INVARIABLE GENERATION OF ITERATED WREATH PRODUCTS OF CYCLIC GROUPS

ANDREA LUCCHINI

ABSTRACT. Given a sequence $\{C_i\}_{i\in\mathbb{N}}$ of cyclic groups of prime orders, let Γ_{∞} be the inverse limit of the iterated wreath products $C_m \wr \cdots \wr C_2 \wr C_1$. We prove that the profinite group Γ_{∞} is not topologically finitely invariably generated.

1. INTRODUCTION

Let $\{G_i\}_{i\in\mathbb{N}}$ be a sequence of finite groups and let $X_m = G_m \wr \cdots \wr G_2 \wr G_1$ be the iterated wreath product of the first m groups, where at each step the permutation action which is considered is the regular one. The infinitely iterated wreath product is the inverse limit

$$X_{\infty} = \varprojlim_{m} X_{m} = \varprojlim_{m} (G_{m} \wr \cdots \wr G_{2} \wr G_{1}).$$

We consider the particular case when the groups G_i are all cyclic of prime order. Let $\{C_i\}_{i\in\mathbb{N}}$ be a sequence of finite cyclic groups and assume that $|C_i| = p_i$ is a prime for every *i* and let $\Gamma_{\infty} = \varprojlim_m C_m$. As it follows from the results presented in [1], [2] or [8], the profinite group Γ_{∞} is (topologically) finitely generated if and only if there exists a positive integer *d* with the property that, for every prime *p*, the set $\Omega_p = \{n \in \mathbb{N} \mid p_n = p\}$ has size at most *d*. In particular it follows from [8, Corollary 2.4] that Γ_{∞} is 2-generated if the primes p_n are all distinct.

We prove that the situation is completely different if we consider the "invariable generation". Following [5] we say that a subset S of a group G invariably generates G if $G = \langle s^{g(s)} | s \in S \rangle$ for each choice of $g(s) \in G$, $s \in S$. The notion of invariable generation occurs naturally for Galois groups, where elements are only given up to conjugacy. We also say that a group G is invariably generated if G is invariably generated by some subset S of G. A group G is invariably generated if and only if it cannot be covered by a union of conjugates of a proper subgroup, which amount to saying that in every transitive permutation representation of G on a set with more than one element there is a fixed-point-free element. Using this characterization, Wiegold [10] proved that the free group on two (or more) letters is not invariably generated. Kantor, Lubotzky and Shalev studied invariable generation in finite and infinite groups. For example in [6] they proved that every finite group G is invariably generated by at most $\log_2 |G|$ elements. In [7] they studied invariable generation of infinite groups, with emphasis on linear groups, proving that a finitely generated linear group is finitely invariably generated if and only if it is virtually soluble. When G is a profinite group, generation and invariable generation in Gare interpreted topologically. Our main result is the following:

Partially supported by Università di Padova (Progetto di Ricerca di Ateneo: "Invariable generation of groups").

ANDREA LUCCHINI

Theorem 1. The profinite group Γ_{∞} is not finitely invariably generated.

In particular, if the primes p_i are pairwise distinct, Γ_{∞} is 2-generated but not finitely invariably generated. The question whether a finitely generated prosoluble group is also finitely invariable generated was asked by Kantor, Lubotzky and Shalev in [7] and received a negative answer in [4]. Theorem 1 improves the results in [4], giving a concrete example of a 2-generated prosoluble group that is not finitely invariably generated.

2. Proof of Theorem 1

In all this section we will use the notation $G = \langle g_1, \ldots, g_d \rangle_I$ to indicate that G is invariably generated by the elements g_1, \ldots, g_d .

Lemma 2. Let H be a group acting irreducibly and faithfully on an elementary abelian p-group V and for a positive integer u, consider the semidirect product $G = V^u \rtimes H$, where the action of H is diagonal on V^u , that is, H acts in the same way on each of the u direct factors. Suppose that h_1, \ldots, h_d invariably generate Hand that $H^1(H, V) = 0$ and let t be a positive integer with $t \leq d$. There exist some elements $w_1, \ldots, w_t \in V^u$ such that $h_1w_1, h_2w_2, \ldots, h_tw_t, h_{t+1}, \ldots, h_d$ invariably generate $V^u \rtimes H$ if and only if

$$u \leq \sum_{1 \leq i \leq t} \dim_{\operatorname{End}_H(V)} C_V(h_i).$$

Proof. Set $w_{t+1} = \cdots = w_d = (0, \ldots, 0)$ and for every $i \in \{1, \ldots, d\}$ assume $w_i = (w_{i,1}, \ldots, w_{i,u})$. For $j \in \{1, \ldots, u\}$, consider the vectors

$$r_j = (w_{1,j}, \dots, w_{d,j}) \in V^d$$

By [3, Proposition 8], the elements $h_1w_1, h_2w_2, \ldots, h_dw_d$ invariably generate $V^u \rtimes H$ if and only if the vectors r_1, \ldots, r_u are linearly independent modulo

$$W = \{ (u_1, \dots, u_d) \in V^d \mid u_i \in [h_i, V], \ i = 1, \dots, d \}.$$

Now for every $j \in \{1, \ldots, u\}$, let

$$\tilde{r}_j = (w_{1,j}, \dots, w_{t,j}) \in V^{\mathsf{T}}$$

and let

$$\tilde{W} = \{(u_1, \dots, u_t) \in V^d \mid u_i \in [h_i, V], \ i = 1, \dots, t\}.$$

Since $w_{t+1} = \cdots = w_d = (0, \ldots, 0)$, the vectors r_1, \ldots, r_u are linearly independent modulo W if and only if the vectors $\tilde{r}_1, \ldots, \tilde{r}_u$ are linearly independent modulo \tilde{W} . In particular, there exist some elements $w_1, \ldots, w_t \in V^t$ such that $h_1w_1, \ldots, h_tw_t, h_{t+1}, \ldots, h_d$ invariably generate $V^u \rtimes H$ if and only if

$$u \le t \cdot \dim_{\operatorname{End}_H(V)} V - \dim \tilde{W} = \sum_i \dim_{\operatorname{End}_H(V)} C_V(h_i).$$

Lemma 3. Suppose that $G = N \rtimes H$ with N and H finite groups of coprime orders. Assume that $G = \langle g_1, \ldots, g_d \rangle_I$. Let $g_1 = n_1h_1$ with $n_1 \in N$ and $h_1 \in H$. If $(|g_1|, |N|) = 1$, then $G = \langle h_1, g_2, \ldots, g_d \rangle_I$.

Proof. Let π be the set of the prime divisors of $|h_1|$. If $(|g_1|, |N|) = 1$, then g_1 belongs to a Hall π -subgroup of $N\langle h_1 \rangle$. Hence $g_1^n \in H$ for some $n \in N$ and consequently g_1 and h_1 are conjugated in G. But then $G = \langle g_1, g_2, \ldots, g_d \rangle_I$ if and only if $G = \langle h_1, g_2, \ldots, g_d \rangle_I$.

Lemma 4. Let H be a finite soluble group, q be a prime not dividing |H| and consider the wreath product $G = C_q \wr H$ with respect to the regular permutation representation of H. Assume that $H = \langle h_1, \ldots, h_d \rangle_I$ and that there exist $r \leq d$ and w_1, \ldots, w_d in the base $W \cong C_q^{|H|}$ of this wreath product such that

(1) $G = \langle h_1 w_1, \ldots, h_d w_d \rangle_I;$

(2) q does not divide the order of $w_i h_i$ for every $i \in \{r+1, \ldots, d\}$.

Then

$$1 \le \sum_{1 \le i \le r} \frac{1}{|h_i|}.$$

Proof. Let F be the field of order q and consider the additive group W of the group algebra FH. Notice that G is isomorphic to the semidirect product $W \rtimes H$, where H acts on W by right multiplication. By Maschke's theorem,

$$W = V_1^{m_1} \oplus \cdots \oplus V_s^{m_s}$$

where the V_j are irreducible FH-modules no two of which are H-isomorphic. Let

$$F_i = \operatorname{End}_{FH} V_i, \quad r_i = |F_i : F|, \quad n_i = \dim_F V_i.$$

It follows from the Weddeburn Theorem that

$$W = FH \cong M_{m_1}(F_1) \oplus \cdots \oplus M_{m_s}(F_s)$$

where $M_{m_i}(F_i)$ is the ring of the $m_i \times m_i$ matrices over F_i and that V_i is FHisomorphic to a minimal ideal of $M_{m_i}(F_i)$. In particular we have

$$m_i = \dim_{F_i} V_i = \frac{n_i}{r_i}$$

and consequently

$$|H| = \dim_F V = \sum_{1 \le i \le s} r_i \cdot m_i^2.$$

By Lemma 3, condition (2) implies that we may assume $w_{r+1} = \cdots = w_d = 0$. By [9, Lemma 1] we have $\mathrm{H}^1(H, V_j) = 0$, so we may apply Lemma 2 to the homomorphic image $V_j^{m_j} \rtimes H$. It follows that, for any j, we have

$$m_j \leq \sum_{1 \leq i \leq r} \dim_{F_j} C_{V_j}(h_i).$$

Multiplying by $r_j \cdot m_j$ we get

$$r_j \cdot m_j^2 \le \sum_{i \le i \le r} r_j \cdot m_j \cdot \dim_{F_j} C_{V_j}(h_i) = \sum_{1 \le i \le r} m_j \cdot \dim_F C_{V_j}(h_i).$$

It follows that:

$$|H| = \sum_{1 \le i \le r} r_j \cdot m_j^2 \le \sum_{\substack{1 \le i \le r \\ 1 \le j \le s}} m_j \cdot \dim_F C_{V_j}(h_i) = \sum_{1 \le i \le r} \dim_F C_W(h_i).$$

On the other hand, by [4, Lemma 9],

$$\dim_F C_W(h_i) = \frac{|H|}{|h_i|}$$

and therefore

$$1 \le \sum_{i=1}^r \frac{1}{|h_i|}.$$

ANDREA LUCCHINI

Proof of Theorem 1. We may assume that for every prime p there are only finitely many indices n with $p_n = |C_n| = p$ (otherwise Γ_{∞} is not finitely generated). This means in particular that the profinite order of Γ_{∞} is divisible by infinitely many primes. Assume now by contradiction that there exist $g_1, \ldots, g_d \in \Gamma_{\infty}$ with $\Gamma_{\infty} = \langle g_1, \ldots, g_d \rangle_I$. From now on we will denote by Γ_m the iterated wreath product $C_m \wr \cdots \wr C_1$ and by $\pi_m : \Gamma_{\infty} \to \Gamma_m$ the natural projection from Γ_{∞} to Γ_m . First we prove the following claim:

(*) there exists $\mu \in \mathbb{N}$, such that $|\pi_{\mu}(g_i)| > d$ for every $i \in \{1, \ldots, d\}$.

Indeed, suppose that (*) is false. Up to reordering the indices, we may assume that there exists r < d such that $|g_i| > d$ if and only if $i \leq r$. In particular there exists m_1 such that

$$|\pi_n(g_i)| > d$$
 for every $n \ge m_1$ and every $i \in \{1, \ldots, r\}$.

Using the fact that $|\Gamma_{\infty}|$ is divisible by infinitely many distinct primes, we are ensured that there exists a positive integer $m \ge m_1$ such that

$$p_{m+1} > d$$
 and $p_n \neq p_{m+1}$ for every $n \leq m$.

For every i, let

$$x_i = \pi_{m+1}(g_i) \in \Gamma_{m+1} = C_{p_{m+1}} \wr \Gamma_m, \quad y_i = \pi_m(g_i) \in \Gamma_m$$

We may write x_i in the form $x_i = y_i w_i$ where w_i is an element of the base $C_{p_{m+1}}^{|\Gamma_m|}$ of the wreath product $C_{p_{m+1}} \wr \Gamma_m$. If i > r, then $|g_i| < d$ and consequently p_{m+1} does not divide $|x_i|$. Since $\langle x_1, \ldots, x_d \rangle_I = \Gamma_{m+1}$, we deduce from Lemma 4, that

$$1 \le \sum_{i=1}^{r} \frac{1}{|y_i|} < \frac{r}{d} \le \frac{d-1}{d},$$

a contradiction. Having proved (*), we take now a positive integer k such that

 $k > \mu$ and $p_n \neq p_{k+1}$ for every $n \leq k$.

We apply Lemma 4 to the wreath product $\Gamma_{k+1} = C_{p_{k+1}} \wr \Gamma_k$. Since $\Gamma_{k+1} = \langle \pi_{k+1}(g_1), \ldots, \pi_{k+1}(g_d) \rangle_I$ we must have

$$1 \le \sum_{i=1}^{d} \frac{1}{|\pi_{k+1}(g_i)|} \le \sum_{i=1}^{d} \frac{1}{|\pi_{\mu}(g_i)|} < 1,$$

a contradiction.

References

- I. Bondarenko, Finite generation of iterated wreath products, Arch. Math. (Basel) 95 (2010), no. 4, 301-308.
- E. Detomi and A. Lucchini, Characterization of finitely generated infinitely iterated wreath products, Forum Math. 25 (2013), no. 4, 867-886.
- E. Detomi and A. Lucchini, Invariable generation with elements of coprime prime-power orders, J. Algebra 423 (2015), 683–701.
- E. Detomi and A. Lucchini, Invariable generation of prosoluble groups, Israel J. Math. 211 (2016), no. 1, 481-491.
- J. D. Dixon, Random sets which invariably generate the symmetric group, Discrete Math. 105 (1992) 25-39.
- W. M. Kantor, A. Lubotzky and A. Shalev, Invariable generation and the Chebotarev invariant of a finite group, J. Algebra 348 (2011), 302–314.
- W. M. Kantor, A. Lubotzky and A. Shalev, Invariable generation of infinite group, J. Algebra 421 (2015), 296310.

$$\Box$$

- 8. A. Lucchini, Generating wreath products, Arch. Math. (Basel) 62 (1994), no. 6, 481-490.
- 9. U. Stammbach, Cohomological characterisations of finite solvable and nilpotent groups, J. Pure Appl. Algebra 11 (1977/78), no. 1–3, 293–301.
- J. Wiegold, Transitive groups with fixed-point-free permutations, Arch. Math. (Basel) 27 (1976), 473–475.

ANDREA LUCCHINI, UNIVERSITÀ DEGLI STUDI DI PADOVA, DIPARTIMENTO DI MATEMATICA "TULLIO LEVI-CIVITA", VIA TRIESTE 63, 35121 PADOVA, ITALY, EMAIL: LUCCHINI@MATH.UNIPD.IT