]. Rejecting 
colonies of B. schlosseri increase the transcription rate of various 
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FigURe 5 | Schematic representation of the events occurring during the 
allorejection reaction of Botryllus schlosseri. For sake of simplicity, the main 
steps are reported on the right colony only. (A) local fusion of the contacting 
tunics and diffusion of soluble, incompatible factor(s) recognized by morula 
cells (MCs) inside the facing ampullae of the alien colony that, as a 
consequence, release cytokines. (B) Recruitment of MCs inside the tips of 
the ampullae facing the alien colony. (C) Extravasation of MCs and their 
degranulation in the tunic: melanin is formed as a consequence of the release 
of polyphenols and active phenoloxidase (PO); both melanin and reactive 
oxygen species contribute to the cytotoxicity observed in the contacting 
region.
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immune-relevant genes (52, 55, 188). A change in the growth 
direction of contacting colonies occurs after the allorejection 
reaction (189). MCs are involved in the allorejection reaction 
also in Botrylloides simodensis, Botrylloides fuscus, Botrylloides 
violaceus, B. leachii (35), and Didemnum perlucidum (190). The 
unusual growth of facing ampullae during allorecognition was 
reported in B. leachi (35, 191).

An intense inflammatory reaction is observed when incompat-
ible colonies of ovoviviparous botryllid ascidians are brought into 
contact at their cut surfaces (192, 193), whereas fusion of tunics 
and hemolymph vessels always occurs in the case of viviparous 
species. This suggests that, in the latter case, hemocytes have lost 
their ability of allorecognition, probably to avoid immune attacks 
toward the brooded embryos that share only one Fu/HC allele 
with the mother colony (194). In support of the above hypothesis, 
the PO activity of the hemolysate of viviparous species is lower 
than that of ovoviviparous ones (195, 196).

When Botryllus colonies share at least one allele at the Fu/HC 
locus, contacting colonies can fuse and form a single chimeric 
colony (197). However, in the case of a single shared allele, the 
resorption of one of the chimeric partner occurs within 30 days 
from the temporary fusion (198). Even in this case, MCs are 
directly involved as they infiltrate the tissues of the loser colony, 
together with phagocytes. The resorption phenomenon can be 
induced by the injection of enriched populations of MCs in 
the vasculature of recipient colonies and shares many simi-
larities with the take-over, including apoptosis in zooid tissues, 
clearance of dying cells by phagocytes, and modulation by  
IL17 (113).

In B. schlosseri, the ampullar epithelium and hemocytes 
express genes for proteins involved in allorecognition, although 
uncertainties on the identity of the allorecognition gene still 
persist (199–204).

ROLe iN DeveLOPMeNT?

Many invertebrate molecules have a role in both development 
and immunity. The best example is the Drosophila Toll receptor, 
required for the establishment of dorsal–ventral polarity early in 
development and switching to an immune role in adult flies (205). 
In Tunicates, various genes, involved in adult immune responses, 
are transcribed also during embryonic, larval, and asexual devel-
opment, and this opens interesting perspectives on their role in 
development.

In B. villosa, the analysis of the transcriptome revealed the 
expression of immune-related genes in both the larval and juve-
nile development (43). In addition, MASPs are probably involved 
in the activation of metamorphosis (206).

In the larva of the ascidian Ascidia callosa, tunichrome, the 
putative substrate of PO, is required for tunic morphogenesis (207).

In C. intestinalis, a C3-like gene is transcribed during early 
development: it codifies a protein that, probably, does not exert 
a typical C3 role (208). Orthologous genes of C6 and C1 are also 
active during the embryonic stage (54). In addition, the gene for 
CiCD94-1 is transcribed in larval papillae, in cells of the larval 
nervous system, and in the coronet cells, the probable precursors 
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of neural crest cells, with a role in modeling the nervous system 
during development (39). Furthermore, swimming larvae 
transcribe a gene for a CiTNFα-like protein (141), and PO gene 
expression is modulated in early and larval development (209). In 
the same organism, very low transcription levels of VCBP genes 
can be detected before the tailbud stage. From the larval stage 
onward, their mRNAs are located in gut primordia, with different 
distributions in defined territories, suggesting a role of VCBPs in 
the functional compartmentalization of the developing intestine 
(95, 210). VCBP mRNAs are translated after metamorphosis, with 
different timing of appearance and distribution (41). The tran-
scription of VCBP genes in juveniles is differentially modulated 
by Gram (+) and Gram (−) bacteria, fitting the idea of their role 
in mediating the onset of the microbial gut colonization (95, 210).

An increase in the transcription of several immune-related 
genes occurs also during the whole body regeneration of B. leachii 
(51). In addition, signaling pathways, such as those involving 
MAPK and the NF-κB/Rel family members, are required in 
the formation of the larval notochord (211) and in the budding 
process of botryllid ascidians (212).

FUTURe PeRSPeCTiveS

Tunicates, and ascidians in particular, are simple chordates that 
represent valuable models for the study of the innate immune 
responses and the evolutionary events that occurred in the course 
of invertebrate–vertebrate transition, leading to the appearance 
of lymphocytes and receptor diversification through somatic 
recombination. The progressive availability of new sequenced 

transcriptomes and genomes from tunicates will enable research-
ers to dissect the genetic and molecular processes associated 
with immune responses, clarify the regulatory pathways and the 
diversity of pattern-recognition receptors involved in immune 
responses, and compare them with what known in vertebrates. 
Ascidians offer also the possibility to study some particular aspects 
of the immune responses, such as the evolutionary importance 
of the polymorphism found in Fu/HC and other immune genes 
and its relationships with pathogen threats, the molecular basis 
of the priming phenomenon, the evolution of the complement 
system, and the role of lectins as immunomodulatory molecules. 
In addition, the possibility of synthesizing the gene products once 
the gene sequences are known, can render available a quantity 
of bioactive molecules, involved in chemical defense, testable as 
antimicrobial, antiviral, or anticancer compounds. Last, but not 
least, research on hemocytes will contribute to disentangle the 
unresolved aspects of hemocyte ontogeny and differentiation 
pathways and better elucidate their role in tunicate biology.
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