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Abstract. A tight Ω((n/
√
M)log2 7M) lower bound is derived on the

I/O complexity of Strassen’s algorithm to multiply two n× n matrices,
in a two-level storage hierarchy with M words of fast memory. A proof
technique is introduced, which exploits the Grigoriev’s flow of the matrix
multiplication function as well as some combinatorial properties of the
Strassen computational directed acyclic graph (CDAG). Applications to
parallel computation are also developed. The result generalizes a similar
bound previously obtained under the constraint of no-recomputation,
that is, that intermediate results cannot be computed more than once.

1 Introduction

Data movement is increasingly playing a major role in the performance of
computing systems, in terms of both time and energy. This technological trend [1]
is destined to continue, since the very fundamental physical limitations on
minimum device size and on maximum message speed lead to inherent costs
when moving data, whether across the levels of a hierarchical memory system
or between processing elements of a parallel system [2]. The communication
requirements of algorithms have been the target of considerable research in the
last four decades; however, obtaining significant lower bounds based on such
requirements remains an important and challenging task.

In this paper, we focus on the I/O complexity of Strassen’s matrix multiplica-
tion algorithm. Matrix multiplication is a pervasive primitive utilized in many
applications. Strassen [3] showed that two n× n matrices can be multiplied with
O(nω) operations, where ω = log2 7 ≈ 2.8074, hence with asymptotically fewer
than the n3 arithmetic operations required by the straightforward implementation
of the definition of matrix multiplication. This result has motivated a number of
efforts which have lead to increasingly faster algorithms, at least asymptotically,
with the current record being at ω < 2.3728639 [4].
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Previous and Related Work: I/O complexity has been introduced in the
seminal work by Hong and Kung [5]; it is essentially the number of data transfers
between the two levels of a memory hierarchy with a fast memory of M words and
a slow memory with an unbounded number of words. Hong and Kung presented
techniques to develop lower bounds to the I/O complexity of computations
modeled by computational directed acyclic graphs (CDAGs). The resulting lower
bounds apply to all the schedules of the given CDAG, including those with
recomputation, that is, where some vertices of the CDAG are evaluated multiple

times. Among other results, they established an Ω
(
n3/
√
M
)

lower bound to

the I/O complexity of the definition-based matrix multiplication algorithm,
which matched a known upper bound [6]. The techniques of [5] have also been
extended to obtain tight communication bounds for the definition-based matrix
multiplication in some parallel settings [7–9] and for the special case of “sparse
matrix multiplication” [10]. Ballard et al. generalized the results on matrix
multiplication of Hong and Kung [5] in [11, 12] by using the approach proposed
in [8] based on the Loomis-Whitney geometric theorem [13, 14]. The same papers
present tight I/O complexity bounds for various classical linear algebra algorithms,
for problems such as LU/Cholesky/LDLT/QR factorization and eigenvalues and
singular values computation.

It is natural to wonder what is the impact of Strassen’s reduction of the
number of arithmetic operations on the number of data transfers. In an important
contribution, Ballard et al. [15], obtained an Ω((n/

√
M)log2 7M) I/O lower bound

for Strassen’s algorithm, using the “edge expansion approach”. The authors extend
their technique to a class of “Strassen-like” fast multiplication algorithms and to
fast recursive multiplication algorithms for rectangular matrices [16]. This result
was later generalized to a broader class of “Strassen-like” algorithms by Scott
et. al [17] using the “path routing” technique. In [18] (Chap. 4.5), De Stefani
presented an alternative technique for obtaining I/O lower bounds for a large
class of Strassen-like algorithms characterized by a recursive structure. This result
combines the concept of Grigoriev’s flow of a function and the “dichotomy width”
technique [19]; it generalizes previous results and simplifies the analysis.

A parallel, “communication avoiding” implementation of Strassen’s algorithm
whose performance matches the known lower bound [15, 17], was proposed by
Ballard et al. [20]. A communication efficient algorithm for the special case of
sparse matrices based on Strassen’s algorithm was presented in [21].

On the impact of recomputation: The edge expansion technique of [15],
the path routing technique of [17], and the “closed dichotomy width” technique
of [19] all yield I/O lower bounds that apply only to computational schedules for
which no intermediate result is ever computed more than once (nr-computations).
While it is of interest to know what is the I/O complexity achievable by nr-
computations, it is also important to investigate what can be achieved with
recomputation. In fact, for some CDAGs, recomputing intermediate values reduces
the space and/or the I/O complexity of an algorithm [22]. In [23], it is shown
that some algorithms admit a portable schedule (i.e., a schedule which achieves
optimal performance across memory hierarchies with different access costs) only



if recomputation is allowed. Recomputation can also enhance the performance
of simulations among networks (see [24] and references therein) and plays a key
role in the design of efficient area-universal VLSI architectures with constant
slowdown [25]. A number of lower bound techniques that allow for recomputation
have been presented in the literature, including the “S-partition technique” [5],
the “S-span technique” [22], and the “S-covering technique” [26] which merges
and extends aspects from both [5] and [22]. However, none of these have been
previously applied to fast matrix multiplication algorithms.

Our results: We extend the Ω((n/
√
M)log2 7M) I/O complexity lower bound

for Strassen’s algorithm to schedules with recomputation. A matching upper
bound is known, and obtained without recomputation; hence, we can conclude
that, for Strassen’s algorithm, recomputation does not help in reducing I/O
complexity if not, possibly, by a constant factor. Our proof technique is of
independent interest, since it exploits to a significant extent the “divide and
conquer” nature exhibited by many algorithms. We follow the dominator set
approach pioneered by Hong and Kung in [5]. However, we focus the dominator
analysis only on a select set of target vertices, specifically the outputs of the
sub-CDAGs of Strassen’s CDAG that correspond to sub-problems of a suitable
size (i.e., chosen as a function of the fast memory capacity M). Any dominator
set of a set of target vertices can be partitioned into two subsets, one internal
and one external to the sub-CDAGs. The analysis of the internal component
can be carried out based only on the fact that the sub-CDAGs compute matrix
products, irrespective of the algorithm (in our case, Strassen’s) by which the
products are computed. To achieve this independence of the algorithm, we resort
on the concept of Grigoriev’s flow of a function [27] and on a lower bound to
such flow established by Savage [28] for matrix multiplication..

In order to obtain our general lower bound for the I/O complexity, we then
build on this result combining it with the analysis of the external component
of the dominator, which requires instead rather elaborate arguments that are
specific to Strassen’s CDAG. The paper is organized as follows: In the first part
of Sect. 2, we provide the details of our model and of several theoretical notions
needed in our analysis. In the second part of Sect. 2, we analyze the relation
between the Grigoriev’s flow of a function and the size of the dominator sets of
subsets of output vertices of a CDAG. In Sect. 3, we present the I/O complexity
lower bound for Strassen’s algorithm when recomputation is allowed. Extensions
of the result to a parallel model are also discussed.

2 I/O Complexity, Dominator Sets and Grigoriev’s Flow

We consider algorithms which compute the product C = AB of n× n matrices
A,B with entries from a ring R. We focus on algorithms whose execution, for
any given n, can be modeled as a computational directed acyclic graph (CDAG)
G = (V,E), where each vertex v ∈ V represents either an input value or the
result of a unit time operation (i.e., an intermediate result or one of the output
values), while the directed edges in E represent data dependences. A directed
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Fig. 1: Basic building blocks of Strassen’s CDAG. EncA and EncB are isomorphic.
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(a) Strassen’s H2×2 CDAG
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n2 × EncA n2 × EncB

n2 ×Dec

(b) Recursive construction of H2n×2n

Fig. 2: Black vertices represent combinations of the input values from the factor
matrices A and B which are used as input values for the sub-problems Mi;
Grey vertices represent the output of the seven sub-problems which are used to
compute the output values of the product matrix C.

path connecting vertices u, v ∈ V is an ordered sequence of vertices for which u
and v are respectively the first and last vertex such that there is in E a (directed)
edge pointing from each vertex in the sequence to its successor. We say that
G′ = (V ′, E′) is a sub-CDAG of G = (V,E) if V ′ ⊆ V and E′ ⊆ E ∩ (V ′ × V ′).

Properties of Strassen’s CDAG: Consider Strassen’s algorithm [3] when
used to compute C = AB, where A and B are n × n matrices with entries
from the ring R. Let Hn×n denote the corresponding CDAG. For n ≥ 2, Hn×n

can be obtained by using a recursive construction which mirrors the recursive
structure of the algorithm. The base of the construction is the H2×2 CDAG which
corresponds to the multiplication of two 2×2 matrices using Strassen’s algorithm
(Fig. 2a). H2n×2n can then be constructed by composing seven copies of Hn×n,
each corresponding to one of the seven sub-products generated by the algorithm
(see Fig. 2b): n2 disjoint copies of CDAG EncA (resp., EncB) are used to connect
the input vertices of H2n×2n, which correspond to the values of the input matrix
A (resp., B) to the appropriate input vertices of the seven sub-CDAGs Hn×n

i ;
the output vertices of the sub-CDAGs Hn×n

i (which correspond to the outputs
of the seven sub-products) are connected to the appropriate output vertices of
the entire H2n×2n CDAG using n2 copies of the decoder sub-CDAG Dec.

We will exploit the following recursive structure of Strassen’s CDAG:



Lemma 1. Let Hn×n denote the CDAG of Strassen’s algorithm for input matri-
ces of size n× n. For 0 ≤ i ≤ log n− 1, there are exactly 7i disjoint sub-CDAGs
Hn/2i×n/2i .

We will also capitalize on the existence of vertex-disjoint paths connecting the
“global” input vertices of Hn×n to the “local” input vertices of the sub-CDAGs
Hn/2i×n/2i for 0 ≤ i ≤ log n− 1, with the help of the following lemma.

Lemma 2. Given an encoder CDAG, for any subset Y of its output vertices,
there exists a subset X of its input vertices, with min{|Y |, 1 + d(|Y | − 1) /2e} ≤
|X| ≤ |Y |, such that there exist |X| vertex-disjoint paths connecting the vertices
in X to vertices in Y .

We refer the reader to the extended on-line version of this paper [29] for a detailed
presentation of Strassen’s algorithm and for the proofs of Lemmas 1 and 2.

Model: We assume that sequential computations are executed on a system
with a two-level memory hierarchy consisting of a fast memory or cache of size
M , measured in words, and a slow memory of unlimited size. A memory word
can store at most one value from R. An operation can be executed only if all its
operands are in cache. Data can be moved from the slow memory to the cache by
read operations, and, in the other direction, by write operations. Read and write
operations are also called I/O operations. We assume the input data to be stored
in slow memory at the beginning of the computation. The evaluation of a CDAG
in this model can be analyzed by means of the “red-blue pebble game” [5]. The
number of I/O operations executed when evaluating a CDAG depends on the
“computational schedule,” that is, on the order in which vertices are evaluated and
on which values are kept in/discarded from cache. The I/O complexity IOG(M)
of a CDAG G is defined as the minimum number of I/O operations over all
possible computational schedules.

We also consider a parallel model where P processors, each with a local
memory of size M , are connected by a network. We assume that the input
is initially distributed among the processors, thus requiring that MP ≥ 2n2.
Processors can exchange point-to-point messages among each other. For this
model, we derive lower bounds to the number of words that must be either sent
or received by at least one processor during the CDAG evaluation.

Grigoriev’s flow and dominator sets: The concept of dominator set was
originally introduced in [5]. We use the following, slightly different, definition:

Definition 1 (Dominator set). Given a CDAG G = (V,E), let I ⊂ V denote
the set of input vertices. A set D ⊆ V is a dominator set for V ′ ⊆ V with respect
to I ′ ⊆ I if every path from a vertex in I ′ to a vertex in V ′ contains at least a
vertex of D. When I ′ = I, D is simply referred as “a dominator set for V ′ ⊆ V ”.

The “flow of a function” was introduced by Grigoriev [27]. We use a revised
formulation by Savage [28]. The flow is an inherent property of a function, not of
a specific algorithm by which the function may be computed.

Definition 2 (Grigoriev’s flow). A function f : Rp → Rq has a w (u, v)
Grigoriev’s flow if for all subsets X1 and Y1, of its p input and q output variables,



with |X1| ≥ u and |Y1| ≥ v, there is a sub-function h of f obtained by making
some assignment to variables of f not in X1 and discarding output variables not
in Y1, such that h has at least |R|w(u,v) points in the image of its domain.

A lower bound on the Grigoriev’s flow for the square matrix multiplication
function fn×n : R2n2 → Rn2

over the ring R was presented in [28] (Thm. 10.5.1).

Lemma 3 (Grigoriev’s flow of fn×n : R2n2 → Rn2

[28]). fn×n : R2n2 →
Rn2

has a wn×n (u, v) Grigoriev’s flow, where:

wn×n (u, v) ≥ 1

2

(
v −

(
2n2 − u

)2
4n2

)
, for 0 ≤ u ≤ 2n2, 0 ≤ v ≤ n2. (1)

The “flow of a function” measures the amount of information that suitable
subsets of outputs encode about suitable subsets of inputs. Such information
must be encoded by any dominator of those outputs, thus implying the following
lower bound on the size of dominators.

Lemma 4. Let G = (V,E) be a CDAG computing f : Rp → Rq with Grigoriev’s
flow wf (u, v). Let I (resp., O) denote the set of input (resp., output) vertices of
G. Any dominator set D for any subset O′ ⊆ O with respect to any subset I ′ ⊆ I
satisfies |D| ≥ wf (|I ′|, |O′|).

Proof. Given I ′ ⊆ I and O′ ⊆ O, suppose the values of the input variables in
I \ I ′ to be fixed. Let D be a dominator set for O′ ⊆ O with respect to I ′ ⊆ I.
The lemma follows combining statements (i) and (ii):
(i) By Definition 2, there exists an assignment of the input variables in I ′, such

that the output variables in O′ can assume |R|wf(|I′|,|O′|) distinct values.
(ii) Since all paths I ′ to O′ intercept D, the values of the outputs in O′ are
determined by the inputs in I \ I ′, which are fixed, and by the values of the
vertices in D; hence, the outputs in O′ can take at most |R||D| distinct values. ut

We let Gn×n denote the CDAG corresponding to the execution of an unspeci-
fied algorithm for the square matrix multiplication function.

Lemma 5. Given Gn×n, let O′ ⊆ O be a subset of its output vertices O. For
any subset D of the vertices of Gn×n with |O′| ≥ 2|D|, there exists a set I ′ ⊆ I of
the input vertices I with cardinality |I ′| ≥ 2n

√
|O′| − 2|D|, such that all vertices

in I ′ are connected to some vertex in O′ by directed paths with no vertex in D.

Proof. Lemma 5 follows by applying the results in Lemmas 3 and 4 to the CDAG
Gn×n. Let I ′′ ⊆ I denote the set of all input vertices of Gn×n, such that all paths
connecting these vertices to the output vertices in O′ include at least a vertex in
D (i.e., I ′′ is the largest subset of I with respect to whom D is a dominator set
for O′). From Lemmas 3 and 4 the following must hold:

|D| ≥ wn×n ≥
1

2

(
|O′| −

(
2n2 − |I ′′|

)2
4n2

)
. (2)



Let I ′ = I \ I ′′. By the definition of I ′′, the vertices in I ′ are exactly those that
are connected to vertices in O′ by directed paths with no vertex in D. Since
|I| = 2n2, from (2) we have |I ′|2 ≥ 4n2 (|O′| − 2|D|). ut

3 Lower Bounds for Schedules with Recomputation

Without recomputation, once an input value is loaded in memory or an intermedi-
ate result is computed, it must be kept in memory (either cache or slow) until the
result of each operation which uses it has been evaluated. This is exploited by the
“dichotomy width technique” [19], the “boundary flow technique” [30], and those
yielding I/O lower bounds for Strassen’s algorithm [16–18]. With recomputation,
intermediate results can instead be deleted from all memory and recomputed
starting from the global input values. This considerably complicates the analysis
of the I/O cost (see [11] for an extensive discussion). In this section, we present
a technique which addresses these complications. First, we obtain a lower bound
for the minimum size of the dominator set of subset of vertices corresponding
to the output values of the (n/(2

√
M))log2 7 Strassen’s sub-problems with input

size 2
√
M × 2

√
M . In turn, this dominator bound yields an asymptotically tight

I/O lower bound both in the sequential and the parallel model.
For 1 ≤M ≤ n2/4, with M a power of four, we focus on the subset Y of the

input vertices and the subset Z of the output vertices of the (n/(2
√
M))log2 7

sub-CDAGs H2
√
M×2

√
M of Hn×n. Further, we let X be the set of the “global

input vertices” of Hn×n which correspond to the entries of matrices A and B.

Lemma 6. Given Hn×n, let Q be a set of internal (i.e., not input) vertices of

its
(
n/(2
√
M)
)log2 7

sub-CDAGs H2
√
M×2

√
M . For any Z ⊆ Z with |Z| ≥ 2|Q|

there exist X ⊆ X and Y ⊆ Y with |X| = |Y | ≥ 4
√
M (|Z| − 2|Q|) such that,

(a) there are |X| = |Y | vertex-disjoint paths from X to Y , and (b) each vertex in
Y is connected to some vertex in Z by a directed path with no vertex in Q.

Proof. For a fixed M , we proceed by induction on n = 2
√
M, 4

√
M, . . . In the

base case, Hn×n = H2
√
M×2

√
M , and the sets Y and X coincide. The statement

is a consequence of Lemma 5 as H2
√
M×2

√
M is a G2

√
M×2

√
M CDAG.

Assuming now inductively that the statement holds for Hn×n, with n ≥ 2
√
M ,

we shall show it also holds for H2n×2n. Let Hn×n
1 , Hn×n

2 , . . . ,Hn×n
7 denote the

seven sub-CDAGs of H2n×2n, each corresponding to one of the seven sub-products
generated by the first recursive step of Strassen’s algorithm.

Let Zi, Yi and Qi respectively denote the subsets of Z, Y and Q in Hn×n
i .

Since, from Lemma 1, the seven sub-CDAGs Hn×n
i are mutually vertex-disjoint,

clearly Z1, Z2, . . . , Z7 partition Z, Y1,Y2, . . . ,Y7 partition Y and Q1, Q2, . . . , Q7

partition Q. This implies
∑7

i=1 |Zi| = |Z|, and
∑7

i=1 |Qi| = |Q|. Letting δi =

max{0, |Zi| − 2|Qi|}, we have δ =
∑7

i=1 δi ≥ |Z| − 2|Q|.
Applying the inductive hypothesis to each Hn×n

i , we have that there is a
subset Yi ⊆ Yi with |Yi| ≥ 4

√
Mδi such that vertices of Yi are connected to



vertices in Zi via paths with no vertex in Qi. In the sequel, the set Y referred
to in the statement will be identified as a suitable subset of ∪7i=1Yi so that
property (b) will be automatically satisfied. Towards property (a), we observe
by the inductive hypothesis that vertices in Yi can be connected to a subset Ki

of the input vertices of Hn×n
i with |Ki| = |Yi| using vertex-disjoint paths. Since

the sub-CDAGs Hn×n
i are vertex-disjoint, so are the paths connecting vertices in

Yi to vertices in Ki. It remains to show that at least 4
√
M (|Z| − 2|Q|) of these

paths can be extended to X while maintaining them vertex-disjoint.

In Strassen’s CDAG H2n×2n (Sect. 2), vertices in X corresponding to input
matrix A (resp., B) are connected to vertices in K1,K2, . . . ,K7 by means of
n2 encoding sub-CDAGs EncA (resp., EncB). None of these 2n2 encoding sub-
CDAGs share any input or output vertices. No two output vertices of the same
encoder sub-CDAG belong to the same sub-CDAG Hn×n

i . This fact ensures that
for a single sub-CDAG Hn×n

i it is possible to connect all the vertices in Ki to a
subset of the vertices in X via vertex-disjoint paths.

For each of the 2n2 encoder sub-CDAGs, let us consider the vector yj ∈ {0, 1}7
such that yj [i] = 1 iff the corresponding i-th output vertex (respectively according
to the numbering indicated in Fig. 1a or Fig. 1b) is in Ki. Therefore, |yj |
equals the number of output vertices of the j-th encoder sub-CDAG which
are in K. From Lemma 2, for each encoder sub-CDAG there exists a subset
Xj ∈ X of the input vertices of the j-th encoder sub-CDAG for which it is
possible to connect each vertex in Xj to a distinct output vertex of the j-th
encoder sub-CDAG using vertex-disjoint paths, each constituted by a singular
edge with min{|yj |, 1 + d(|yj | − 1) /2e} ≤ |Xj | ≤ |yj |. Therefore, the number
of vertex-disjoint paths connecting vertices in X to vertices in ∪7i=1Ki is at

least
∑2n2

j=1 min{|yj |, 1 + d(|yj | − 1) /2e} under the constraint that
∑2n2

j=1 yj [i] =

4
√
Mδi. Let us assume, w.l.o.g., that δ1 ≥ δ2 ≥ . . . ≥ δ7. As previously stated, it

is possible to connect all vertices in K1 to vertices in X through vertex-disjoint
paths. Consider now all possible dispositions of the vertices in ∪7i=2Ki over
the outputs of the 2n2 encoder sub-CDAGs. Recall that the output vertices
of an encoder sub-CDAG belong each to a different Hn×n sub-CDAG. From
Lemma 2, we have that for each encoder, there exists a subset Xj ⊂ X of

the input vertices of the j-th encoder sub-CDAG with |Xj | ≥ min
{
|yj |, 1 +

d(|yj | − 1) /2e
}
≥ yj [1] +

(∑7
i=2 yj [i]

)
/2, for which it is possible to connect all

vertices in Xj to |Xj | distinct output vertices of the j-th encoder sub-CDAG
which are in ∪7i=1Ki using |Xj |, thus using vertex-disjoint paths. As all the
Enc sub-CDAGs are vertex-disjoint, we can add their contributions so that the
number of vertex-disjoint paths connecting vertices in X to vertices in ∪7i=1Ki is

at least |K1|+ 1
2

∑7
i=2 |Ki| = 4

√
M
(√

δ1 + 1
2

∑7
i=2

√
δi

)
. Squaring this quantity

leads to:(
4
√
M

(√
δ1 +

1

2

7∑
i=2

√
δi

))2

= 16M

δ1 +
√
δ1

7∑
i=2

√
δi +

(
1

2

7∑
i=2

√
δi

)2
 ,



since, by assumption, δ1 ≥ . . . δ7, we have:
√
δ1
√
δi ≥ δi for i = 2, . . . , 7. Thus:(

4
√
M

(√
δ1 +

1

2

7∑
i=2

√
δi

))2

≥ 16M

7∑
i=1

δi ≥
(

4
√
M (|Z| − 2|Q|)

)2
.

Thus,there are at least 4
√
M (|Z| − 2|Q|) vertex-disjoint paths connecting vertices

in X to vertices in ∪7i=2Ki as desired. ut

Lemma 7. For 1 ≤ M ≤ n2/4, and for any subset Z ⊆ Z in Hn×n with
|Z| = 4M , any dominator set D of Z satisfies |D| ≥ |Z|/2 = 2M .

Proof. Suppose for contradiction that D is a dominator set for Z in Hn×n

such that |D| ≤ 2M − 1. Let D′ ⊆ D be the subset of the vertices of D

composed by vertices which are not internal to the sub-CDAGs H2
√
M×2

√
M .

From Lemma 6, with Q = D \D′, there exist X ⊆ X and Y ⊆ Y with |X| =
|Y | ≥ 4

√
M (|Z| − 2 (|D| − |D′|)) such that vertices in X are connected to

vertices in Y by vertex-disjoint paths. Hence, each vertex in D′ can be on
at most one of these paths. Thus, there exists X ′ ⊆ X and Y ′ ⊆ Y with
|X ′| = |Y ′| ≥ ν = 4

√
M (|Z| − 2 (|D| − |D′|)) − |D′| paths from X ′ to Y ′ with

no vertex in D′. From Lemma 6, we also have that all vertices in Y , and, hence,
in Y ′, are connected to some vertex in Z by a path with no vertex in D \D′.
Thus, there are at least ν paths connecting vertices in X ′ ⊆ X to vertices in
Z with no vertex in D. We shall now show that the contradiction assumption
|D| ≤ 2M − 1 implies ν > 0:(

4
√
M (|Z| − 2 (|D| − |D′|))

)2
= 16M (|Z| − 2 (|D| − |D′|)) ,

= 16M (|Z| − 2|D|) + 32M |D′|.

By |D| ≤ 2M − 1, we have |Z| − 2|D| > 4M − 2(M − 1) > 0. Furthermore, from
D′ ⊆ D, we have 32M > 2M − 1 > |D| ≥ |D′|. Therefore:

(ν + |D′|)2 =
(

4
√
M (|Z| − 2 (|D| − |D′|))

)2
> |D′|2. (3)

Again, |D| ≤ 2M − 1 implies M (|Z| − 2 (|D| − |D′|)) > 0. Hence, we can take
the square root on both sides of (3) and conclude that ν > 0. Therefore, for
|D| ≤ 2M − 1 there are at least ν > 0 paths connecting a global input vertex
to a vertex in Z with no vertex in D, contradicting the assumption that D is a
dominator of Z. ut

Lemma 7 provides us with the tools required to obtain our main result.

Theorem 1 (Lower bound I/O complexity Strassen’s algorithm). The
I/O-complexity of Strassen’s algorithm to multiply two matrices A,B ∈ Rn×n,
on a sequential machine with cache of size M ≤ n2, satisfies:

IOHn×n (M) ≥ 1

7

(
n√
M

)log2 7

M. (4)



On P processors, each with a local memory of size M ≤ n2, the I/O complexity
satisfies:

IOHn×n(P,M) ≥ 1

7

(
n√
M

)log2 7
M

P
. (5)

Proof. We start by proving (4). Let n = 2a and
√
M = 2b for some a, b ∈ N.

At least 3n2 ≥ 3M I/O operations are necessary in order to read the 2n2 input
values from slow memory to the cache and to write the n2 output values to the
slow memory. The bound in (4) is therefore verified if n ≤ 2

√
M .

For n ≥ 4
√
M , let Z denote the set of output vertices of the

(
n/(2
√
M)
)log2 7

sub-CDAGs H2
√
M×2

√
M of Hn×n. Let C be any computation schedule for the se-

quential execution of Strassen’s algorithm using a cache of size M . We partition C
into segments C1, C2, . . . such that during each Ci exactly 4M distinct vertices in Z
(denoted as Zi) are evaluated for the first time. Since |Z| = 4M

(
n/(2
√
M)
)log 7

,

there are
(
n/(2
√
M)
)log 7

such segments. Below we show that the number qi of

I/O operations executed during each Ci satisfies qi ≥M , from which (4) follows.

To bound qi, consider the set Di of vertices of Hn×n corresponding to the at
most M values stored in the cache at the beginning of Ci and to the at most qi
values loaded into the cache from the slow memory during Ci by means of a read
I/O operation. Clearly, |Di| ≤M + qi. In order for the 4M values from Zi to be
computed during Ci there cannot be any path connecting any vertex in Zi to any
input vertex of Hn×n which does not have at least one vertex in Di; that is, Di

has to be a dominator set of Zi. We recall that |Zi| = 4M and, from Lemma 7,
we have that any subset of 4M elements of Z has dominator size at least 2M ,
whence M + qi ≥ |Di| ≥ 2M , which implies qi ≥M as stated above.

The proof for the bound for the parallel model in (5), follows a similar strategy:
At least one of the P processors being used, denoted as P ∗, must compute at

least |Z|/P = 4M
(
n/(2
√
M)
)log 7

/P values corresponding to vertices in Z. The

bound follows by applying the same argument discussed for the sequential case to
the computation executed by P ∗ (details the extended on-line version [29]). ut

Ballard et al. [20] presented a version of Strassen’s algorithm whose I/O cost
matches the lower bound of Theorem 1 to within a constant factor. Therefore, our
bound is asymptotically tight, and the algorithm in [20] is asymptotically I/O opti-
mal. Since in this algorithm no intermediate result is recomputed, recomputation
can lead at most to a constant factor reduction of the I/O complexity.

The lower bound of Theorem 1 generalizes to Ω((n/
√
M)log2 7M

B ) in the
External Memory Model introduced by Aggarwal and Vitter [31], where B ≥ 1
values can be moved between cache and consecutive slow memory locations with
a single I/O operation.



4 Conclusion

This work has contributed to the characterization of the I/O complexity of
Strassen’s algorithm by establishing asymptotically tight lower bounds that
hold even when recomputation is allowed. Our technique exploits the recursive
nature of the CDAG, which makes it promising for the analysis of other recursive
algorithms, e.g., for fast rectangular matrix multiplication [32].

The relationship we have exploited between dominator size and Grigoriev’s flow
points at connections between I/O complexity, (pebbling) space-time tradeoffs [28],
and VLSI area-time tradeoffs [33]; these connections deserve further attention.

Some CDAGs for which non-trivial I/O complexity lower bounds are known
only in the case of no recomputations are described in [19]. These CDAGs are of
interest in the “limiting technology” model, defined by fundamental limitations
on device size and message speed, as they allow for speedups super-linear in the
number of processors. Whether such speedups hold even when recomputation is
allowed remains an open question, which our new technique might help answer.

While we know that recomputation may reduce the I/O complexity of some
CDAGs, we are far from a characterization of those CDAGs for which recompu-
tation is effective. This broad goal remains a challenge for any attempt toward a
general theory of the communication requirements of computations.
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