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Monitoring grapevine canopy size and evolution during time is of great interest for the management  of the vineyard. An interesting and 

cost effective solution for 3D characterization  is provided by the Kinect sensor. To assess its practical applicability, field experiments 

were carried out on two different grapevines varieties (Glera and Merlot) for a three months period. The results from 3D digital imaging 

were compared with those achieved by direct hand-made measurements.  Estimated volume was then effectively correlated to the 

number of leaves and to the leaf area index. The experiments demonstrated how a low cost 3D sensor can be applied for fast and 

repeatable reconstruction of vine vegetation, opening up for new potential improvements in variable rate application or pruning 
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Introduction 
 

The possibility  of monitoring  variability in the density of 
canopies is  of  great  interest for accurately quantifying 

local biomass, particularly in the case of vineyards, where 
knowledge of variability can be not only a useful mean to 
evaluate the health condition of the vines and of the grapes, 

but also an important input to allow variable management 
practices (Monsó et al., 2013; Mathews and Jensen, 2013) 
or medium and long term efficiency simulations  (Pezzuolo 

et al., 2014). 
By way of example,  pruning  (Liu et al., 2012) or variable 

rate application  (Rinaldi et al., 2013) can benefit from real 
time three dimensional reconstruction of canopy. In the first 
case automatic trimming or pruning can be based on actual 

positioning and direction of branches; in the second case the 
sprayer could modify instantaneously the  working 
parameters based on local leaves density. 

Many attempts have been made in the recent past in order 
to  allow three-dimensional  reconstruction of  plants  and 
specifically  of  vineyard  canopies, also benefitting from the 

constant miniaturization   of  sensors and  increase  in  data 
processing speed (Marinello et al., 2014; Pajares et al., 2013). 

Methods can be  mainly referred to  three methods: 
ultrasonic sensors, LIDAR and structure  from motion (Su and 
Zhang, 2010). 
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Even if ultrasonic  technology  is a possible solution which 

can provide a convoluted profile of canopy, its performance 
is unsatisfactory in the case of very thin objects (as in the 
case of branches with no leaves) or in the case of very 

irregular surfaces (as in the case of branches sticking out 
from the overall canopy).It is also very sensitive to dust and 
humidity; additionally interference can  be  produced by 

implementation of multiple sensors. On the other hand it is 
cheap and is already at  its industrial level: indeed it is 
actually implemented in some recent sprayer machines, to 

regulate flow of different nozzles. 

A different approach  is that based on LIDAR technology. It 

relies on implementation of a light source, using the delay for 

a  laser signal to  return, to  estimate relative distance. 

Researchers have demonstrated its effectiveness in several 

fields, including vineyard application  (Rinaldi et al., 2013; 

Del-Moral-Martínez et al., 2016); however it is mainly two 

dimensional and relatively expensive. 
A third approach  is that based on structure from motion. 

This is a technique based on principles of photogrammetry, 
as it takes advantage of a set of images captured from 

adjacent position to allow 3D reconstruction.  Such technique 

is low cost and examples in vineyard application are already 

available (Mathews and Jensen, 2013); however reasonably 

high resolution imaging has necessarily to be supported by 

robust algorithms and powerful processors. 
To  avoid too  expensive  technique, the  present work 

implements a  depth  sensing  camera and  specifically  a
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Microsoft Kinect™ RGB-depth  camera. In  the last decade 

such solution has had a large diffusion mainly because of its 

introduction as a video game interface. 
Such solution is not new in the agricultural field: relevant 

applications have been already demonstrated in the case of 

soil characterization  (Marinello et al., 2015a) as well as for 

ergonomic analysis of agricultural machines (Marinello et al., 

2015b). In this work, Kinect was statically positioned into a 

vineyard and successfully implemented to allow collection of 

three-dimensional  information from vines canopies.  A sche- 

matic representation of a  possible layout is reported in 
Figure 1, where the Kinect sensor is mounted in front of the 
tractor and a feedback is generated to allow regulation of 

working parameters. 
 

 

Materials and methods 
 

Depth-camera sensing technology 

The present work was implemented with a Kinect (version 1), 

a non-contact instrument based on structured light depth- 

camera sensing technology (RGB-D). Such instrument  uses 

an infra-red projector which shines light onto the scene: light 

reflected from the scene is collected by an infrared depth 

sensor and is used to produce a three-dimensional recon- 

struction of the scene (Marinello et al., 2015a). 
Despite being a low cost instrument (<100 €) developed 

as  an  interface for  video-games, the  Kinect provides 

interesting performances, as demonstrated in previous works 

(Marinello et al., 2015a). 

To  help understanding, x-y-z  coordinate axes can be 

defined, with the z axis perpendicular to the sensor and x-y 

plane parallel to the canopy (Figures 2 and 3). Main perfor- 

mance indicators in terms of lateral resolution (i.e. the 
minimum resolvable separation between two pixels in the 
x-y plane), vertical resolution (i.e. the minimum resolvable 

depth in z direction) and maximum detectable slope (i.e. the 

maximum  resolvable  angle of a plane tilted relatively  to 

x-y plane)  are reported in Table 1. During experiments,  the 

sensor was statically positioned at  a  1.6 m height and 

at a 2 m distance from the center of the vine rows (Figure 2): 

at  such distance lateral and vertical resolutions can be 
kept far below 10 mm and background noise estimated as 

root mean square signal (RMS)  on a nominal flat surface 

below 2 mm.
 

 

 
 

Figure 1  Schematic representation  of a three-dimensional sensor unit, positioned in front of the tractor for a feed-back system, allowing variable rate 
distribution with the implement. 

 

 

 
 

Figure 2  The Kinect sensor (left) positioned for three dimensional reconstruction of vine canopy (right): the grayscale renders the achieved depth image, 
where darker or lighter regions are associated respectively to depressed or elevated portions on z axis. 
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Figure 3  Geometrical approximation for estimation of volume from hand measurements  (left) and three dimensional rendering of a vineyard row portion 
elaborated from a Kinect digital measurement  and implemented for volume estimation (right). 

 

Table 1 Main Kinect (version 1) performances  as a function of average 

distance of the sensor from the target (RMS = root mean square), 

according to previous published work (Marinello et al., 2013) 

In order not to alter the health condition of the plants, no 

leaves were removed from the vines undergoing 3D Kinect 

reconstruction.
 Lateral Vertical Measurements were repeated on 18 different dates, from 

Distance resolution resolution RMS noise Detectable 4 April 2016 to 27 June 2016, when the main vegetation 
[mm] [mm] [mm] [mm] slope [deg] evolution can be observed. 

 

500                     0.7                  1.1                 0.7             30–40 

1000                   1.1                  2.2                 0.9             30–40 

1500                   1.5                  3.4                 1.1             35–45 

2000 2.0 4.5 1.3 40–50 

2500 2.4 5.6 1.5 40–50 

 

 
 

Experimental site and measurements 

The present study was carried out in a private farm in north- 

eastern Italy in a typical Po Valley vineyard (45.283119N, 
11.836040 E). Two grapevine  varieties were available (Glera 

and Merlot) with a total extension of 13000 m2, both planted 
in 2010 and managed through a Sylvoz  pruning system. 
Grape  branches  typically lay  at   a   1.2–1.3 m  height. 
Vine-stocks were planted with a 2.8 m inter-row and 1.3 m 
intra-row spacing  (corresponding to  2750  plants  per 
hectare). The vineyard is north-south oriented, thus receiving 
an optimal sun radiation during daylight. 

During the measurement campaign, eight different vines 

A total of 1728 widths and 576 heights hand measure- 
ment on vines, 1440 measured leaves and 432 3D Kinect 

reconstructions were carried out. 
 
Reference parameters 

In order to evaluate the applicability of the Kinect sensor for 
the characterization of canopy, selected Merlot and Glera 

vines were characterized in terms of average volume. 

Volume was estimated by means of both hand measure- 

ments and Kinect. 
In the first case the height and the width of the canopy were 

collected with a scale. Widths at three different heights were 
measured, namely w1, w2  and w3  as depicted in Figure 3, 

considering as a reference surface the virtually flat plane pas- 
sing through the trellising supporting the plants. The three 
widths were measured on parallel positions at a relative dis- 
tance of about 33 cm, in order to have 4 partial volume values 

over 1 m length (L). Canopy volume from hand measurements 
Vhm was approximated by means of equation (1): 
 

 w 1    h1   + w 1    h2   + w 2    h2   + w 2    h3   + w 3    h3   +  
w  3      h4  

from the  two  varieties (4  Glera and  4  Merlot) were Vhm  ¼ L   (1) 
2

monitored, including: 
 

– three-dimensional reconstruction of vines canopy through 

implementation of the Kinect sensor; 

– counting of  the  number  of  leaves  per  vine  (hand 

measurement) 
– estimation of the area of the leaves through 
implementa- 

tion of a  digital camera and a  reference grid (hand 

Signs over w and h symbols represent the operation ‘mean 

value’ between data collected on different positions. 

In the second case, the same canopy portion was captured 

by means of the three dimensional sensor positioned at 2 m 

from the plants rows (Figure  2), allowing estimation of 
canopy volume Vk, according  to (2): 

ð

measurement); 
– measurement of canopy height (hand measurement); 

Vk ¼ z dxdy                             (2)

– measurement of canopy width at three different levels 
(hand measurement). 

where z represents the function describing  the vineyard 

convoluted surface averaged on three measurements; again
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the zero level is defined in correspondence of the trellising 

supporting the plants. 
 

 
 

Results and discussion 
 

Field experiments  were started in the first week of April, 
when the first leaves appeared in Merlot and Glera plants, 
but actual three-dimensional  measurements were started 
only on 18 April, when leaves had a sufficient size to be 
correctly  detected by the Kinect  sensor. In the following 
weeks both the varieties exhibited a rapid growth, but with a 
higher canopy vigor in the case of Glera vines. Analyses were 
concluded on 27 June: such 3 months period not only allows 
thorough monitoring of the evolution of the canopy, but is 
also the most interesting from the phytosanitary point of 
view. Volume  measurements from Kinect  sensor Vk   were 

correlated to hand volume measurements Vhm. Results are 

reported in Figure 4a. It can be noticed how Kinect estima- 
tion is slightly higher with respect to hand measurements, by 
17.5% in the case of Merlot and by 7.8% in the case of Glera. 
Such difference can be explained considering that digital 
reconstruction relies on a higher number of points (pixels), 
and thus can provide a more comprehensive reconstruction 
of vines, including isolated or protruding  branches.  A good 
correlation can be recognized in both cases, with a coeffi- 

cient of determination  R2 = 0.922 in the case of Merlot and 

R2  = 0.943 in the case of Glera. The variability and relative 
deviations, tend to increase as the vigor of the canopy 
increases, however with an acceptable combined standard 

error for both cultivars ε = 0.038 m3/m. 

As already mentioned,  the interest on the canopy volume 
is due to the fact that it can be an indirect indicator of plant 
vigor. Thus, the volume of the canopy  Vk was correlated to 

the  number of  leaves. Results, graphically reported in 
Figure 4b, give evidence of a certain correlation between the 

two variables, with coefficients of determination R2 = 0.743 

and R2  = 0.758 in the cases of Merlot and Glera respec- 
tively, and  a  higher combined standard error for both 

cultivars ε = 0.090 m3/m. 

If by one side the number of leaves can help determining 

canopy growth, the management of the vineyard can be 
better supported by information on the overall leaves area. 
Indeed the  leaf area  index (LAI)   is probably the  most 

common parameter related to the foliage used in viticulture 
(Arnó et al., 2013). 

Thus, the correlation between the whole data set and the 
reference leaf area indexes was also considered. In this case 
the  correlation between the  two  variables is still high 

(R2  = 0.767). Such result is reasonable considering that the 
overall canopy volume is the result not only of plant devel- 
opment and of the number of leaves but also of leaves size. 
Indeed larger leaves occupy higher volumes and have a 
higher weight causing larger bending of the  branches, 
eventually producing an apparent expansion of the plant. 
The results are in good agreement with those published in a 
recent work based on LIDAR technology (Arnó et al., 2013), 
where a linear regression analysis highlighted a similarly 
good correlation between LAI and canopy volume in the case 

of analysis of both the total width (R2  = 0.81) and half the 

width of the row (R2  = 0.71). 

Figure 5 shows how the correlation between volume and 

leaf area is relatively higher in the first months; then varia- 

bility tends to increase due to uncontrollable  deviations 

affecting leaves size and density such as local meteorological 

phenomena, localized damages, disease. The coefficient  of 
 
 

 
 

Figure 5 Leaf area index reported as a function of the estimated Kinect 
volume (Vk).

 

 
 

Figure 4  (a) Correlation between hand measured volume Vhm   and Kinect estimation (Vk).  (b) Correlation between the number of leaves and Kinect 
volume estimation (Vk). 
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determination (R2  = 0.760) is  slightly higher than  that 

estimated after hand measurements (R2  = 0.690): this can 
be ascribable to the higher and more robust number of points 
considered in the case of digital canopy reconstruction. 
Fur- thermore, the relatively low standard error (ε = 0.078 
m²/m) supports the possibility of implementing  Kinect 
instrument for fast on the go monitoring of plants leaf area 
index, with an acceptable degree of approximation. 

 
 
 

Conclusions 
 

In this paper a Kinect  three-dimensional  depth-camera is 
proposed as a solution for  fast characterization  of three- 
dimensional structure of grapevine canopy. Experiments have 
shown the very high correlation between digital analysis and 
hand measurements results  for  two  different  grapevines 
varieties: Glera and Merlot.  In both cases, the volume can be 
related to the number of leaves and to their area, with a 

coefficient of determination  R2 = 0.76 in the latter case. The 
sensor cannot be applied in the early stages when leaves are 
too small compared to resolution,  negatively affecting the 
three-dimensional  reconstruction process. Also, at present no 
algorithms have been implemented to allow recognition  of 
diseased leaves or plants. Additionally, attention has to be 
paid to the sun light conditions, in order to avoid excessive 
radiation which could blind the 3D detector. Apart from these 
limitations, the Kinect sensor can be a useful solution for on 
the go monitoring of leaf area variability. 
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