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SHORT INTERVALS ASYMPTOTIC FORMULAE FOR BINARY PROBLEMS
WITH PRIMES AND POWERS, I: DENSITY 3/2

ALESSANDRO LANGUASCO and ALESSANDRO ZACCAGNINI

ABSTRACT. We prove that suitable asymptotic formulae in short intervals hold for the problems
of representing an integer as a sum of a prime and a square, or aprime square. Such results are
obtained both assuming the Riemann Hypothesis and in the unconditional case.

1. INTRODUCTION

In this first paper devoted to study asymptotic formulae in short intervals for additive prob-
lems with primes and squares, we focus our attention on density-3/2 problems,i.e., on repre-
senting integers as sum of a prime and a square. In the forthcoming paper [5] we will consider
density-1 problems.

Let ε > 0, N be a sufficiently large integer and let furtherH be an integer such thatNε <
H = o(N) asN → ∞. Takingn∈ [N,N+H], the key quantities are

r ′1,2(n) = ∑
p+m2=n

logp and r ′′1,2(n) = ∑
p1+p2

2=n

logp1 logp2.

Since it is well known that the expected behaviour of such functions is erratic, to work in a
more regular situation we will study their average asymptotics over a suitable short interval.
We write f = ∞(g) for g= o( f ). In the following we prove

Theorem 1. Assume the Riemann Hypothesis (RH) holds. Then
N+H

∑
n=N+1

r ′1,2(n) = HN1/2+O
(
N3/4(logN)2+H3/2(logN)3/2+HN1/3 logN

)

asN → ∞ uniformly for ∞(N1/4(logN)2)≤ H ≤ o
(
N/(logN)3

)
.

Theorem 2. Let ε > 0. Then there exist two constantsC=C(ε)> 0, C1 =C1(ε)> 0 such that

N+H

∑
n=N+1

r ′1,2(n) = HN1/2+O

(
(H1/2N3/4+HN1/2)exp

(
−C

( logN
loglogN

)1/3))

asN → ∞ uniformly for

N1/2 exp
(
−C1

( logN
loglogN

)1/3)
≤ H ≤ N1−ε.

A direct trial following the lines of Lemma 11 of Plaksin [8] leads to have a square summand
in [N,N+H] and hence the final uniformity range has to be larger thanH > N1/2 which is
weaker than our results above.

Concerning the sum of a prime and a prime square we have the following
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2 ASYMPTOTIC FORMULAE FOR BINARY PROBLEMS, I: DENSITY 3/2

Theorem 3. Assume the Riemann Hypothesis holds. Then
N+H

∑
n=N+1

r ′′1,2(n) = HN1/2+O

( H2

N1/2
+N3/4(logN)3+HN1/3(logN)2

)

asN → ∞ uniformly for ∞(N1/4(logN)3)≤ H ≤ o(N).

Theorem 4. Let ε > 0. Then there exists a constantC=C(ε)> 0 such that

N+H

∑
n=N+1

r ′′1,2(n) = HN1/2+O

(
HN1/2exp

(
−C

( logN
log logN

)1/3))

asN → ∞ uniformly for N7/12+ε ≤ H ≤ N1−ε.

In this case too, a direct trial following the lines of Lemma 11 of Plaksin [8] leads to weaker
uniformity ranges:H ≫ N3/4(logN)A assuming RH andH ≫ N7/24+1/2+ε unconditionally.

Our results are proved via a circle method technique; in factfor Theorem 3 we’ll need
the original Hardy-Littlewood approach (using infinite series instead of finite sums) otherwise
Lemma 2 below requiresH > N1/2. This is similar to the phenomenon we already encountered
in our paper [4]. We also remark that the original Hardy-Littlewood approach can be applied in
proving Theorem 1 too; but in this case it will just lead to replace the error termH3/2(logN)3/2

with the slightly better oneH2N−1/2.
Clearly our result implies the existence of an integer represented as a sum of a prime and

a square, or a prime square, in the stated intervals. Concerning this we have to remark that
Kumchev and Liu [1] unconditionally proved the existence ofan integer which is the sum of a
prime and a prime square in the shorter intervalH > N0.33 but without any information about
the relevant asymptotic formula. As far as we know this is thebest known result for the the
sum of a prime and a square case too.

Acknowledgements. This research was partially supported by the grant PRIN2010-11Arith-
metic Algebraic Geometry and Number Theory. We wish to thank the referee for his/her re-
marks.

2. DEFINITIONS AND LEMMAS

Let L = logN, r0(m) be the number of representations ofm as a sum of two squares (recall
thatr0(m)≪ mε is a well-known fact) and

R′
1,2(n) = ∑

m1+m2
2=n

1≤m1,m2
2≤N

Λ(m1) and R′′
1,2(n) = ∑

m1+m2
2=n

1≤m1,m2
2≤N

Λ(m1)Λ(m2).

As n∈ [N,N+H], N → ∞ andH = o(N), it is easy to see that

r ′1,2(n) = ∑
p+m2=n

1≤p,m2≤N

logp+O

(
HL

N1/2
+H1/2L

)
= R′

1,2(n)+O

(
∑

p j+m2=n
1≤p j ,m2≤N; j≥2

logp
)
+O

(
H1/2L

)

= R′
1,2(n)+O

(
∑

p2k+m2=n
1≤p2k,m2≤N;k≥1

logp+ ∑
p2k+1+m2=n

1≤p2k+1,m2≤N;k≥1

logp
)
+O

(
H1/2L

)

= R′
1,2(n)+O

(
r0(n)L

2+n1/3L+H1/2L
)
= R′

1,2(n)+O
(
n1/3L+H1/2L

)
, (1)
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using the Prime Number Theorem, and, similarly, that

r ′′1,2(n) = R′′
1,2(n)+O

(
n1/3L2+H1/2L2). (2)

So from now on we can work with the uppercase-R functions. Let nowℓ ≥ 1 be an integer
and

Sℓ(α) = ∑
1≤mℓ≤N

Λ(m)e(mℓα), Tℓ(α) = ∑
mℓ≤N

e(mℓα),

f2(α) =
1
2 ∑

1≤m≤N

m−1/2e(mα), U(α,H) = ∑
1≤m≤H

e(mα), (3)

wheree(α) = e2πiα. We also have the usual numerically explicit inequality

|U(α,H)| ≤ min
(
H; |α|−1), (4)

see,e.g., on page 39 of Montgomery [6]. Let further

B= B(N,c) = exp
(

c
( L

logL

)1/3)
, (5)

wherec= c(ε)> 0 will be chosen later.
In the proofs we will need the following lemmas. In fact we will use them just forℓ = 1,2

but we take this occasion to describe the general case. We explicitly remark that forℓ = 1 the
proof of Lemma 1 gives just trivial results; in this case a non-trivial estimate, which, in any
case, is not useful in this context, can be obtained following the line of Corollary 3 of [2].

Lemma 1. Let ℓ≥ 2 be an integer and0< ξ ≤ 1/2. Then
∫ ξ

−ξ
|Tℓ(α)|2dα = 2ξN1/ℓ+

{
O(L) if ℓ= 2

Oℓ(1) if ℓ > 2

and ∫ ξ

−ξ
|Sℓ(α)|2dα =

2ξ
ℓ

N1/ℓL+Oℓ

(
ξN1/ℓ)+

{
O
(
L2
)

if ℓ= 2

Oℓ(1) if ℓ > 2.

Proof. By symmetry we can integrate over[0,ξ]. We use Corollary 2 of Montgomery-Vaughan
[7] with T = ξ, ar = 1 andλr = 2πrℓ thus getting

∫ ξ

0
|Tℓ(α)|2dα = ∑

rℓ≤N

(
ξ+O

(
δ−1

r

))
= ξN1/ℓ+O(ξ)+Oℓ

(
∑

rℓ≤N

r1−ℓ
)

sinceδr = λr −λr−1 ≫ℓ rℓ−1. The last error term is≪ℓ 1 if ℓ > 2 and≪ L otherwise. This
proves the first part of Lemma 1. Arguing analogously withar = Λ(r), by the Prime Number
Theorem we get

∫ ξ

0
|Sℓ(α)|2dα = ∑

rℓ≤N

Λ(r)2(ξ+O
(
δ−1

r

))
=

ξ
ℓ

N1/ℓL+Oℓ

(
ξN1/ℓ)+Oℓ

(
∑

rℓ≤N

Λ(r)2r1−ℓ
)
.

Again by the Prime Number Theorem, the last error term is≪ℓ 1 if ℓ > 2 and≪ L2 otherwise.
The second part of Lemma 1 follows. �

We need the following lemma which collects the results of Theorems 3.1-3.2 of [3]; see also
Lemma 1 of [4].
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Lemma 2. Let ℓ > 0 be a real number andε be an arbitrarily small positive constant. Then
there exists a positive constantc1 = c1(ε), which does not depend onℓ, such that

∫ 1/K

−1/K
|Sℓ(α)−Tℓ(α)|2dα ≪ℓ N2/ℓ−1

(
exp

(
−c1

( L
logL

)1/3)
+

KL2

N

)
,

uniformly for N1−5/(6ℓ)+ε ≤ K ≤ N. Assuming further RH we get
∫ 1/K

−1/K
|Sℓ(α)−Tℓ(α)|2dα ≪ℓ

N1/ℓL2

K
+KN2/ℓ−2L2,

uniformly for N1−1/ℓ ≤ K ≤ N.

3. PROOF OFTHEOREM 1

From now on, we denoteEℓ(α) := Sℓ(α)−Tℓ(α). By (3) it is an easy matter to see that

H

∑
n=1

R′
1,2(n+N) =

∫ 1/2

−1/2
S1(α)T2(α)U(−α,H)e(−Nα)dα

=
∫ 1/2

−1/2
T1(α) f2(α)U(−α,H)e(−Nα)dα+

∫ 1/2

−1/2
T1(α)(T2(α)− f2(α))U(−α,H)e(−Nα)dα

+
∫ 1/2

−1/2
E1(α)T2(α)U(−α,H)e(−Nα)dα = I1+ I2+ I3, (6)

say. Now we evaluateI1. A direct calculation and Lemma 2.9 of Vaughan [9] give
∫ 1/2

−1/2
T1(α) f2(α)e(−(n+N)α)dα =

1
2 ∑

m1+m2=n+N
1≤m1,m2≤N

m−1/2
1 =

1
2 ∑

1≤m≤N

(n+N−m)−1/2

=
Γ(1/2)
2Γ(3/2)

(n+N)1/2+O
(
n1/2)= (n+N)1/2+O

(
n1/2). (7)

By (6)-(7) we obtain

I1 =
H

∑
n=1

(n+N)1/2+O
(
H3/2)= HN1/2+O

(
H3/2). (8)

Now we estimateI2. We first recall, by Theorem 4.1 of Vaughan [9], that|T2(α)− f2(α)| ≪
(1+ |α|N)1/2. Using also the inequalityT1(α)≪ min(N; |α|−1), we get

I2 ≪
∫ 1/2

−1/2
|T1(α)||T2(α)− f2(α)||U(α,H)|dα

≪ HN
∫ 1/N

−1/N
dα+HN1/2

∫ 1/H

1/N

dα
α1/2

+N1/2
∫ 1/2

1/H

dα
α3/2

≪ H1/2N1/2. (9)

To estimateI3 we need Lemmas 1-2. By (4) and the Cauchy-Schwarz inequalitywe have

I3 ≪
(∫ 1/2

−1/2
|E1(α)|2min(H; |α|−1)dα

)1/2(∫ 1/2

−1/2
|T2(α)|2min(H; |α|−1)dα

)1/2
= (J1J2)

1/2,

say. Since

J1 ≪ H
∫ 1/H

−1/H
|E1(α)|2dα+

∫ 1/2

1/H
|E1(α)|2

dα
α

,
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by Lemma 2 withℓ= 1 and partial integration we get

J1 ≪ NL3+H2L2. (10)

Arguing analogously and using Lemma 1 withℓ= 2, we obtain

J2 ≪ (N1/2+H)L. (11)

Hence combining (10)-(11) we have

I3 ≪ N3/4L2+HN1/4L3/2+H1/2N1/2L2+H3/2L3/2. (12)

Now using (6), (8)-(9) and (12), we can finally write
H

∑
n=1

R′
1,2(n+N) = HN1/2+O

(
N3/4L2+H3/2L3/2+H1/2N1/2L2+HN1/4L3/2).

Using (1), Theorem 1 hence follows for∞(N1/4L2)≤ H ≤ o
(
N/L3

)
. �

4. PROOF OFTHEOREM 2

We need now to split the main interval in a different way. Recalling (5) andEℓ(α) = Sℓ(α)−
Tℓ(α), by (3) we have
N+H

∑
n=N+1

R′
1,2(n) =

∫ B/H

−B/H
S1(α)T2(α)U(−α,H)e(−Nα)dα+

∫

[−1/2,−B/H]∪[B/H,1/2]

S1(α)T2(α)U(−α,H)e(−Nα)dα

=

∫ B/H

−B/H
T1(α) f2(α)U(−α,H)e(−Nα)dα+

∫ B/H

−B/H
T1(α)(T2(α)− f2(α))U(−α,H)e(−Nα)dα

+

∫ B/H

−B/H
E1(α)T2(α)U(−α,H)e(−Nα)dα+

∫

[−1/2,−B/H]∪[B/H,1/2]

S1(α)T2(α)U(−α,H)e(−Nα)dα

= I1+ I2+ I3+ I4, (13)

say. Arguing as in (7), using (4) andf2(α)≪ min(N1/2,1/|α|1/2) (see Lemma 2.8 of Vaughan
[9]), we obtain

I1 =
H

∑
n=1

(n+N)1/2+O
(
H3/2)+O

(∫ 1/2

B/H

dα
α5/2

)
= HN1/2+O

(
H3/2). (14)

I2 can be estimate as in (9) and gives

I2 ≪ H1/2N1/2. (15)

Now we estimateI3. By (4) the Cauchy-Schwarz inequality we have

I3 ≪ H
(∫ B/H

−B/H
|E1(α)|2dα

)1/2(∫ B/H

−B/H
|T2(α)|2dα

)1/2
= H(J1J2)

1/2,

say. By Lemma 2 we can write that

J1 ≪ Nexp
(
−c1

( L
logL

)1/3)
(16)

provided thatN−1−ε/2 < B/H < N−1/6−ε/2; henceN1/6+ε ≤ H ≤ N1−ε suffices. By Lemma 1
with ℓ= 2, we obtain

J2 ≪
N1/2B

H
+L. (17)
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Hence combining (16)-(17) forN1/6+ε ≤ H ≤ N1−ε we have

I3 ≪ (H1/2N3/4B1/2+HN1/2L1/2)exp
(
−

c1

2

( L
logL

)1/3)
. (18)

Now we estimateI4. By (4), the Prime Number Theorem, Lemma 1 withℓ= 2 and a partial
integration argument we get

I4 ≪
∫ 1/2

B/H
|S1(α)T2(α)|

dα
α

≪
(∫ 1/2

B/H
|S1(α)|2

dα
α

)1/2(∫ 1/2

B/H
|T2(α)|2

dα
α

)1/2

≪
(HNL

B

)1/2(
N1/2+

HL
B

+

∫ 1/2

B/H
(ξN1/2+L)

dξ
ξ2

)1/2
≪

HN1/2L
B

+
H1/2N3/4L

B1/2
. (19)

Now using (13)-(15) and (18)-(19) and choosing 0< c< c1 in (5), we have that there exists
a constantC=C(ε)> 0 such that

N+H

∑
n=N+1

R′
1,2(n) = HN1/2+O

(
(H1/2N3/4+HN1/2)exp

(
−C

( L
logL

)1/3))

uniformly for for N1/6+ε ≤ H ≤ N1−ε. Using (1), Theorem 2 hence follows for

N1/2 exp
(
−C1

( L
logL

)1/3)
≤ H ≤ N1−ε

for every 0<C1 =C1(ε)< 2C. �

5. PROOF OFTHEOREM 3

We need the original Hardy-Littlewood approach otherwise Lemma 2 implies that we need
to assumeH ≥ N1/2. Let further

S̃ℓ(α) =
∞

∑
n=1

Λ(n)e−nℓ/Ne(nℓα), R̃′′
1,2(n) = ∑

m1+m2
2=n

Λ(m1)Λ(m2) andz= 1/N−2πiα. (20)

From now on, we denotẽEℓ(α) := S̃ℓ(α)−Γ(1/ℓ)/(ℓz1/ℓ). We remark

|z|−1 ≪ min
(
N, |α|−1) (21)

and, arguing analogously to (1)-(2), that

r ′′1,2(n) = R̃′′
1,2(n)+O

(
n1/3L2). (22)

By (20) it is an easy matter to see that

N+H

∑
n=N+1

e−n/NR̃′′
1,2(n) =

∫ 1/2

−1/2
S̃1(α)S̃2(α)U(−α,H)e(−Nα)dα

=
∫ 1/2

−1/2

π1/2

2z3/2
U(−α,H)e(−Nα)dα+

∫ 1/2

−1/2

1
z
Ẽ2(α)U(−α,H)e(−Nα)dα

+

∫ 1/2

−1/2

π1/2

2z1/2
Ẽ1(α)U(−α,H)e(−Nα)dα+

∫ 1/2

−1/2
Ẽ1(α)Ẽ2(α)U(−α,H)e(−Nα)dα

= I1+ I2+ I3+ I4, (23)
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say. We evaluateI1. Using Lemma 4 of [4] we immediately get

I1 =
π1/2

2Γ(3/2)

N+H

∑
n=N+1

n1/2e−n/N +O

(
H
N

)
=

HN1/2

e
+O

(
H2

N1/2

)
. (24)

Now we estimateI2. By (21), the Cauchy-Schwarz inequality and Lemma 3 of [4], we obtain

I2 ≪ HN
∫ 1/N

−1/N
|Ẽ2(α)|dα+H

∫ 1/H

1/N
|Ẽ2(α)|

dα
α

+

∫ 1/2

1/H
|Ẽ2(α)|

dα
α2

≪ HN1/4L+H
(∫ 1/H

1/N
|Ẽ2(α)|2

dα
α

)1/2(∫ 1/H

1/N

dα
α

)1/2
+
(∫ 1/2

1/H
|Ẽ2(α)|2

dα
α

)1/2(∫ 1/2

1/H

dα
α3

)1/2

≪ HN1/4L+HN1/4L2+HN1/4L3/2 ≪ HN1/4L2. (25)

Now we estimateI3. By (21), the Cauchy-Schwarz inequality and Lemma 3 of [4], we have

I3 ≪ HN1/2
∫ 1/N

−1/N
|Ẽ1(α)|dα+H

∫ 1/H

1/N
|Ẽ1(α)|

dα
α1/2

+

∫ 1/2

1/H
|Ẽ1(α)|

dα
α3/2

≪ HL+H
(∫ 1/H

1/N
|Ẽ1(α)|2

dα
α

)1/2(∫ 1/H

1/N
dα

)1/2
+
(∫ 1/2

1/H
|Ẽ1(α)|2

dα
α

)1/2(∫ 1/2

1/H

dα
α2

)1/2

≪ HL+H1/2N1/2L3/2 ≪ H1/2N1/2L3/2. (26)

By (4) and the Cauchy-Schwarz inequality we can write

I4 ≪ H
(∫ 1/H

−1/H
|Ẽ1(α)|2dα

)1/2(∫ 1/H

−1/H
|Ẽ2(α)|2dα

)1/2

+
(∫ 1/2

1/H
|Ẽ1(α)|2

dα
α

)1/2(∫ 1/2

1/H
|Ẽ2(α)|2

dα
α

)1/2
= J1+J2,

say. By Lemma 3 of [4] and partial integration onJ2, we obtain

J1 ≪ N3/4L2 and J2 ≪ N3/4L3

and hence we get

I4 ≪ N3/4L3. (27)

Now using (23)-(26) and (27) we can write

N+H

∑
n=N+1

e−n/NR̃′′
1,2(n) =

HN1/2

e
+O

( H2

N1/2
+H1/2N1/2L3/2+N3/4L3

)
(28)

which is an asymptotic relation for∞(N1/4L3) ≤ H ≤ o(N). From (22) ande−n/N = e−1 +
O(H/N) for n∈ [N+1,N+H], we get

N+H

∑
n=N+1

r ′′1,2(n) = HN1/2+O

( H2

N1/2
+N3/4L3+HN1/3L2

)
+O

(H
N

N+H

∑
n=N+1

R̃′′
1,2(n)

)
. (29)

Usingen/N ≤ e2 and (28) forH in the previously mentioned range, it is easy to see that the last
error term is≪ H2N−1/2. Combining (29) and the last remark, Theorem 3 hence followsfor
∞(N1/4L3)≤ H ≤ o(N). �



8 ASYMPTOTIC FORMULAE FOR BINARY PROBLEMS, I: DENSITY 3/2

6. PROOF OFTHEOREM 4

In the unconditional case we can use the finite sums approach.Recalling (3)-(5) andEℓ(α) =
Sℓ(α)−Tℓ(α), we have

N+H

∑
n=N+1

R′′
1,2(n) =

∫ B/H

−B/H
S1(α)S2(α)U(−α,H)e(−Nα)dα+

∫

[−1/2,−B/H]∪[B/H,1/2]

S1(α)S2(α)U(−α,H)e(−Nα)dα

=

∫ B/H

−B/H
T1(α)T2(α)U(−α,H)e(−Nα)dα+

∫ B/H

−B/H
S1(α)E2(α)U(−α,H)e(−Nα)dα

+

∫ B/H

−B/H
E1(α)T2(α)U(−α,H)e(−Nα)dα+

∫

[−1/2,−B/H]∪[B/H,1/2]

S1(α)S2(α)U(−α,H)e(−Nα)dα

= I1+ I2+ I3+ I4, (30)

say. Using|T2(α)− f2(α)| ≪ (1+ |α|N)1/2 (by Theorem 4.1 of Vaughan [9]) andT1(α) ≪
min(N; |α|−1) we obtain

I1 =
∫ B/H

−B/H
T1(α) f2(α)U(−α,H)e(−Nα)dα+

∫ B/H

−B/H
T1(α)(T2(α)− f2(α))U(−α,H)e(−Nα)dα

= I1+O

(
HN

∫ 1/N

−1/N
dα+HN1/2

∫ 1/H

1/N

dα
α1/2

+N1/2
∫ B/H

1/H

dα
α3/2

)
= I1+O

(
H1/2N1/2), (31)

say. Using (4) and arguing as in (7) we obtain

I1 =
H

∑
n=1

∫ 1/2

−1/2
T1(α) f2(α)e(−(n+N)α)dα+O

(∫ 1/2

B/H

dα
α5/2

)

=
H

∑
n=1

(n+N)1/2+O

( H

∑
n=1

n1/2
)
+O

(H3/2

B3/2

)
. (32)

By (31)-(32) we obtain

I1 =
N+H

∑
n=N+1

n1/2+O
(
H3/2+H1/2N1/2)= HN1/2+O

(
H3/2+H1/2N1/2). (33)

Now we estimateI2. By the Cauchy-Schwarz inequality we can write

I2 ≪ H
(∫ B/H

−B/H
|E2(α)|2dα

)1/2(∫ B/H

−B/H
|S1(α)|2dα

)1/2
= H(J1J2)

1/2,

say. By Lemma 2 we get

J1 ≪ exp
(
−c1

( L
logL

)1/3)
,

provided thatN−1−ε/2 <B/H <N−7/12−ε/2; henceN7/12+ε ≤H ≤N1−ε suffices. By the Prime
Number Theorem we obtainJ2 ≪ NL and hence

I2 ≪ HN1/2L1/2 exp
(
−

c1

2

( L
logL

)1/3)
≪ HN1/2 exp

(
−

c1

4

( L
logL

)1/3)
, (34)

uniformly for N7/12+ε ≤ H ≤ N1−ε.
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Now we estimateI3. By the Cauchy-Schwarz inequality we have

I3 ≪ H
(∫ B/H

−B/H
|E1(α)|2dα

)1/2(∫ B/H

−B/H
|T2(α)|2dα

)1/2
= H(K1K2)

1/2,

say. By Lemma 2 we get

K1 ≪ Nexp
(
−c1

( L
logL

)1/3)
(35)

provided thatN−1−ε/2 < B/H < N−1/6−ε/2; henceN1/6+ε ≤ H ≤ N1−ε suffices. By Lemma 1
with ℓ= 2, we obtain

K2 ≪
N1/2B

H
+L. (36)

Hence combining (35)-(36) forN1/6+ε ≤ H ≤ N1−ε we have

I3 ≪ (H1/2N3/4B1/2+HN1/2L1/2)exp
(
−

c1

2

( L
logL

)1/3)
. (37)

Now we estimateI4. By (4), the Prime Number Theorem, Lemma 1 withℓ= 2 and a partial
integration argument we get

I4 ≪
∫ 1/2

B/H
|S1(α)S2(α)|

dα
α

≪
(∫ 1/2

B/H
|S1(α)|2

dα
α

)1/2(∫ 1/2

B/H
|S2(α)|2

dα
α

)1/2

≪
(HNL

B

)1/2(
N1/2L+

HL2

B
+L

∫ 1/2

B/H
(ξN1/2+L)

dξ
ξ2

)1/2

≪
(HNL

B

)1/2(
N1/2L2+

HL2

B

)1/2
. (38)

Now using (30), (33)-(34) and (37)-(38), and choosing 0< c< c1 in (5), we have that there
exists a constantC=C(ε)> 0 such that

N+H

∑
n=N+1

R′′
1,2(n) = HN1/2+O

(
HN1/2 exp

(
−C

( L
logL

)1/3))

uniformly for N7/12+ε ≤ H ≤ N1−ε. Using (2), Theorem 4 hence follows forN7/12+ε ≤ H ≤
N1−ε. �
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