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The family of double-stranded DNA (dsDNA) Malacoherpesviridae includes viruses

able to infect marine mollusks and detrimental for worldwide aquaculture production.

Due to fast-occurring mortality and a lack of permissive cell lines, the available data

on the few known Malacoherpesviridae provide only partial support for the study

of molecular virus features, life cycle, and evolutionary history. Following thorough

data mining of bivalve and gastropod RNA-seq experiments, we used more than

five million Malacoherpesviridae reads to improve the annotation of viral genomes

and to characterize viral InDels, nucleotide stretches, and SNPs. Both genome and

protein domain analyses confirmed the evolutionary diversification and gene uniqueness

of known Malacoherpesviridae. However, the presence of Malacoherpesviridae-like

sequences integrated within genomes of phylogenetically distant invertebrates indicates

broad diffusion of these viruses and indicates the need for confirmatory investigations.

The manifest co-occurrence of OsHV-1 genotype variants in single RNA-seq samples of

Crassostrea gigas provide further support for the Malacoherpesviridae diversification. In

addition to simple sequence motifs inter-punctuating viral ORFs, recombination-inducing

sequences were found to be enriched in the OsHV-1 and AbHV1-AUS genomes.

Finally, the highly correlated expression of most viral ORFs in multiple oyster samples

is consistent with the burst of viral proteins during the lytic phase.
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INTRODUCTION

The virus family of double-stranded DNA (dsDNA) Malacoherpesviridae refers to only those
Herpesviraleswhich affect mollusks, with the Haliotid herpesvirus, and bivalve Ostreid herpesvirus-
1 being highly similar virus variants and the only family members described so far (Davison et al.,
2005; Savin et al., 2010). Based on phylogenetic analysis, Malacoherpesviridae are distantly related
to otherHerpesvirales families, namely alpha-, beta-, gamma-, and allo-herpesviridae (Davison et al.,
2009; Iranzo et al., 2016). In general, the considerable genome size of Herpesvirales (125–290 kb)
supports complex transcriptional landscapes, including several coding (ORFs) and non-coding
RNAs (ncRNAs) such as microRNAs (miRNAs). Modulation of latent vs. lytic phases guarantees
long-term survival and efficient propagation of Herpesvirales, although viral genomes are exposed
to mutational pressure during their latency state into the cell nucleus (Brown, 2014). In alpha- and
gamma-herpesvirales, different recombination-initiating motifs can activate host genome integrity
pathways like homologous recombination-dependent DNA repair (HR), a virus-protective strategy
proposed as being crucial for Herpesvirales biology (Brown, 2017; Piekna-Przybylska et al., 2017).
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Speed, sensitivity, and resolution of current high-throughput
sequencing (HTS) technologies have been successfully used
to unlock the transcriptional landscape of Kaposi’s sarcoma-
associated herpesvirus, which is characterized by alternative
splicing of viral introns, polycistronic mRNAs, alternative
transcription starting sites, and a significant repertoire of
ncRNAs (Arias et al., 2014; Strahan et al., 2016). Although
transcriptome complexity could be a general feature of
Herpesvirales (Stern-Ginossar et al., 2012; Oláh et al., 2015;
Tombácz et al., 2016), their marked host-adaptation and
phylogenetic diversity discourage any oversimplification.

As reported in Table 1, the Malacoherpesviridae genomes of
Ostreid herpesvirus type-1 (OsHV-1), Chlamys acute necrobiotic
virus (AVNV), and Haliotid herpesvirus 1 (AbHV-1-AUS) were
sequenced in 2005, 2010, and 2013, respectively. A micro-variant
genome called µVar was described in 2010 by mapping its
sequence differences on the OsHV-1 genome; a further variant
of OsHV-1 (OsHV-1-SB) from diseased Scapharca broughtonii
and a Taiwanese variant of AbHV-1-AUS (AbHV-1-TAI) were
sequenced and recorded at NCBI in 2015 and 2016, respectively.
So far, most published studies have focused on the variant
µVar, a genotype associated with severe and worldwide events
of Crassostrea gigas mortality (Segarra et al., 2010; Arzul et al.,
2017). The variant µVar differs from the reference genome
because of small and large deletions and due to some single
nucleotide changes (Segarra et al., 2010). Viruses most likely exist
as a mixture of genotypes, and also a recent analysis of OsHV-
1 DNA occurring in wild oyster stocks in Italy indicated the
co-occurrence of slightly different OsHV-1 genotypes (Burioli
et al., 2016). Expression profiles of both C. gigas and OsHV-1s
have been investigated by suppression subtractive hybridization
(Renault et al., 2011), qPCR (Segarra et al., 2014b; Green
et al., 2015a) and by dual RNA-seq applied to oysters which
were experimentally infected (He et al., 2015) and naturally
infected (Rosani et al., 2015). Although OsHV-1 genotypes
have been mainly reported in Pacific oysters, OsHV-1 was
recently associated with mortality events of the Chinese bivalve
S. broughtonii (Renault et al., 2012; Bai et al., 2015; Xia et al.,
2015), whereas other bivalve spp. might act as simple virus
carriers (Burge et al., 2011) or be not susceptible (Tan et al.,
2015). In the same way, the closely related abalone herpesvirus
represents an important pathogen for the gastropod family of

TABLE 1 | Malacoherpesviridae genomes.

Virus name Preferred host NCBI ID Genome size (kb) No. of annotated ORF References

Bivalve- OsHV-1 [1] C. gigas AY509253 207 136 Davison et al., 2005

OsHV-1-µVAR [2] C. gigas / 201 134 Segarra et al., 2010

OsHV-1-SB [3] S. broughtonii KP412538 199 66 Xia et al., 2015

AVNV [4] Chlamys spp. GQ153938 211 134 Ren et al., 2013

Gastropod- AbHV-1-AUS [5] Abalone spp. NC_018874 212 118 Savin et al., 2010

AbHV-1-TAI [6] Abalone spp. KU096999 199 74 NCBI, April 2016

Virus name and related host, NCBI ID of the reference genome, genome size, and percentage of annotated ORF are reported for bivalve and gastropod Malacoherpesviridae. Numbering

in square brackets is a reference for Table 3.

Haliotis spp. (Chang et al., 2005; Savin et al., 2010; Corbeil
et al., 2016). Overall, the lack of stringent host-virus specificity
indicates Malacoherpesviridae as dangerous pathogens for the
entire mollusk aquaculture sector.

While the analysis of infected samples has greatly advanced
the general understanding of antiviral pathways in bivalve
mollusks (Renault et al., 2011; Corporeau et al., 2014; Segarra
et al., 2014a; Green et al., 2015b; Moreau et al., 2015; Martenot
et al., 2017), the biology of Malacoherpesviridae is still obscure.
The uniqueness of this viral family within the frame of poorly
characterized marine mollusk viromes raises questions as to
their evolutionary history, infection mechanisms in different
hosts, and the functional roles of their proteins. In the absence
of permissive cell lines, the development of “ad hoc” HTS
approaches is today the most promising way to disclose the
Malacoherpesviridae peculiarities.

In the present work, we used available mollusk RNA-seq
data as a source of Malacoherpesviridae reads to perform a
detailed genomic remapping. Also in comparison with the
most recently sequenced virus genomes, we present and
discuss the diversity and uniqueness of Malacoherpesviridae,
taking into consideration SNPs and sequence motifs and
raising some annotation incongruities. In particular, we
report the identification of Malacoherpesviridae-like elements
endogenously occurring in invertebrate genomes, and sequence
motifs related to viral genome protection mechanisms and
comprehensive OsHV-1 transcription data.

MATERIALS AND METHODS

Sequence Data
We retrieved the whole genome sequences and classification of
2,665 dsDNA viruses, including 82 Herpesvirales, from the NCBI
database. A total of 96 RNA-seq (Zhang et al., 2012) and 8
miRNA-seq (Xu et al., 2014) samples from C. gigas as well as
159 RNA-seq samples from different Haliotis spp. were retrieved
from the SRA archive (Supplementary File 1). The C. gigas
genome was obtained from Ensemble Metazoa v.3 (Zhang et al.,
2012). MiRBase release 21 was downloaded from http://www.
mirbase.org/ (Kozomara andGriffiths-Jones, 2014). Additionally,
scaffolds of genome drafts of Cephalochordates (Branchiostoma
floridae, Branchiostoma belcheri, and Asymmetron lucayanum),
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Annelida (Capitella teleta, Hydroides elegans, and Helobdella
robusta ), gastropods (Lottia gigantea, Aplysia californica, and
Conus tribblei), and bivalves (Mytilus galloprovincialis, C.
virginica, Mizuhopecten yessoensis, Modiolus philippinarum, and
Bathymodiolus platifrons) were retrieved from the NCBI archive
and used to compose a genomic blast database (Camacho et al.,
2009).

Identification and Mapping of
Malacoherpesviridae Reads
If not differently indicated, all the analyses were performed
using CLC Genomic Workbench v.10.0 (Qiagen, Germany).
RNA reads were trimmed for quality, allowing a maximum
of two ambiguous bases and a quality threshold of Q20. To
reduce false positive viral hits, the mapping of C. gigas RNA-
seq reads on the oyster genome was performed with the large
gap read mapping (LGRM) tool. Sequence reads not mapping
on the C. gigas genome were stringently mapped (0.9 and
0.9 for length and similarity fraction, respectively) on known
Malacoherpesviridae genomes and the resulting positive hits
were labeled as “Malacoherpesviridae reads” and retained for
subsequent analyses. Viral spliced reads were retrieved by
mapping the reads on known Malacoherpesviridae genomes
with LGRM. In the absence of Haliotid spp. genomes, abalone
RNA reads were directly mapped on knownMalacoherpesviridae
genomes with stringent mapping parameters.

Sequence Alignment and Phylogenetic
Analysis
Malacoherpesviridae genomes were aligned with the progressive
Mauve algorithm included in the MAUVE tool (Darling
et al., 2010). Malacoherpesviridae ORFs were compared with
other Herpesvirales ORFs extracted from the downloaded
genomes. Predicted proteins were aligned with MUSCLE v.3.8
(Edgar, 2004) and phylogenetic trees were generated using
the Neighbor Joining algorithm and UPGMA algorithms, with
Jukes-Cantor distance estimation and applying 1,000 bootstrap
replicates with a significance cut-off set at 500. Blast searches
were performed locally using BLAST+ (Camacho et al.,
2009), whereas conserved domains as well as peptide and
transmembrane regions were identified by using InterProScan
v.60, SignalP, and THMM tools, respectively (Petersen et al.,
2011). Putative Malacoherpesviridae endogenous viral elements
(EVEs) were searched on 15 invertebrate genomes using
tblastn with a cut-off E-value of 10−50 with all the OsHV-1
ORFs as query. The resulting hits were extracted and further
inspected.

Prediction of miRNA Precursors and
Recombination-Initiating Motifs
Two ab-initio tools for the detection of miRNA precursors
were tested on Malacoherpesviridae genomes, namely miRPara
(Wu et al., 2011) and VMir (Grundhoff et al., 2006). Briefly,
miRPAra is a Support Vector Machine tool that provides 76
parameters predictive of putative hairpin regions on the basis
of experimentally verified animal, plant, and virus miRNA
models. VMir slides a sequence window of adjustable size
across the viral genomes and then employs the RNA fold

algorithm to predict structures with minimal free energy
folding. Pre-miRNA candidates were identified and scored by
evaluating the structural features of known pre-miRNA hairpins.
Results obtained with miRPAra and VMir were compared and
only common predicted structures were retained as putative
Malacoherpesviridae miRNAs. To ascertain the presence of
any viral miRNAs among C. gigas miRNA-seq reads, de-novo
assembled consensus sequences generated from the 8miRNA-seq
samples were mapped on both C. gigas and Malacoherpesviridae
genomes.

Nucleotidic motifs indicative of polyadenylation sites (PAS) or
representative of conserved patterns were identified by simple
textual searches along whole Malacoherpesviridae genomes or
by applying the MEME tool (Bailey and Elkan, 1994) in the
3′ and 5′UTR ORF regions (the latter were defined as the
100 nt before the starting codon and after the stop codon,
respectively). All viral dsDNA genomes were scanned for
the presence of six recombination-initiating motifs possibly
activating homologous recombination-dependent DNA repair
(host HR), and enrichment ratios were calculated as reported
in (Brown, 2014). Briefly, sequence motifs were identified in
both original sequences and randomized sequences obtained
with shuffleseq (default parameters, EMBOSS Explorer, http://cys.
genomics.purdue.edu/emboss/), and then counted. The amount
of a given sequence motif in each viral genome was normalized
by genome length before computing the motif enrichment
(ratio higher than two between original and randomized
sequences).

OsHV-1 Expression Analysis and SNP
Calling
To quantify the expression of viral ORFs, allMalacoherpesviridae
reads were stringently mapped on the OsHV-1 reference genome
(GenBank ID: AY509253) setting both length and similarity
parameters to 0.9. Starting from the read counts, Transcripts Per
Million (TPM) values were computed according to Wagner et al.
(2013) in order to evaluate viral expression patterns by Principal
Component Analysis (PCA) and ORF clustering (Euclidean
distance, single linkage).

Single Nucleotide Polymorphism (SNP) analysis was
performed on mapping files. Nucleotide changes were called
“SNP” if present in at least 5% of the locally aligned reads using
the following parameters: minimum average quality of the five
surrounding bases, 15; minimum quality of central base, 20;
minimum required coverage, 100x. Subsequently, SNP analysis
was repeated on read mappings joined by sample origin and
SNPs were compared among groups. SNP calling parameters
were maintained except for the coverage, which was lowered to
20x to account for a smaller number of aligned reads.

RESULTS

Tracing the Phylogenetic History of
Divergent Herpesvirales
(Malacoherpesviridae)
Malacoherpesviridae display a genome size of 199–212 kb and a
number of predicted ORFs ranging from 66 for AbHV-1-TAI to
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136 for OsHV-1, always covering most of the genome sequence
(Table 1). As for other Herpesvirales, 5–15% of the mollusk viral
ORFs have a signal peptide region (Figure 1). Multiple alignment
of whole Malacoherpesviridae genomes highlighted conserved
sequence blocks clearly discriminating two genome types,
namely bivalve and gastropod viruses, with very few regions of
high similarity between them (e.g., ribonucleoside-diphosphate
reductase, light violet blocks) and other genomic regions shared
between two only of the three bivalve Malacoherpesviridae

genomes (red and light green boxes, Supplementary File 2).
These regions refer either to intergenic segments, like the variable
microsatellite regions that differentiate OsHV-1 from the µVar
variant (Segarra et al., 2010; Martenot et al., 2013), or to
deletions/insertions that modify the coding potential (e.g., the
large deletion of ORF36-37 in the µVar variant (Renault et al.,
2012). Among the latter discriminant features, we remarked a 2.7
kb insertion characterizing the AVNV and OsHV-1-SB genomes
(position 60–63 kb) and encoding three ORFs with unknown
function (OsHV-1-SB ORF125, a putative secreted protein;
ORF126 and ORF127, a putative transmembrane protein).
We later exploited these virus-specific regions to determine
which type of virus variant was present in a given RNA
sample.

To obtain data useful for reconstructing the evolutionary
history of Malacoherpesviridae, we searched for EVEs in a
number of invertebrate genomes, including nine bivalve and
gastropod genome drafts. The analyzed invertebrate genomes
did not include any putative Malacoherpesviridae EVEs, the
sole exception being ORFs denoting a Ribonucleotide reductase

big subunit, found in the C. gigas, M. philippinarum, C.
tribbei, and C. teleta genomes. As reported for B. floridae
(Savin et al., 2010), we also identified a portion of a genome
scaffold showing high similarity with Herpesvirales sequences
in lancelet (Branchiostoma) spp. and in annelid Capitella teleta.

These scaffolds matched several Herpesvirales ORFs, including
viral DNA polymerase (Table 2). Phylogenetic trees based on
the catalytic subunit of DNA polymerase and generated with

TABLE 2 | Identification of Malacoherpesviridae endogenous viral elements

(EVEs) in invertebrate genomes.

Malacoherpesviridae

ORF

Blast hit E-value (10E) Scaffold ID

DNA polymerase C. teleta −172 Scaffold_559

B. floridae −104 ABEP02031171

B. belcheri −98 FQTN01000253

DNA packaging

terminase

C. teleta −105 Scaffold_559

B. floridae −99 ABEP02031173

B. belcheri −95 FQTN01000253

ORF54 B. floridae −98 ABEP02031173

B. belcheri −91 FQTN01000253

C. teleta −53 Scaffold_559

Ribonucleotide reductase

big subunit

C.gigas −97 C36000

C. tribbei −65

M. philippinarum −63 Scaf_11254

C. teleta −61 Scaffold_559

ORF68-secreted protein B. floridae −96 ABEP02031173

B. belcheri −92 FQTN01000253

C. teleta −67 Scaffold_559

ORF47 B. floridae −74 ABEP02031173

C. teleta −59 Scaffold_559

DNA primase C. teleta −67 Scaffold_559

B. floridae −62 ABEP02031171

B. belcheri −61 FQTN01000253

FIGURE 1 | Number of ORFs identified in Herpesvirales genomes. The black part of each bar indicates the ORFs fraction with a predicted signal peptide.

Malacoherpesviridae genomes are highlighted by the red bars.
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two different algorithms always showed well-supported clades
for the alpha-, beta-, and gamma-Herpesviridae, and for a
clade containing Malacoherpesviridae, allo-Herpesvirales, and
three DNA polymerase sequences retrieved from invertebrate
genomes (Figure 2). In detail, the annelid sequence clustered
with bivalve Malacoherpesviridae, whereas the two lancelet
sequences clustered as an out group that was more similar to
abalone Malacoherpesviridae. These results further emphasize
the evolutionary divergence of known mollusk viruses from
other Herpesvirales as reported by Davison et al. (2005) and
Iranzo et al. (2016). Moreover, the presence of Herpesvirales
EVEs very similar to Malacoherpesviridae (Malacoherpesviridae-
like) is confirmed not only in B. floridae (Savin et al., 2010)
but also in the B. belcheri and C. teleta genomes. Depending
on the applied algorithm, allo-Herpesvirales clustered as an
outgroup of Malacoherpesviridae or of other Herpesvirales (data
not shown).

Malacoherpesviridae-Specific Genes
Support the Divergence from Other
Herpesvirales
The uniqueness of most of the Malacoherpesviridae genes
hampers a comparative identification of conserved protein
domains and homologous genes in public sequence databases.
Moreover, Malacoherpesviridae share amongst themselves, and
with other Herpesvirales, a small number of protein domains
which mainly pertain to transcription-related proteins. As
previously reported by Davison et al. (2005) for OsHV-1, the
BIR domain (PF00653) was the only one exclusively found in
all Malacoherpesviridae, whereas some other protein domains
were identified as specific to bivalve or gastropod herpesviruses
(Supplementary File 3). Although some Herpesvirales possess
proteins inhibiting the host apoptotic pathways, e.g., proteins
with a partial BIR domain or a Bcl-2-like protein (Wang et al.,
2002; Gallo et al., 2017), a highly-confident BIR domain was
uniquely found in Malacoherpesviridae, whereas the FIC,
Exo5, and zf-RING_5 domains were detected only in bivalve
Malacoherpesviridae. FIC (PF02661) characterizes proteins
mediating post-translational modifications (Roy and Cherfils,
2015) and Exo5 characterizes the same clan of other herpesvirus
exonucleases (Herpes_UL24 and Herpes_alk_exo domains)
including the gastropod Malacoherpesviridae exonuclease
(PDDEXK_1 domain). Through stable coordination of Zn
cations, zf-RING_5 fingers acquire different binding specificities
for DNA, RNA, proteins, and/or lipid targets, and therefore
pleiotropic roles. For instance, the RING domain of the
immediate-early protein (ICPO) of herpes simplex virus 1
(HSV-1) has ubiquitin ligase activity, enabling protein targeting
for degradation, and inhibits interferon-stimulated host gene
production (Taylor et al., 2014). As reported in Figure 3 and
Table 3, the higher number of protein domains unique to
gastropods and related to bivalve Malacoherpesviridae (12
and 3, respectively) is mainly due to a couple of viral genes
including six protein domains and encoding a DNA ligase
(present on both AbHV-1-AUS and AbHV-1-TAI genomes) and
amethyltransferase-like (present uniquely in AbHV-1-AUS).

Putative Protein Counterparts of
Malacoherpesviridae-Specific Domains
We further investigated the putative origin of viral genes
including Malacoherpesviridae-exclusive (among Herpesvirales)
protein domains by domain-based searches of similar genes
in public databases (NCBI) and in available mollusk genomes.
Accordingly, we were able to assignMalacoherpesviridae-specific
domains to 17 viral genes, present in all or some of the
known Malacoherpesviridae. Eleven of them matched mollusk
counterparts with similar domain organization (blastp similarity
value< 10−5). Searches within theC. gigas genemodels identified
genes characterized by BIR, guanylate kinase, DNA ligase,
FIC, and eukaryotic translation initiation factor domains. Other
Malacoherpesviridae-specific domains showed scarce similarity
with host genes characterized by EXO5, PDDEXK_1, zf-RING_5
and Sprt-like domains, whereas the viral RNA-lig_T4_1 and
methyltransferase domain did not find any similarity (Table 3).

BIR was detected in four bivalve herpesvirus genes and in two
AbHV-1-AUS genes (absent in AbHV-1-TAI).Moreover, BIRwas
highly represented in the C. gigas genome, with the oyster protein
EKC36433 (initial part of it) showing surprising similarity to one
viral gene. Among the viral FICs, only those from dsDNA viruses
(not from phages) showed strong conservation of the nine-
residue signature of the FIC motif (HPFX(D/E)GNGR) (Roy and
Cherfils, 2015), whereas the other hits displayed less-conserved
motifs, as observed for some bacterial proteins (Khater and
Mohanty, 2015). Some other domains of Malacoherpesviridae–
specific genes are also present in other dsDNA viruses or in
bacteria. The Exo5 exonuclease of bivalve Malacoherpesviridae
is unique among viruses, whereas the PDDEXK_1 exonuclease
of gastropod Malacoherpesviridae shows a wide distribution in
the Caudovirales family and in other DNA viruses. Finally, the
methyltransferase-like protein unique to AbHV-1-AUS showed
similarity with bacterial and (a few) viral proteins (mainly from
phages).

Only C. gigas RNA-seq Samples Include
Genuine Malacoherpesviridae Reads
We considered a total of 96 C. gigas and 159 Haliotis spp.
RNA-seq samples, accounting for more than 5.5 billion
reads, to identify reads generated by transcriptionally active
Malacoherpesviridae. Before mapping the mollusk RNA
sequences on Malacoviridae genomes, we exploited the C. gigas
genome to filter out all host reads from the C. gigas RNA-seq
samples. Since a Haliotid genome draft was not available, we
directly mapped abalone RNA-seq reads onMalacoherpesviridae
genomes. Stringent mapping of oyster-genome-unmapped
reads on known Malacoherpesviridae genomes allowed for
the selection of 5.483 M reads from the 2.27 billion starting
dataset (0.24%), whereas stringent mapping of the Haliotis spp.
reads produced only 0.01% of mapped reads, with very few
reads correctly paired. Manual examination of the mapping
files revealed the matching of the gastropod reads to viral
oligo-nucleotidic stretches, a fact greatly impairing the mapping
specificity. Conversely, the viral reads retrieved from C.
gigas samples showed a pairing correctness of 94.2%, thus
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FIGURE 2 | Phylogenetic tree of catalytic subunit of DNA polymerase. The blue lines represent Malacoherpesviridae hits. Background colors highlight

alpha-Herpesvirales in green, beta-Herpesvirales in blue, and gamma-Herpesvirales in yellow. The circular cladogram was computed with the Neighbor Joining

algorithm and Jukes-Cantor distance estimation. Bootstrap values are reported for each node as percentages calculated over 1,000 performed replicates, with a

significance cutoff set at 500.

demonstrating that only the C. gigas RNA-seq samples contained
genuine Malacoherpesviridae reads. All analyzed oyster RNA
samples (ten of them comprising 90% of the total reads)
included at least a few bivalve Malacoherpesviridae transcripts
(Supplementary File 1). The RNA-seq sample richest in viral
reads (3.5 % of the total reads) was from a naturally-occurring
infection previously described (Rosani et al., 2015). Viral
transcripts were also abundant in samples from more susceptible
life stages (larvae, spat, juveniles) and at 24 h post-infection with
the variant µVar (only two of the ten richest RNA-seq samples
derived from infection trials) (He et al., 2015).

Malacoherpesviridae Reads Are produced
by Slightly Different Viral Variants
We further considered the Malacoherpesviridae reads mapping
on the virus-specific regions previously identified by whole
genome alignment (Supplementary File 2). Stringent back-
mapping of these reads on sequential combinations of bivalve
Malacoherpesviridae genomes (0.9 of sequence similarity
computed along the whole read length) supported the assignment
of 4.903 M (out of 5.483 M reads) to Malacoherpesviridae
genomes, with residual ∼580 k reads failing the genome
assignment step (Table 4). Many of the latter (348 k reads) could
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FIGURE 3 | Venn diagram of the protein domains detected in bivalve Malacoherpesviridae, gastropod Malacoherpesviridae, or other Herpesvirales. Organization of

protein domains (with PFAM IDs) of bivalve-exclusive (left) and gastropod-exclusive (right) viral proteins.

TABLE 3 | Viral ORFs with Malacoherpesviridae-specific protein domains.

ORF annotation Virus ID Domain ID No. of MAL gene Domain occurrence

Other viruses Mollusk

genomes

Apoptosis inhibitor 1, 2, 3, 4, 5, 6 BIR 18 (6) dsDNA and RNA viruses Yes

Ribonucleotide reductase,

s.s.

1, 2, 3, 4 Ribonuc_red_sm, Fic 4 (1) Caudovirales, Nimaviridae, Nudiviridae Yes

Guanylate kinase 5, 6 Guanylate_kin 2 (1) Poxviridae, Caudovirales Yes

DNA ligase 5, 6 DNA_ligase_A_M,

DNA_ligase_A_N, DNA_ligase_A_C

2 (1) dsDNA viruses Yes

Eukaryotic translation

initiation factor-5

5 eIF-5_eIF-2B 1 (1) Baculoviridae, Marseilleviridae Yes

Exonuclease 1, 2, 3, 4 EXO5 4 (1) / Low similarity

Exonuclease 5, 6 PDDEXK_1 2 (1) dsDNA viruses, Caudovirales Low similarity

/ 5, 6 SprT-like 2 (1) Caudovirales, Baculoviridae Low similarity

RNA helicase 5, 6 ResIII 2 (1) dsDNS and ssRNA viruses Low similarity

Zinc finger 1, 2, 3, 4 zf-RING_5 4 (1) Mimiviridae Low similarity

RNA ligase 5, 6* RNA_lig_T4_1 2 (1) Caudovirales, Baculoviridae No

Methyltransferase/ 5 OrfB_Zn_ribbon, 1 (1) Caudovirales Mimiviridae Phycodnaviridae No

transposase OrfB_IS605,

HTH_OrfB_IS605

From left to right: putative ORF annotation and Malacoherpesviridae family members in which they are present (see numbering in Table 1), domain description, total number of

Malacoherpesviridae genes showing the specified domain (in parentheses, the number of unique genes), and occurrence of the same domain in other viral families as well as in mollusk

genomes.

*Partial or incomplete sequences are also present in bivalve Malacoherpesviridae.

be mapped anyway by gradually lowering the similarity mapping
parameter to 0.5, a fact suggesting a certain degree of variability
of viral RNA reads. Sequential genome mapping showed that
20,251 reads not matching an OsHV-1 sequence region could be
re-assigned to a genomic region of AVNV, or OsHV-1-SB (60–63
kb) including a 2.7 kb insertion typical of these two genomes.
De-novo assembling of these 20,251 reads confirmed the presence
of ORF125 and ORF126, out of the three AVNVORFs annotated
in this region (ORF125-ORF127). A total of 4,461 other reads
were attributed to a deletion on ORF103, typical of both OsHV-1

and OsHV-1-SB but absent in AVNV, suggesting the occurrence
of a mixture of viral genotypes in the analyzed RNA-seq samples
(Table 5). To further endorse this hypothesis, we searched
for viral spliced reads. Spliced reads normally result from the
mapping of one mRNA read over an intron sequence, whereas
in our analysis they were attributed to insertions or deletions
occurring in the viral reference genome. Using ultra confident
mapping parameters, like 0.95 and 0.95 for similarity and length
fraction, we were able to re-assign a portion of the 11,947 spliced
reads to the µVar variant and AVNV genomes (Table 6). All the
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AVNV-re-assigned reads mapped on a 9-nt deletion of ORF104,
the one discriminating AVNV from otherMalacoherpesviridae.

Read Mapping Highlights Few Annotation
Inconsistencies in the OsHV-1 Genome
Coverage graph analysis is a powerful tool for detect sequencing
anomalies. If reads are unbiasedly produced, the coverage should
appear quite homogenous along the entire sequence, even if a
5′ peak may be due to the random fragmentation of multiple
mRNA copies of any given transcript, as reported by Arias et al.
(2014). Manual inspection of the coverage graph (Figure 4A)
along the OsHV-1 genome highlighted a few anomalies. In the
ORF104 graph (Figure 4B), two distinct peaks are indicative of a
mismatch region impairing the read mapping and confirmative
of above reported results. In the ORF107 graph (Figure 4C),
highly uneven coverage (from 250x, along the first 1,000
nucleotides, to 4,800x) suggested the presence of two nested
ORFs with completely different expression levels. In fact, we
recognized two small ORFs, both of 152 AA length and one of
them including three transmembrane regions (Figure 4).

Moreover, the coverage graph showed that some reads
mapped on the five large intergenic OsHV-1 regions. As
previously reported, these regions contain non-coding, disrupted
ORFs (Davison et al., 2005; He et al., 2015). Following de-novo
assembling of the reads corresponding to said genomic regions,
we recovered few complete ORFs. Although the assembled reads
were retrieved from different RNA samples, nearly all of them
clustered in one consensus sequence (Table 7). In detail, the
consensus sequences generated for the 50k and 99k regions were
similar to ORF88 (transmembrane OsHV-1 protein), whereas the
consensus sequence for the 113k region showed similarity to a

TABLE 4 | Identification of Malacoherpesviridae reads in C. gigas RNA-seq data.

Analysis step No. of reads

Total analyzed reads 2.27 G

Putative Malacoherpesviridae reads 5,483,402

Malacoherpesviridae assigned reads 4,903,646

Un-assigned reads 579,576

Spliced reads 11,947

The spliced reads that were recovered with a large gap mapping tool were then

re-assigned to Malacoherpesviridae genomes (see Table 6).

protein characterized by a domain found only in the crustacean
White spot syndrome virus (Nimaviridae). Finally, for the three
consensus sequences generated from the 72k and 94k regions, no
similarities to any already annotated sequences were found.

Malacoherpesviridae Genomes Include
Few Recognizable Sequence Motifs
We searched known Malacoherpesviridae genomes for
nucleotidic motifs, oligo-nucleotidic stretches, and PAS.
Simple motif searches revealed oligo-nucleotidic stretches (at
least eight equal bases, mainly A or T) were preferentially
located in intergenic regions (only 20/399 were found in ORFs).
Mapping canonical PAS such as AAUAAA and AUUAAA (Arias
et al., 2014), we retrieved completely conserved matches in 393
of 559 3′UTRs. Applying a more sophisticated tool (MEME)
to the 5′ and 3′ UTR regions, we identified a longer PAS motif
in 126 3′UTRs and a second 3′UTR motif. Unfortunately, the
diffuse presence of T-stretches in intergenic regions hampered
the mapping of reads containing 3′ polyadenylated bases and,
hence, an elegant identification of transcript ends, as described
by Stern-Ginossar et al. (2012). None of the MEME-proposed
5′-motifs were statistically convincing enough.

Two DNA Recombination-Initiating
Promoter Motifs Are Enriched among
Malacoherpesviridae
We initially investigated the presence of six HR promoter motifs
in two reference Malacoherpesviridae genomes (OsHV-1 and
AbHV-1-AUS for bivalve and gastropod viruses, respectively)

TABLE 6 | Re-assignment of spliced reads to Malacoherpesviridae genomes.

Spliced reads

identified in

No. of

reads

Re-assigned to

OsHV-1 OsHV-1

µVAR (%)

OsHV-1-SB AVNV (%)

OsHV-1 4,640 / 6 – 92

OsHV-1 µVAR 4,583 – / – 93

OsHV-1-SB 1,959 – 19 / 51

AVNV 542 – 47 – /

Origin and number of spliced reads and the re-assignment percentages are reported.

TABLE 5 | Detailed analysis of three RNA-seq samples rich in viral reads.

Sample ID Total reads C. gigas unmapped

reads [%]

Malacoherpesviridae reads

Total reads Reads on

unique regions

OsHV-1 OsHV-1-µvar AVNV OsHV-1-SB

E-MTAB-2552 85,335,256 32 3,003,873 274,187 3.1% 95.0% 0.5% 1.5%

SRR334249 26,566,768 39 1,175,934 26,401 7.8% 55.0% 17.0% 20.0%

SRR2002949 6,538,514 36 73,212 5,951 0.9% 93.2% 2.3% 2.4%

From left to right: sample ID, total number of reads, percentage of C. gigas genomic unmapped reads and, for Malacoherpesviridae, the table illustrates the total number and fraction

of reads mapped on unique regions of four viral genomes, with the assignment of percentages to each individual virus.
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FIGURE 4 | Coverage graph of Malacoherpesviridae reads (A). Coverage graph of the whole OsHV-1 genome, as obtained by mapping 4.9 M viral reads with length

and similarity mapping parameters set to 0.9. Yellow arrowheads indicate annotated ORFs along the virus genome. Maximum coverage was set to 10,000x. (B)

Details of the ORF104 coverage graph, with the alignment including the 9-nt deletion causing coverage drop-off. (C) Details of ORF107 coverage graph, with two

nested ORFs (arrows) that could explain the local coverage bias. One ORF encoded three transmembrane regions (highlighted in blue).

TABLE 7 | De-novo assembly results of reads mapping on OsHV-1 putative coding regions.

Genomic region No. of reads No. of samples Assembled contigs Genomic region Identity (blastp)

PUTA_50k 112,855 76 1 (66%) 47,859–49,814 ORF88 [OsHV-1]

PUTA_72k 25,653 81 1 (93%) 73,359–75,186 /

PUTA_94k 17,115 63 2 (100%) 93,041–94,996 /

95,053–96,949 /

PUTA_99k 55,877 49 1 (100%) 98,220–100,352 ORF88 [OsHV-1]

PUTA_113k 47,072 45 1 (100%) 112,807–114,696 DUF1335-domain containing protein [113,991–114,661]

Region name, number of extracted reads, and number of samples fromwhich they originated are reported. Number of de novo assembled contigs, genomic region, and blastp annotation

are also reported.

and then we analyzed the resulting data against 2,665 dsDNA
viral genomes. Overall, we recognized 1,443,794, and 1,523,194
motifs in original and randomized viral sequences, respectively.
As expected, shorter motifs were more present, whereas a
classical meiotic recombination motif (CCTCCCCT) (Myers
et al., 2005) was found on 1,258 genomes and was labeled as

“enriched” only in 88 of them. Complete data are reported
in Supplementary File 4. Among the 104 invertebrate dsDNA
viruses present in the dataset, only a truncated chi-motif
(TGGTGG) (Chuzhanova et al., 2009) was widely enriched
(in around 50% of the viruses, including OsHV-1 but not
AbHV-1-AUS). The CCTCCCCT motif was computed as being
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TABLE 8 | miRNA prediction results. miRPara and vMir predictions are reported

for the six Malacoherpesviridae genomes, with total number of predicted regions,

common ones and percentage of those located in ORFs.

Species miRPara vMir common % on ORF

Total 866 247 96 53

OsHV-1 98 37 11 45

OsHV-1-µVAR 107 37 12 58

OsHV-1-SB 87 43 14 50

AVNV 94 39 14 43

AbHV-1-AUS 242 33 25 52

AbHV-1-TAI 238 58 20 65

“enriched” only in four invertebrate viruses, namely the two
Malacoherpesviridae,White spot syndrome virus, and Invertebrate
iridescent virus 6, a virus for which the interaction with
mammalian antiviral systems was recently reported (Ahlers
et al., 2016). The distribution of CCTCCCCT motif in known
Malacoherpesviridae genomes revealed its biased presence, with
most them located in the second part genomes.

Do Malacoherpesviridae Genomes Encode
Genuine miRNAs?
To infer the presence of miRNAs in Malacoherpesviridae
genomes, we exploited two ab-initio miRNA predictor tools.
Compared with VMir, the miRPara algorithm predicted a higher
number of putative structured RNAs, with a range of 11–25
predicted miRNAs per genome commonly identified (Table 8).
Although most of the Malacoherpesviridae genomes are covered
by ORFs, only 43–65% of the predicted miRNA structures were
located in coding regions, thus indicating their preferential
intergenic occurrence. None of the predicted structures found
similarity in the miRBase database and, likewise, none of the
miRBase hits found a decent match on Malacoherpesviridae
genomes. Taking into account eight miRNA-seq samples (some
of them rich in viral reads, all them belonging to the same oyster
batches used to produce developmental RNA-seq libraries), we
could not validate any of the predicted viral miRNA regions,
nor the miRNA reads mapped to any other viral genome.
These analyses do not indicate any genuine Malacoherpesviridae
miRNA; more focused experiments are needed to definitively
clarify this point.

OsHV-1 Transcription Levels are Highly
Comparable among Different RNA Samples
We performed a detailed expression analysis by mapping
the identified Malacoherpesviridae reads only on the OsHV-1
reference genome and computing the related expression values in
TPM. In addition to the already annotated ORFs, we considered
the genomic regions for which we had previously observed a
read coverage to be “putative coding regions.” The number
of mapped reads as well as non-normalized (nn-TPM) and
normalized (TPM) values calculated per ORF are reported in
an interactive table offered as an easy tool for interested readers
(Supplementary File 5). Although all 96 C. gigas RNA-seq

samples included viral reads, we classified 14 of them as “high”
(i.e., more than 1,000 counted viral reads, Supplementary File 1).
As stated above, this classification does not directly correlate
to the number of identified Malacoherpesviridae reads, since it
relies only on the reads that stringently mapped on the OsHV-
1 reference genome (and were subsequently counted). The RNA
samples in which different viral types contributed to the final
amount of Malacoherpesviridae reads were remarkable (e.g.,
SRR334249, Table 5). Digital expression analysis highlighted few
expression peaks, namely TPMs > 2M for ORF76, ORF80,
ORF29, ORF42, ORF88, and for a putative coding region
(PUTA_72k). Principal component analysis (PCA) based on
TPM-values clearly supported the “high-expression” grouping
based on the counted reads (Supplementary File 6.1). Few
ORFs were expressed in almost all RNA-seq samples, such as
ORF76, which represents 13% of the total TPMs and has an
extremely high relative expression in every sample (although
significantly expressed also in “high” samples, as showed by non-
TPMs). On the contrary, several ORFs showed a preferential
occurrence in selected samples, like ORF27, ORF45, ORF80,
ORF82, ORF90, ORF104, ORF107, and ORF113, which grouped
in a unique expression cluster (Supplementary File 6.2). Among
the several ORFs with unknown function, ORF18 encoding
for a 94-aa peptide was highly expressed in multiple RNA-
seq samples. As clearly shown in Figure 5, almost all viral
ORFs are simultaneously expressed in “high” samples, with
very few line interruptions corresponding to ORF36, ORF37,
and ORF48 previously reported as not functional (He et al.,
2015). In agreement with the results obtained from coverage
graph analysis, detectable expression levels were evident for
ORF50 (PUTA_72k), ORF62 and ORF63 (PUTA_94k), ORF65
(PUTA_99k), ORF73 (PUTA_113k), and (PUTA_110k).

SNPs Analysis Supports the Presence of
OsHV-1 Variants within RNA Samples
Using a conservative SNP-calling algorithm, we identified 664
variable positions consisting in changes of single nucleotides
or small stretches (maximal 5 nt). Eighty-six percent of these
SNPs mapped on annotated genes, with the majority of them
(75%) involving amino acid substitutions (nsSNP). The total
SNPs were distributed on 94 ORFs (40 ORFs are invariant)
and non-synonymous (ns) SNP occurred in 87 ORFs (37 ORFs
display only nsSNPs, seven only synonymous ones). ORF124
and ORF18 showed the maximal frequency of SNP (1.2%)
and of nsSNP (1.1%), respectively (Figure 6A). As reported
above, the interactive Supplementary File 5 also includes the
SNP frequencies for each OsHV-1 ORF. In spite of their
high expression levels, some ORFs showed very few SNPs or
appeared invariable, as expected in the case of strict functional
constraints. Further analysis of the viral SNPs in the RNA-seq
samples grouped by geographical origin produced a core set
of 78 common SNPs, with the main part of them supporting
an effective difference between sample groups (Figure 6B).
Although most of the common SNPs concerned differences
between the sampled viruses and the reference OsHV-1 (present
at 100% frequency in all groups), 20 SNPs displayed a frequency
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FIGURE 5 | Radar graph depicting the viral TPM values in 14 RNA-seq samples selected as “high”. Expression values are reported with a logarithmic scale.

lower than 95% in at least one group. Using the frequencies
of those SNPs to “genotype” undefined OsHV-1-mixtures in
eight selected RNA-seq samples, we were able to infer the
variable presence of slightly different viruses in single stocks
of virus-infected C. gigas (Figure 6C), as previously suggested
by read mapping on unique genomic regions (reported in
Table 5).

DISCUSSION

HTS methodologies have extraordinarily contributed to the
understanding of the viral world in the ocean (Brum et al.,
2015). Even though viruses aremassively present in coastal waters
(Suttle, 2007), only a minimal number of them are represented
in sequence databases. This bias allows for the discovery of
new viruses in almost every virome study, as recently reported
for six new bivalve-associated RNA viruses (Rosani and Gerdol,
2016) and for RNA viruses associated with invertebrates (Shi

et al., 2016). Nevertheless, bivalve viromes essentially remain
unknown, except for a few pathogenic viruses (Arzul et al., 2017).

In the present work, we focused on the family of
Malacoherpesviridae, a case study considering their enigmatic
evolutionary origin and limited transcriptional/genomic data.
Moreover, Malacoherpesviridae represent an urgent problem for
mollusk aquaculture worldwide: their recurrent association with
host mortality outbreaks may lead to a better understanding
of their life cycles and dynamic host-pathogen interactions,
ultimately for the development of effective prevention and
mitigation strategies (Davison et al., 2005; Corbeil et al., 2016;
Pernet et al., 2016). The previously reported divergence of
Malacoherpesviridae from other Herpesvirales suggests that
long-lasting evolutionary processes may have given rise to
the only Herpesvirales genomes known to infect invertebrates.
Although TEM imaging of herpes-like particles supports
the occurrence of Herpesvirales in corals, recent sequencing
data are somewhat elusive (Correa et al., 2016). Moreover,
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FIGURE 6 | (A) SNPs occurrence in OsHV-1 ORFs. The graph depicts the ratio of nsSNP vs. total SNP for the ORFs presenting at least one variation. Globe size is

proportional to the number of SNP for each ORF. (B) Common and exclusive SNPs indicated in the Venn diagram resulted from the comparison of oyster RNA-seq

samples grouped by origin. (C) “Genotyping” graph based on 20 polymorphic common OsHV-1 SNPs in the eight samples richest in viral reads (indicated by IDs).

further studies are necessary to assess the presence of herpes-
like viruses in crustaceans (Bang, 1971; Ryazanova et al.,
2015). Intriguingly, we reported Herpesvirales-like sequence
elements in genomic scaffolds of C. teleta and Branciostoma
spp. In agreement with Savin and colleagues (Savin et al.,
2010) demonstrated that B. floridae sequence is highly similar
to Abalone Malacoherpesviridae), we have shown that C.
teleta-encoded DNA polymerase is more similar to bivalve
Malacoherpesviridae, whereas both Branchiostoma-derived
DNA polymerase clustered as an Malacoherpesviridae outgroup.
Taken together, these findings suggest a broader presence of

invertebrate-infecting Herpesvirales, representing former or
extant (still undisclosed) viruses. Although the integration of
genetic elements of large DNA viruses in invertebrate host
genomes has already been reported (Drezen et al., 2017), further
experimental validation is needed to definitively prove the
integration of these sequences in host genomes.

The few predictable protein domains of Malacoherpesviridae
(most of the Malacoherpesviridae genes are unique) suggested
complex evolutionary paths, including gene transfer events
from other dsDNA viruses (in particular, invertebrate viruses),
bacteria, and also from mollusk hosts. Among other protein
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domains, we focused on BIR-containing proteins (putative
inhibitors of apoptosis), because apoptotic responses are reported
as one of the main bivalve countermeasures to infections due
to the µVar variant (Segarra et al., 2014b; He et al., 2015;
Martenot et al., 2017) and BIR was found in several dsDNA
and ssRNA viruses of invertebrates. Phylogenetic analysis of
metazoan and viral BIRs did not indicate any robust evolutionary
relationships, thus supporting the hypothesis of extensive gene
transfer. We highlighted other common features of invertebrate
dsDNA viruses by analyzing promoter sequence motifs involved
in virus-protective DNA repair. Invertebrate dsDNA viruses
analyzed in this work mainly encode one of the six searched
HR promoter motifs, namely a truncated version of the chi-
element, whereas almost only Malacoherpesviridae are enriched
in a classical meiotic recombination motif. These results support
the interaction of Malacoherpesviridae with host recombination
machinery, although probably with promoter motifs that are
partially different from the vertebrate ones (and unknown).
Commonalities emerged between Malacoherpesviridae and
Whispovirus (White spot syndrome virus 1), namely shared
domains and similar HR promoter enrichment patterns. An
overlap between arthropod (in this case crustaceans) and bivalve
viromes was recently reported for several RNA viral families
(Shi et al., 2016) which might be a fascinating matter for
future studies. Moreover, the reduced species-specificity for
Malacoherpesviridae somewhat recalls the lack of virus-host co-
divergence observed in invertebrate RNA viruses (Shi et al.,
2016), and calls for a broad, not species-specific mechanism of
action.

Given the lack of permissive cell cultures, we used oyster
RNA-seq samples as an effective (and unique) source of viral
reads. In the so-called “RNA-seq dark matter” (Ponting and
Belgard, 2010), the accidental or deliberate sequencing of OsHV-
1-infected oysters can make millions of viral reads available,
revealing active viral transcription. Despite the analysis of
numerous Haliotid RNA-seq samples, no similar results could
be achieved for abalones. Read mapping onMalacoherpesviridae
unique genome regions as well as SNP analysis suggested the
presence of more than one viral variant within and between
RNA-seq samples. One virus type was preferentially present
(i.e., more transcriptional active) in each host transcriptome
sample, although a single virus encoding all the variants typical of
different mollusk viruses might exist. Advanced ultra-deep RNA
and DNA sequencing would be optimal to ascertain this point.

Although OsHV-1 was apparently suppressed in many of the
analyzed samples (e.g., samples with less than a thousand viral
reads), only proper controls could validate this hypothesis and
assign the expressed viral ORFs to the persistent virus phase.
Therefore, we only observed the broad expression of ORF76 in
almost all samples with few viral reads. Interestingly, a limited
structural similarity of ORF76 with the human nucleoporin
(data not shown) postulates a role of this protein in the
viral entry inside cell nucleus. Viral expression profiles were
particularly informative in highly infected samples (supposed
lithic virus phase), with most viral ORFs actively expressed
and no predominant expression of single ORFs. Actually, the
concordance between ORF expression ratios in these samples

was a remarkable finding possibly revealing the functional
importance of many viral proteins during virus replication, like
in the case of the highly expressed dUTPase (ORF27, completely
lacking nsSNPs) in agreement with (Segarra et al., 2014a,b).
Functional validation based on in-situ hybridization, western blot
and recombinant proteins is definitively needed to investigate the
functional role of viral ORFs, as previously initiated (Martenot
et al., 2016, 2017; Segarra et al., 2016).

Despite the lack of functional data for Malacoherpesviridae,
conserved intergenic features might reveal hidden traits of virus-
host co-existence mechanisms. The current expansion of mollusk
genomics is expected to answer some of the open questions
mentioned in this work. Our analyses demonstrated that viral
transcriptomics may greatly contribute to the understanding of
the molecular facets of new viral variants including ORFs and
aminoacidic changes crucially related to the pathogenic nature
of certain variants, and may be useful to improve diagnostic
qPCR-based methods.
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Supplementary File 1 | Sequencing samples considered in the present work.

Experiment description, SRA ID and sample description, number of millions reads,

and number of identified Malacoherpesviridae reads are reported. Underlined

samples with more than 1,000 viral reads are indicated as “high” samples.

Supplementary File 2 | Whole genome alignment of five Malacoherpesviridae

genomes using progressive MAUVE. From top to bottom: OsHV-1, OsHV-1-SB,

AVNV, AbHV-1-AUS, and AbHV-1-TAI. Conserved sequence blocks are reported

in the same color whereas the available annotations are reported as empty boxes

just below the colored blocks for each genome.

Supplementary File 3 | PFAM domains encoded by Herpesvirales. Domain

name, PFAM accession, domain description, and length are reported. Each

domain is labeled (“yes”) if present in bivalve Malacoherpesviridae, gastropod

Malacoherpesviridae, or other Herpesvirales. Malacoherpesviridae–exclusive

domains are highlighted in yellow.

Supplementary File 4 | Distribution of six HR promoters in 2,665 dsDNA viral

genomes. From left to right: virus name, NCBI accession, genome length, number

of predicted proteins, and main host and, for the six recombination-initiating

motifs, the table illustrates their quantity, their genome-length normalized

frequencies, and their enrichment ratios.

Supplementary File 5 | Interactive visualization of the expression patterns of viral

ORFs in C. gigas RNA-seq samples. Number of mapped reads per sample,

non-normalized, and TPM expression values as well as total and non-synonymous

SNPs are reported for any selected ORF.
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Supplementary File 6 | ORF expression analysis. Figure SF6_1. Correlation plot

of Principal Component Analysis (PCA). Red and green dots indicate RNA-seq

samples labeled as “high” or not labelled, respectively. Figure SF6_2. Clustering of

viral ORFs. ORFs are clustered based on their TPM values using an Euclidean

distance algorithm. “High” samples are framed in black. See the color legend at

the bottom of the figure.
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