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The Bigger Picture

The functionalization of

monolayer-protected

nanoparticles is at the frontier of

nanotechnology, such that

innovative applications are

emerging in fields such as

nanomedicine, chemosensing,

and even catalysis. Importantly,

the nanoparticle’s functionality is

mainly defined by the nature of

the ligands forming the coating

monolayer. Here, we show how

the self-organization of

functionalized coating ligands in

monolayer-protected gold
SUMMARY

The self-assembly of a monolayer of ligands on the surface of noble-metal nano-

particles dictates the fundamental nanoparticle’s behavior and its functionality.

In this combined computational-experimental study, we analyze the structure,

organization, and dynamics of functionalized coating thiols in monolayer-pro-

tected gold nanoparticles (AuNPs). We explain how functionalized coating

thiols self-organize through a delicate and somehow counterintuitive balance

of interactions within the monolayer itself and with the solvent. We further

describe how the nature and plasticity of these interactions modulate nano-

particle-based chemosensing. Importantly, we found that self-organization of

coating thiols can induce the formation of binding pockets in AuNPs. These tran-

sient cavities can accommodate small molecules, mimicking protein-ligand

recognition, which could explain the selectivity and sensitivity observed for

different organic analytes in NMR chemosensing experiments. Thus, our find-

ings advocate for the rational design of tailored coating groups to form specific

recognition binding sites on monolayer-protected AuNPs.
nanoparticles (AuNPs) affects

their solubility and molecular

recognition abilities. We found

that coating ligands form

transient, protein-like binding

pockets in functionalized AuNPs.

Thus, we reveal that nanoparticle-

based chemosensing operates

through a recognition process

that is similar to that for protein-

ligand complex formation. These

findings could now herald the

arrival of the computational

nanodesign of intelligent

nanodevices with recognition

abilities toward small molecules

such as drugs, metabolites, illegal

drugs, and small molecular

markers for cancer.
INTRODUCTION

The self-assembly of a monolayer of ligands on the surface of noble-metal nanopar-

ticles provides a unique pathway to the realization of ordered and complex molec-

ular structures.1–4 Within the monolayer, the ligands are aligned, oriented, and kept

in close proximity with a particular configuration of the functional groups that are

present, which can act cooperatively to perform specific tasks.5–12 This has been ex-

ploited to endowmonolayer-protected nanoparticles with the ability to interact with

molecular and macromolecular entities, to detect and signal relevant targets, and

to catalyze reactions.13–16 The range of potential applications of such monolayer-

protected nanoparticles is therefore huge and spans from materials science and

electronics to bioimaging, nanomedicine, and even catalysis.17,18 In all such

applications, molecular recognition is the key point. In a similar way to proteins,

the large and organized chemical structure of the monolayer might result in the

formation of binding sites in the nanoparticles, which can thereby selectively interact

with other entities.19 Thus, the ultimate goal is now the rational design of nano-

particle-based receptors with programmed selectivity and affinity.20 To accomplish

this, however, several crucial steps must still be taken, in particular, steps toward a

deeper understanding of the process of molecular recognition within the nanopar-

ticle-coating monolayer and of the parameters that control it.

In this regard, some of us recently proposed nuclear magnetic resonance (NMR) che-

mosensing as a protocol that exploits the molecular recognition ability of mono-

layer-protected gold nanoparticles (AuNPs, about 2 nm core diameter) in order to
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Scheme 1. The NMR Chemosensing Machinery for Analyte Detection

Upper: the monolayer-protected nanoparticles (ligands 1 and 2) and analytes (3–6) investigated in

early studies.21

Lower: nanoparticle-coating thiols (1 and 7–10) used in this study and the solubility of

representative samples in CHCl3 and water.
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detect target analytes.21–24 Typically, these analytes are small organic molecules

such as salicylate. This molecular recognition ability for small organic molecules

has potential implications for the detection of metabolites, illegal drugs, and mole-

cular markers for cancer, among others. The NMR experiment (nuclear Overhauser

effect [NOE] pump)25 exploits a diffusion filter to dephase the magnetization from

all the small molecular species in the sample, followed by an NOE step in which

the residual magnetization of the nanoparticles is selectively transferred to the inter-

acting molecules. From an analytical point of view, this experiment allows the NMR

spectrum of the target molecule to be isolated even in a complex mixture, revealing

its presence and identity. More generally, however, such an experiment also pro-

vides detailed information on the molecular recognition ability of the nanoparticles.

Indeed, binding selectivity revealed by earlier experiments was somewhat unex-

pected. 1-AuNPs, reported in Scheme 1, detect salicylate (2-hydroxybenzoate, 3;

Scheme 1) in water with a remarkable selectivity with respect to many other aromatic

anions of a similar structure, including 3- and 4-hydroxybenzoate (4 and 5; Scheme 1)

and 4-methylbenzenesulfonate (6; Scheme 1).21 Within this group, salicylate is

the molecule with the highest octanol/water partition coefficient (Pow) and the

most retained in reversed-phase chromatography. Selective recognition could

hence simply arise from the hydrophobic interaction with the inner part of the

nanoparticle-coating monolayer. Interestingly, when we elongated the alkyl portion

of 1 by four carbon atoms, we obtained 2-AuNPs (Scheme 1), which could detect
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4-methylbenzenesulfonate in addition to salicylate.Nevertheless, 2-AuNPs could not

detect the less hydrophilic 3- and 4-hydroxybenzoate.21 This result demonstrated

that other factors were at play in determining the monolayer’s binding selectivity.

In this work, we report a detailed investigation of the recognition abilities of 1-AuNPs

and a series of previously unreported monolayer-protected nanoparticles featuring

different coating monolayers and selectivity for analytes. NMR-based experiments

combined with extensive molecular dynamics (MD) simulations indicate that

molecular recognition at the monolayer of these selected AuNPs requires the pre-

formation of specific, although transient, protein-like binding pockets in the nano-

particle-coating monolayer. We found that the presence of these pockets is, in

turn, the result of a delicate and somehow counterintuitive balance of interactions

within the monolayer itself and with the solvent. Together, these findings represent

the basis for the rational design of tailored coating groups that can form selective

recognition sites on monolayer-protected AuNPs, which are thus able to operate

with programmed recognition ability.26
RESULTS AND DISCUSSION

The chemical structure of the original ligand 1 (Scheme 1) can be divided into four

parts: (1) the thiol (gray), which ensures the grafting to the monolayer surface; (2)

the hydrophobic alkyl chain (blue); (3) an amide group (green), originally inserted

for synthetic accessibility;27 and (4) a hydrophilic oligo(ethylene glycol) (OEG)

moiety (red), which ensures water solubility. At first glance, the alkyl part of thiol 1

should be the portion providing relevant interactions with salicylate. In the nano-

particle’s coating monolayer, this alkyl part forms a hydrophobic pseudo-phase

that can accommodate hydrophobic substrates in a manner similar to that of surfac-

tant aggregates. In addition, the amide group can form additional H bonds (HBs)

with the substrate. To better understand these points, we designed a series of

analogs where the two relevant parts of the ligand were systematically modified.

In all ligands 7–10, the amide group was removed. In 7, it was substituted with an

ether group (CH2O). In this way, the removal of the amide did not substantially affect

the size of the alkyl portion, and the ligand maintained the same length as 1. In

ligands 8–10, on the other hand, removal of the amide groups was accompanied

by an increase in length of the alkyl and/or the OEG portion.
Organization of the Nanoparticle’s Coating Monolayer

Ligands 7–10 and the corresponding AuNPs (1.5–1.7 nm gold core diameter) were

prepared by standard protocols (Supplemental Information, Sections S1–S3 and

S6). Notwithstanding the similar structure of the coating thiols, nanoparticles re-

vealed different solubility properties (Scheme 1 and Supplemental Information,

Section S4.1), intended here as the ability to form stable mixtures with the solvent

that do not settle upon prolonged storage. Indeed, 1-AuNP was very soluble in

water (up to 300 mM or 15 mg/mL) and in organic solvents with high and moderate

polarity (from methanol to chloroform).21,28 7- and 8-AuNPs were also soluble in

water and organic solvents, but saturation concentration in water was lower (about

60 mM or 3 mg/mL) than that of 1-AuNP. Finally, 9- and 10-AuNPs, which contain

shorter OEG chains, were soluble only in organic solvents. On the basis of such re-

sults, we decided to further investigate the dispersion state of nanoparticles 1-, 7-,

and 8-AuNPs in water by transmission electron microscopy (TEM), dynamic light

scattering (DLS), and NMR. TEM micrographs obtained by depositing nanoparticle

water solutions on the grids showed nanoparticles homogeneously distributed over

the substrate, without apparent aggregation (Supplemental Information, Section
94 Chem 3, 92–109, July 13, 2017



Figure 1. NMR Spectra of 1-, 7-, and 8-AuNP in D2O and CDCl3
Signals from the OEG portion of the coating thiols are highlighted in blue, and signals from the alkyl

portions are highlighted in red. Symbols are as follows: *, residual water signal; and �, impurities.
S4.2). DLS measurements in water (at 15 mM nanoparticle concentration) revealed

the presence in each case of a unimodal nanoparticle distribution with average

hydrodynamic diameters of 8, 16, and 21 nm for 1-, 7-, and 8-AuNPs, respectively

(Supplemental Information, Section S4.3). Similar results were obtained by diffu-

sion-ordered spectroscopy (DOSY)-NMR experiments, which again detected the

presence of a unimodal nanoparticle distribution with average hydrodynamic diam-

eters of 5, 15, and 18 nm, respectively (Supplemental Information, Section S4.4).

Such results indicated that 1-AuNPs are present in water solution mainly as isolated

nanoparticles, whereas 7- and 8-AuNPs form small aggregates. However, both DLS

and DOSY-NMR hardly discriminate entities of similar size and consequently cannot

provide precise information on the amount of aggregates present in the solutions

with respect to isolated nanoparticles. Furthermore, if isolated and aggregated

nanoparticles were involved in multiple exchange equilibria (a likely possibility),

the interpretation of their apparent diffusivities would be even more complicated.

Deeper insight into this point came from 1H NMR investigations (Figure 1).

As expected, because of nanoparticle grafting, all the 1H signals arising from the

coating thiols were relatively broad and the hyperfine structure was not resolved.29

However, a striking difference becomes evident when comparing the spectra re-

corded in deuterated water for 1-, 7-, and 8-AuNPs (Figure 1). The signals arising

from the OEG portion, between 3.3 and 3.8 ppm, and in particular from the termi-

nal methoxy residue at 3.35 ppm, have similar linewidths for 1-AuNP (13.3 Hz) and

7-AuNP (16.6 Hz) but are significantly broader for 8-AuNP (24.5 Hz). Linewidths of

signals arising from terminal groups have been shown to strongly depend on nano-

particle size.30 Indeed, neglecting magnetic field inhomogeneities, NMR signal

broadening depends on the transverse relaxation time T2. This is determined

mainly by the dipolar interactions between the spins in the monolayer, as modu-

lated by the nanoparticle tumbling rate and by the internal mobility of the ligands

within the monolayer. Because the dynamics of the OEG portions of the coating

ligands should be independent from the ligand packing in the monolayer, broad-

ening of 8-AuNP signals indicates a slower tumbling rate (or chain rigidification)

as expected in the case of aggregates. We hence concluded that 7-AuNPs are

dispersed in water mainly as isolated nanoparticles that coexist with a small fraction

of aggregates, whereas in the case of 8-AuNP, the population of aggregates is

more pronounced.
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Table 1. 1H T1 and T2 Relaxation Times for 1-, 7-, and 8-AuNPs in CDCl3 and D2O

Solvent Signals Min–Max T2 (s)
a Min–Max T1 (s)

a

7-AuNP 8-AuNP 1-AuNP 7-AuNP 8-AuNP 1-AuNP

CDCl3 Alkylb 0.504–0.694 0.429–0.537 0.711–0.766 0.660–0.989 0.667–0.69 1.04–1.30

OEGc 1.12–1.40 0.77–1.37 0.626–0.744 1.17–1.59 0.847–1.64 0.923–0.986

CH3
d 2.61 2.52 1.67 2.84 2.83 1.81

D2O Alkylb 0.006**–0.016* 0.024*–0.05* 0.07*–0.11* 0.67–0.7* 0.6**–0.7** 0.596–0.62

OEGc 0.061–0.065 0.031*–0.038* 0.222–0.279 0.648–0.681 0.64–0.64 0.638–0.638

CH3
d 0.101 0.07** 0.52 0.912 0.70 1.13

Errors are within 10% unless indicated: *errors within 25%, **errors within 50%. In cases where the signal decay was found to bemulti-exponential, only the largest

relaxation times are reported.
aFor each spectral region, the largest and the smallest relaxation times are reported.
bSignals in the 1.2–2.3 ppm range.
cSignals in the 3.4–3.8 ppm range.
dBroad signal at 3.3 ppm; relaxation parameters for the terminal methyl group are reported separately because they are affected by internal rotation.
Values for 1H relaxation times T1 and T2 are reported in Table 1. As expected, T2
values increase with the distance from the Au core because protons farther from

the core are less packed and consequently have larger degrees of freedom with

respect to those closer to the nanoparticle core.5,6,29,30 In CDCl3, T2 values for the

signals of the different regions (alkyl, OEG, CH3; Table 1) are similar for all AuNPs,

confirming that all nanoparticles have a similar mobility of the coating ligands,

similar sizes, and are present as isolated entities. In water, the behavior is different;

all spins of 1-AuNP relax more slowly than those of 7- and 8-AuNPs.

In the case of 8-AuNP, such an effect could be ascribed to aggregation that reduces

both the nanoparticle tumbling rate and the mobility of the chains (because of their

interlocking). However, when 1- and 7-AuNP are compared, the decrease in the T2
values for the latter is much more relevant for the signals arising from the alkyl chains

(�10-fold decrease) with respect to the signals from the outer OEG chains (�4-fold

decrease). This suggests that, besides a possible reduction of the tumbling rate,

faster relaxation of the alkyl signals in 7-AuNP could also arise from a decrease of

their internal mobility. In other words, when in water, the nanoparticles coated

with ligands devoid of the amide unit, such as 7-AuNPs, feature substantially more

rigid alkyl chains than those of 1-AuNP, which contain the amide moiety.

Subsequently, we investigated the ability of water-soluble 1-, 7-, and 8-AuNPs to

detect organic molecules with the NMR chemosensing protocol (Figure 2 and Sup-

plemental Information, Section S5). The NOE-pumping sequence was used to

analyze samples containing the nanoparticles (15 mM) and salicylate at increasing

concentrations (1–10 mM) in carbonate buffered D2O solution at pD = 10.0.

1-AuNP confirmed their reported ability to detect salicylate in water.21 Analyte sig-

nals appeared in the NOE-pumping spectra at substrate concentrations as low as

2 mM and increased in both intensity and signal-to-noise ratio with increasing con-

centration. On the other hand, and surprisingly enough, analyte signals were never

detected with a signal-to-noise ratio above 3 (which we usually set as a detection

limit) in the experiments performed with 7- and 8-AuNPs, even in the presence of

high (10 mM) concentrations of the substrate. All the nanoparticles have the same

size and a very similar structure of the coating thiols, which leads to similar longitu-

dinal relaxation rates (T1) of protons within the same moieties (Table 1). Thus, the

different signal enhancements observed in NOE-pumping experiments (Figure 2)

should rather arise from different cross-relaxation rates, which depend on the affinity
96 Chem 3, 92–109, July 13, 2017



Figure 2. NMR Spectra

(A) 1H NMR subspectrum of 5 mM sodium salicylate (3) in D2O.

(B) NOE-pumping subspectrum of the same sample in the presence of 8-AuNP.

(C) NOE-pumping subspectrum of the same sample in the presence of 7-AuNP.

(D) NOE-pumping subspectrum of the same sample in the presence of 1-AuNP.

Conditions: [AuNP] = 15 mM, carbonate buffer 20 mM, pD = 10, 298 K. See also Supplemental

Information Section S5 and Figures S33–S35.
of the analytes for the substrate. This indicates that 7- and 8-AuNPs have an affinity

for salicylate that is sensibly lower than that of 1-AuNP and confirms that partition

into the hydrophobic pseudo-phase formed by the alkyl portions of the nanopar-

ticles coating thiols cannot explain the observed substrate recognition.
Morphology and Dynamics

On the basis of this evidence, we performed a series of extended MD simulations of

all the AuNPs immersed in either explicit water or chloroform. Nanoparticles sam-

ples prepared by standard solution methods are usually composed of clusters of

different sizes. In our case, the average Au core diameter (1.7 nm) is close to that

of the Au144(SR)60 cluster31–34 (�1.6 nm), and the contribution to the observed

NOE follows the size distribution (Supplemental Information, Section S7).35 Indeed,

it has already been shown that Au144(SR)60 is the main component in nanoparticle

batches with average diameter around 2 nm.35 In addition, we have shown that

computational simulations performed with Au144(SR)60 nicely predict the properties

of nanoparticle samples with similar size distribution.36 We hence considered the

Au144(SR)60 structure as a single nanoparticle model to analyze the dynamic proper-

ties and interactions of the different coating ligands in explicit solvents through

classic MD simulations of >200 ns for each AuNP/solvent system (�3.2 ms in total).
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Figure 3. Comparison of Experimental and Calculated T1 Values of
13C Nuclei along the Chains of

1-AuNPs

Left: 1-AuNPs dissolved in water.

Right: 1-AuNPs dissolved in chloroform.

T = 298 K. 13C Larmor frequency = 125.75 MHz. See also Supplemental Information Section S11.6

and Figure S74.
To validate our model systems, we first used the MD simulations to compute the T1
relaxation times for 13C nuclei of 1-AuNPs, the only sample soluble enough to allow

us to measure the T1 values for
13C both in deuterated water and CDCl3. In

13C re-

laxometry experiments, the relaxation of each 13C nucleus depends essentially on

the fluctuations of the dipole-dipole interactions between the carbon and the

attached protons (neglecting chemical shift anisotropy mechanisms).37 In this

case, relaxation times were calculated on the basis of the MD simulations via the

Lipari-Szabo approach (Supplemental Information, Section S11).38,39 A comparison

between the experimental and the MD-calculated T1 values is reported in Figure 3,

which highlights the very good match between the two datasets. The different relax-

ivities of the carbon nuclei in the two solvents, which in turn depend on the different

mobility of the coating chains in the monolayer, are well captured by both our MD

simulations and NMR, further supporting the choice of the Au144(SR)60 model for

the computational studies.

Turning our attention to the picture emerging from the MD simulations, we noticed

first that all the monolayer-protected AuNPs were more compact in water, as re-

flected by a decrease of�10% in their radius of gyration compared with that in chlo-

roform (Figure 4A). In chloroform, the relative distribution of the three moments of

inertia and the eccentricity, which are shape descriptors, indicate that all the AuNPs

adopted a spherical shape (Figure 4B). On the contrary, monolayer conformational

preferences in water were quite different. 1- and 7-AuNP appeared relatively spher-

ical in this solvent too, but we observed progressively broader relative distributions

of moments of inertia, causing an increase in the eccentricity values, for 8-, 9-, and in

particular 10-AuNPs, suggesting a less spherical shape (Figure 4B). In 10-AuNP,

sphericity deviation can be clearly ascribed to the collapse of the coating molecules

into bundles, featuring aligned alkyl chains located at opposite poles of the nano-

particle (Figure 4D).40 For 7-, 8-, and 9-AuNPs, on the other hand, alkyl chain bundles

were not clearly detected, but simulations again indicated a similar level of confor-

mational rigidity for the alkyl portion of these nanoparticles, in line with the broad

NMR signals and short transverse relaxation times observed for 7-AuNP in the

NMR experiments (Figure 1 and Table 1). In chloroform, all AuNPs were more
98 Chem 3, 92–109, July 13, 2017



Figure 4. Shape and Solvation of AuNPs

(A and B) Probability distributions of (A) radius of gyration (Rg) and (B) moments of inertia (I, shown as box-and-whisker plots) of 1-, 7-, 8-, 9-, and 10-

AuNPs in water and chloroform. The average nanoparticle eccentricity e = (1 � Imin/Iavg), where e = 0 for a sphere and 1 for a prolate spheroid, is also

reported (SD = 0.2 except for * and #, where it is 0.3 and 0.4, respectively).

(C) Distribution of the solvent molecules and the gold and sulfur atoms (in the inset in yellow and orange, respectively) from the center of mass of the

Au144 core.

(D) Representative snapshots of the AuNPs and solvent molecules within 1 nm of the gold atoms (wires connect carbon atoms C4–C7 closer than 0.8 nm).

See also Supplemental Information Section S11.2 and Figure S70.
flexible than in water, and the OEG of 7- and 8-AuNPs was less constrained than that

of 1-AuNP, in agreement with the NMR experiments discussed above.

The elongated spheroid shape of 8-, 9-, and 10-AuNPs in water resulted in exposure

of the ligand’s alkyl chains to the solvent. This is particularly evident in 10-AuNPs.

Here, the bundling of the coating ligands created a structure with a wide, ring-

shaped, equatorial region where alkyl chains were poorly shielded from water by

few OEG chains. Indeed, the water molecules closest to the gold core were almost

exclusively found in this ring-shaped region (Figure 4D).
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Figure 5. HB Interactions

Average number of ligand-ligand and ligand-water HBs during MD simulations and the

decomposition of this number for the different coating thiol atoms (ordered top to bottom from the

outer to the inner part of the coating ligand). For NH/O, NH is present in 1-AuNP and O is present in

7- and 8-AuNPs.
The number of ligand-water HBs is reported in Figure 5 and provides interesting

information. 1-AuNP formed the larger number of HBs with the solvent (�150),

followed by 7- and 8-AuNPs (�86–88) and finally by 9- and 10-AuNPs (�76–79).

Interestingly, the trends of the computed eccentricity values in water and of the num-

ber of HBs with the solvent well correlate with the observed nanoparticle solubility

and aggregation tendency. That is, nanoparticles showing a more spherical shape,

with a consequent better shielding of the inner alkyl chains and a better solvation

in our simulations, correspond to those present in solution as individual entities. Still,

subtle differences found for quite similar nanoparticles, such as 7- and 8-AuNP, indi-

cate that a full explanation of nanoparticle stability in solution will require additional

investigations.

The substantially greater number of HBsmade by 1-AuNP is due to the amide group,

particularly its carbonyl oxygen, which was responsible for�50% (�60% considering

the NH) of the interactions with water. The OEG portion accounts for the remaining

40% of HBs, with the number of interactions decreasing from the terminal and more

exposed oxygen to the inner ones. The same trend was observed in 7-, 8-, 9-, and

10-AuNPs. Here, however, the total number of HBs formed by the three outer

oxygens was larger than in 1-AuNPs (�73–79 versus �61).

The additional oxygen atom in 7- and 8-AuNPs, compared with 9- and 10-AuNPs,

formed only a few (�13–15) HBs with water. This is because the extra HB acceptor

site in 7- and 8-AuNPs is buried inside the monolayer and thus poorly exposed

to the solvent. In this view, it is striking that the insertion of the carbonyl group in
100 Chem 3, 92–109, July 13, 2017



1-AuNP increased the number of HBs from �76–79 to �150. This implies that the

amide groups not only provide an additional site of interaction with the solvent,

but also substantially affect the conformation of the ligands, which in turn modulate

solvation of the monolayer.

Another relevant feature revealed by HB analysis is the interligand interactions in

1-AuNP. In this case, the amide NH group formed 22 G 4 HBs with acceptors on

neighboring ligands. This is quite close to the average number of interactions estab-

lished with water molecules (19 G 4). Interestingly, half of the interligand HBs

formed by NH are with neighboring carbonyl oxygens, and the remaining ones

are formed with the OEG, decreasing from the outer to the inner oxygen (Figure 5).

Importantly, these results revealed that: (1) the number of interligand HBs is rela-

tively small (the theoretical maximum being about 60); (2) the formation of HBs be-

tween the amide groups and the OEG oxygens is favored by the significant bending

of the coating ligands. On the other hand, we found �90 HBs with intercalated wa-

ter, which are thus favored compared with interligand HBs. Most likely, HBs with

intercalated waters helped maintain the amide groups of 1-AuNP to be spaced

and distributed homogeneously, preventing the massive bundling observed with

the other AuNPs. Instead, the bending of some ligands of 1-AuNP, which favors

rigidification (Figure 3) through interligand HBs with the amide group (Figure 5), ex-

plains the smaller average number of interactions that OEG oxygens establish with

water, with respect to those formed by 7-, 8-, 9-, and 10-AuNPs.

In chloroform, where HBs with the solvent are not possible, the number of interligand

HBs in 1-AuNP almost doubled to 43 G 3 (Figure 5) in comparison with those in

water. At the same time, and in contrast to water, OEG headgroups were rarely

involved in these interactions, preferring extended conformations toward the

solvent. The interligand HB network generated highly structured HB chains (Fig-

ure 6). Such interactions modified the preferred monolayer conformation in these

nanoparticles, from the homogeneously distributed structure observed for the

simulations in water to a more inhomogeneous structure characterized by the pres-

ence of large ‘‘canyons’’ filled by solvent molecules (Figures 4C, 4D, and S70).

Together, these data show that the compactness, shape, and surface arrangement

of AuNPs’ coating ligands are strongly affected by both the ligand structure and

the solvent. In chloroform, ligands prefer a disordered conformation that results in

an overall spherical nanoparticle shape. The formation of interligand HBs induces

clustering of the ligands in small bundles separated by deep ‘‘canyons,’’ only for

1-AuNP. Such a behavior is in full agreement with the early observation by Rotello

et al.41,42 who detected relatively strong interligand HBs in nanoparticles coated

with amide-bearing thiols in organic solvents. On the basis of chemical oxidation ex-

periments, such interligand interactions were supposed to generate ligand

bundling, and the resulting ‘‘canyons’’ to cause the lower resistance of the gold

core to decomposition.41,42

In water, it is the dispersive-hydrophobic interaction between the alkyl chains that

induces the aggregation of the ligands to form bundles.5,6 It appears that such struc-

tures could favor aggregation and even prevent the nanoparticle’s dissolution in

water, depending on the length of the OEG chains.

The effect of the amide groups in 1-AuNP in water is therefore somehow intriguingly

counterintuitive. Amide groups do not reinforce the bundling, as in chloroform,

where they provide an additional interligand interaction.7 Instead, amide groups
Chem 3, 92–109, July 13, 2017 101



Figure 6. Structure of the Monolayer

(A) Amide group atoms closer than 0.4 nm are connected by wires, and solvent molecules within 1 nm of the Au144 core are shown. The Au144 core is

shown as a gold surface, and sulfur atoms are shown as orange spheres.

(B) Example of the HB network for 1-AuNP in water.

(C) Identification of pockets on one snapshot of 1-AuNP in water.

(D) Superposition of the docking pose of salicylate in 1-AuNP and in the LysR-type transcription factor (PDB: 2Y7K).

(E) Characterization of pockets for 1-AuNP in water. Magenta spheres indicate the ‘‘deep cavity’’ pockets (left), and yellow spheres indicate the ‘‘OEG

sinking’’ pockets (right). Gray, green, and cyan surfaces identify the alkyl, amide, and OEG regions, respectively.

(F) Time evolution and lifetime of a stable pocket formed in 1-AuNP in water. Blue color for the open pocket and black for the closed pocket.

See also Supplemental Information Sections S11.3–S11.4 and S11.7–S11.8 and Figures S71–72, S75, and S76.
favor the intercalation of water molecules, which act as spacers between the ligands,

inducing a more disordered and spherical monolayer conformation in water.
Molecular Basis for Recognition

Importantly, for 1-, 7-, and 8-AuNPs, the simulations in water revealed the formation

of transient pockets in the monolayer structure (Figure 6). The pockets showed

different sizes and shapes. The observed average number was �5 G 2 for each

AuNP, and an average volume of �0.15 G 0.04 nm3, which is enough to
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accommodate a few waters but also small organic molecules such as salicylate

(Supplemental Information, Section S11.7). The lifetime of the pockets ranged

from hundreds of picoseconds to tens of nanoseconds, revealing their transient

nature. Whereas some pockets were very flexible, i.e., they had a high frequency

of transitions between short-lived open and closed conformations, other pockets

were more structured and able to remain open for most of the simulation time

(see Figure 6F; this pocket was open for >90% of the time). Closer inspection re-

vealed that such pockets could be classified into two different topological classes.

The first class, found in all the nanoparticles, was essentially characterized by the

sinking of the OEG layer, and only fragments of such moieties composed the pocket

walls. The second class, present only in 1-AuNP, was deeper and penetrated down

into the alkyl layer (Figure S76). Notably, in this case, water molecules were often

found to form bridges either between distant parts of the same coating ligand

(i.e., amide and OEG) or between distinct ligands, creating a complex HB network

topology (see Figures 6B and S72).

The occurrence of the latter transient cavities only on the surface of 1-AuNP helps

rationalize the recognition ability of these nanosystems in NMR chemosensing

experiments. To further investigate 1-AuNP’s interaction with the bound analytes,

we reversed the NOE-pumping approach by transferring magnetization from the

analyte to the monolayer with a selective 1D-NOESY pulse scheme.43 From a qual-

itative viewpoint, the larger the number of close contacts between the monolayer

and the analyte, the stronger the nanoparticles’ NOE signals in this experiment.

The 1D-NOESY spectrum in Figure 7 clearly shows that NOE enhancements on

the alkyl portion of the coatingmonolayer are larger than those on the oxymethylene

moieties. This suggests that the salicylate molecule arranges in such a way as to

place its protons in close proximity to the inner alkyl portion of the monolayer. How-

ever, its position in the monolayer is not deep enough to prevent contacts with the

OEG portion, as demonstrated by the weak NOE signals observed.

This result was compared withmolecular docking calculations of salicylate to the four

pockets detected on the monolayer of a representative equilibrated MD snapshot

(Figure 6). In particular, pockets 1 and 2 were of the ‘‘deep cavity’’ type, and pockets

3 and 4 were of the ‘‘OEG sinking’’ type. Interestingly, we found that the interaction

network of the salicylate’s docking pose into pockets 1 and 2 gave rise to a large

number of contacts with the alkyl portion of the coating ligand (Figure 7C), in agree-

ment with the results of the selective NOESY experiment. On the other hand, dock-

ing in pockets 3 and 4 resulted in predominant contacts with the OEG groups

(Figure S78). There is thus a good qualitative agreement between the NMR data

and the docking of salicylate to the ‘‘deep cavity’’ pockets that are present in

1-AuNPs. In addition, the predicted docking pose into pocket 2 well matched that

of salicylate co-crystallized with LysR-type transcription factors (Figure 6D).44 This

corroborates the idea that AuNPs can form protein-like pockets on the surface, as

here in 1-AuNP, and suggests that cavities with the proper topology are essential

for the specific interaction with selected analytes. Nicely enough, Lucarini et al.45

have reported that AuNPs coated with thiol 1 undergo a decrease of affinity for hy-

drophobic organic molecules as their size increases. Indeed, formation of binding

pockets in the monolayer would be more difficult in large nanoparticles, as the

decreased curvature should induce a stronger packing of the thiols, which in turn

could hamper pockets opening.

Accommodation of the substrate inside pockets in the nanoparticle-coating mono-

layer is somewhat expected. The different efficiency of 1- and 7-AuNPs in the
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Figure 7. Interactions between Analyte and AuNP

(A) 1H reference spectrum of 20 mM sodium salicylate and 10 mM 1-AuNP in D2O carbonate buffer

(pD = 10).

(B) 1D NOESY spectrum of the same sample obtained with selective excitation of the salicylate

resonances (6–9 ppm) and 300-ms mixing time. Signals of the nanoparticle highlight a negative

NOE regime (slow tumbling).

(C) Number of total 1H-1H contacts, color coded in intervals of 1 Å, between docked salicylate and
1H-bearing atoms of 1-AuNP (exchangeable NH omitted). The bars have been sorted according to

the chemical shifts of the parent atoms.

See also Supplemental Information Section S12 and Figure S78.
NOE-pumping experiments, however, indicates that pocket opening might be a

prerequisite for an efficient recognition. To clarify these relevant points and define

the molecular basis for the AuNP- and analyte-recognition process, we ran two

1-ms-long MD simulations of 1-AuNP, with either salicylate or 4-hydroxybenzoate

(3 or 5 in Scheme 1, respectively) in solution. The results showed that salicylate,

which is selectively detected by 1-AuNP in chemosensing experiments (Figure 8A),

spent �48% of the simulation time bound to the monolayer (i.e., conformations in

which the distance between protons of the analyte and of the monolayer was less

than 0.4 nm). In addition, residence time related to each recognition event was quite

long, lasting tens of nanoseconds (Figure 8B). In NOE-pumping experiments, a

sizable magnetization transfer between the spins of the monolayer and those of

the analyte is detected only when the residence time of the analyte in the monolayer
104 Chem 3, 92–109, July 13, 2017



Figure 8. 1-AuNP-Analyte Interactions

(A) NOE-pumping spectra resulting from a solution of 15 mM 1-AuNP with either 5 mM salicylate

(left) or 5 mM 4-hydroxybenzoate (right). Mixing time is 1.2 s. The emergence of a signal only for

salicylate is well rationalized by the MD results outlined in (B) (see text for details).

(B) During MD simulations, 1-AuNP-analyte binding events were defined when the minimum

intermolecular proton-proton distance was less than 0.4 nm. The binding events were sorted by

their binding residence time (x coordinate) and plotted against the minimum distance between the

analyte and the Au144 core (depth of penetration in the monolayer, y coordinate). The rotational

correlation time (tc) of 1-AuNP is also reported as a visual guideline.

(C) Distribution of the analytes in the monolayer taken from MD snapshots every 25 ns. Purple

analytes lie at max 1 nm from the gold core, and green analytes lie between 1 and 1.5 nm.

(D) Binding event of salicylate to 1-AuNP.

See also Supplemental Information Section S11.9, Figure S77, and Movie S1.
is comparable, or longer, than the rotational correlation time (tc) of the nanopar-

ticle.24 Inspection of Figure 8B, where the binding events are sorted according to

their binding residence time, reveals that many binding events of salicylate visibly

exceed tc of the nanoparticle. Moreover, in agreement with NOE experiments,

MD simulations indicated that salicylate was mostly sinking into the inner part of
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the monolayer, with the aromatic ring pointing toward the gold core and the carbox-

ylate group remaining exposed to the water solution (Figure S77). We also detected

the formation of HBs between the substrate’s carboxylate and hydroxyl groups and

the monolayer amides, which were formed during 6% of the total simulation time.

On the other hand, 4-hydroxybenzoate, which is not experimentally detected by

NOE-pumping experiments with 1-AuNP (Figure 8A), was in the bound state only

for 27% of the overall simulation time. Moreover, the observed binding events of

4-hydroxybenzoate were on a short timescale (a few nanoseconds), thus rarely

above tc. Indeed, our MD simulations show that this analyte was mostly floating

on the outer OEG surface compared with salicylate. Orientation of 4-hydroxyben-

zoate inside the monolayer was similar to that observed for salicylate, with

the carboxylate group pointing toward the water phase. In this configuration, the

4-hydroxy group is located deep inside the hydrophobic portion of the cavity.

Such unfavorable conditions most likely justify the shorter permanence of the

substrate into the cavities.

Noticeably, the time of residence into the cavities is not only correlated with magne-

tization transfer but also with binding affinity, because it directly depends on the rate

of dissociation (koff) of the analytes from the monolayer. Hence, a longer residence

time suggests a higher thermodynamic affinity of the substrate for the monolayer.

Ultimately, these simulations allowed us to decipher the binding mechanism of

salicylate to 1-AuNP, which occurred through four main steps (Figure 8D and Movie

S1): (I) formation of transient pockets in the monolayer; (II) binding of salicylate into

one of these transient pockets; (III) conformational changes of the pocket in

response to analyte binding; (IV) sinking of the analyte into the inner shell of the

monolayer. Such a sequence confirms our early hypothesis that the opening of the

pocket is the essential prerequisite for ligand binding. Consequently, as found

here, the recognition ability of nanoparticles is crucially related to their ability to

form pockets with the proper structure and lifetime. Fascinatingly, the series of

events listed able also suggests an interplay between conformational selection

and induced fit,46 well mimicking the recognition and binding process for protein-

ligand complex formation.

Conclusions

Overall, this combined computational-experimental study shows that functionalized

coating ligands can self-organize through a delicate and somehow counterintuitive

balance of interactions within the monolayer itself and with the solvent. We demon-

strate that these complex interactions can also favor the formation of transient, pro-

tein-like binding pockets in monolayer-protected AuNPs, which has so far only been

hypothesized.19,47 These findings imply that nanoparticle-based recognition oper-

ates through a process that is similar to that for protein-ligand complex formation.

The investigation method designed here, which conjugates detailed NMR studies

and atomistic MD simulations, could find application in any nanoparticle-based

recognition event. The results reported here also raise new questions that merit

further investigation, e.g., which structural and physiochemical parameters predom-

inantly control monolayer organization and pocket formation, similar to that estab-

lished for binding pockets in proteins. This might help the rational design of thiols

capable of favoring the formation of selective pockets and receptors in the nanopar-

ticle-coating monolayer. Addressing such stimulating problems could herald the

arrival of the computational nanodesign of new functionalized nanoreceptors with

programmed recognition ability.
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EXPERIMENTAL PROCEDURES

Nanoparticle Synthesis

Thiols 7–10 were synthesized by standard procedures (Supplemental Information,

Sections S1 and S2). AuNPs were prepared by chemical reduction of HAuCl4
according to a two-phase, two-step protocol (Supplemental Information, Section

S3).48 In brief, tetracloroaurate was extracted in toluene with tetraoctylammonium

bromide as the phase-transfer agent. The nanoparticles were formed by reduction

with NaBH4 in the presence of dioctylamine as stabilizer. In situ exchange of the

amine with thiols provided the nanoparticles. AuNPs were characterized by TEM,

thermogravimetric analysis, UV-visible spectroscopy, and NMR. The average

diameter of the gold cores was 1.5–1.7 nm (s = 0.2 nm). The average nanoparticle

formula, calculated over all the AuNPs, was Au137(SR)58, suggesting that the samples

mainly comprised Au144(SR)60 clusters (�1.6 nm; see Negishi et al.35).
NMR Experiments

NMR experiments were performed on a Bruker AVIII 500 equipped with a 5 mm

z-gradient BBI probe. 1H relaxation times were measured at 500.13 MHz Larmor

frequency with standard CPMG (T2) and inversion recovery (T1) pulse sequences.

NOE-pumping experiments were performed with the pulse sequence detailed in

Perrone et al.21 and Salvia et al.22 13C T1 relaxation times were obtained at 125.75

MHz Larmor frequency by inversion recovery under proton decoupling conditions37

on a Bruker AVANCE DRX 500 equipped with a 5 mm z-gradient TCI 1H-13C/15N/2H

cryoprobe.
MD Simulations

The three-dimensional structure of the simulated AuNPs is based on the Au144(SR)60
model of Lopez-Acevedo et al.,31 which is the main component in our experimental

nanoparticle batches. Although this model does not account for size dispersion, it is

responsible for most of the effect observed in our experiments (see Results and Sup-

plemental Information, Section S7). We have already shown that simulations per-

formed with this model nicely reproduce the behavior of nanoparticles samples

with an average diameter of 1.6–1.8 nm.36 The coating groups, as well as salicylate

and 4-hydroxybenzoate (3 and 5 in Scheme 1), were parametrized with GAFF49 and

the atomic charges were derived by the RESP fitting procedure50 by a force-field to-

pology database-building approach as developed in RedServer.51 The van der

Waals parameters for the gold atoms were taken from Heinz et al.52 The AuNPs

were first minimized via the steepest descent algorithm in a vacuum. Then, the simu-

lation box was built to ensure a minimum distance between the AuNPs and the box

edges of at least 1 nm and filled up with either water (TIP3P model) or chloroform

molecules. For 1-AuNP, further simulations were carried out with explicit analytes

at a concentration of 35 mM. A second minimization was applied to relax the solvent

molecules around the solute. The system was then thermalized and pressurized in

different steps. After this initial phase, the system was ready for productive MD sim-

ulations. Production runs were carried out in the NPT (p = 1 bar, T = 300 K) statistical

ensemble. All bonds were constrained with LINCS, allowing a time-step set of 2 fs.

Periodic boundary conditions were applied to the systems in all directions. The PME

method was used to evaluate long-range electrostatic interactions, and a cutoff of

10 Å was used to account for the van der Waals interactions (full protocol in Supple-

mental Information, Sections S9 and S10). All MD simulations were performed with

GROMACS-4.6.53 Coordinates of the systems were collected every 2 ps, and the

analysis was performed every 100 ps. All analyses reported refer to the simulations

after 25 ns of equilibration. The simulation time was >200 ns for each AuNP-solvent
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system (�3.2 ms in total) and 1 ms for each of the two 1-AuNP-analyte systems (20 ms

of a single analyte-AuNP interaction in total).

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures, 78 fig-

ures, 2 tables, 5 schemes, and 1 movie and can be found with this article online at

http://dx.doi.org/10.1016/j.chempr.2017.05.016.
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