

Conformity and consensus in the diagnosis, staging and follow-up evaluation of canine nodal lymphoma: a systematic review of the last 15 years of published literature

Journal:	Veterinary and Comparative Oncology
Manuscript ID	Draft
Manuscript Type:	Original Article
Keywords:	dog, multicentric lymphoma, staging, efficacy assessment, systemic review

2 3	1	Conformity and controversies in the diagnosis, staging and follow-up
4 5 6	2	evaluation of canine nodal lymphoma: a systematic review of the last 15
7 8	3	years of published literature
9 10	4	
11 12	5	Marconato L, ^{1*} Polton GA, ² Sabattini S, ³ Dacasto M, ⁴ Garden OA, ⁵ Grant I, ⁶
13 14 15	6	Hendrickx T, ⁷ Henriques J, ⁸ Lubas G, ⁹ Morello E, ¹⁰ Stefanello D, ¹¹ Comazzi S, ¹¹
16 17	7	on behalf of the European Canine Lymphoma Network
18 19	8	
20 21	9	
22 23	10	1 Centro Oncologico Veterinario, Sasso Marconi (Bologna), Italy
24 25 26	11	2 North Downs Specialist Referrals, Bletchingley, UK
27 28 29 30	12	3 Department of Veterinary Medical Sciences, University of Bologna, Italy
	13	4 University of Padua, Department of Comparative Biomedicine and Food
31 32	14	Science, Legnaro (Padua), Italy
33 34 35	15	5 Immune Regulation Laboratory, Department of Clinical Science and Services,
36 37	16	Royal Veterinary College, London, UK and Queen Mother Hospital for Animals,
38 39	17	Royal Veterinary College, Hatfield, UK
40 41	18	6 Small Animal Clinical Sciences, School of Veterinary Medicine, University of
42 43 44	19	Glasgow, Glasgow, UK
45 46	20	7 Dierenkliniek Sanimalia, Diepenbeek, Belgium
47 48	21	8 Centro Veterinário Berna, Onevet Group, Lisboa, Portugal
49 50	22	9 Department of Veterinary Sciences, University of Pisa, Pisa, Italy
51 52 53	23	10 Department of Veterinary Sciences, University of Torino, Grugliasco (Turin), Italy
54 55	24	11 Department of Veterinary Sciences and Public Health, University of Milan, Italy
56 57	25	
58 59 60	26	

1	
2 3 4 5 6 7 8	
4	
5	
6 7	
8	
9	
10	
12	
13	
14	
16	
17	
18	
20	
21	
22	
23 24	
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	
26 27	
27 28 29 30	
29	
30 31	
32	
33	
34 35	
36 37	
37 38	
39	
40	
41 42	
43	
44 45	
40	
47	
48 49	
50	
51	
52 53	
54	
55 56	
56 57	
58	
59 60	
00	

27	* Corresponding author:
28	Laura Marconato, DVM, DECVIM-CA (Oncology)
29	Centro Oncologico Veterinario
30	Via San Lorenzo 1/4
31	40037 Sasso Marconi, Italy
32	marconato@centroncologicovet.it
33	
34	
35	Abbreviated title
36	Canine lymphoma staging and efficacy assessment
37	
38	Keywords
39	Dog, multicentric lymphoma, staging, efficacy assessment, systematic review
40	
41	Presented in part at the 13-ICML, Lugano, Switzerland, June 20 th , 2015.
42	
43	

Page 3 of 40		Veterinary and Comparative Oncology
1 2 3	44	
4	45	Abstract
5 6 7	46	Diagnostic methods used in the initial and post-treatment evaluation of canine
8 9	47	lymphoma are heterogeneous and can vary within countries and institutions.
10 11 12	48	Accurate reporting of clinical stage and response assessment is crucial in
13 14	49	determining the treatment efficacy and predicting prognosis. This study
15 16	50	comprises a systematic review of all available canine multicentric lymphoma
17 18	51	studies published over a period of 15 years. Data concerning clinical stage
19 20 21	52	evaluation and response assessment procedures were extracted and
22 23	53	compared. Sixty-five studies met the eligibility criteria. The survey results
24 25	54	expose variations in diagnostic criteria and treatment response assessment in
26 27	55	canine multicentric lymphoma. Variations in staging procedures performed and
28 29 30	56	recorded led to an unquantifiable heterogeneity among patients in and between
31 32	57	studies, making it difficult to compare treatment efficacies. Awareness of this
33 34	58	inconsistency of procedure and reporting may help in the design of future
35 36	59	clinical trials.
37 38 39	60	
40 41 42 43 44		
44 45 46		
47 48		
49 50		
51 52 53		
53 54 55		
56 57		
58 59		
60		Veterinary and Comparative Oncology

61 Introduction

 Variation in diagnostic criteria and inconsistencies in staging procedures in veterinary cancer patients have important consequences for patient selection in clinical studies and will often preclude meaningful comparison of published data between studies. Standardizing staging and treatment response assessment criteria are therefore critical to the successful performance of clinical trials and to subsequent evaluations and comparisons of study outcomes.

Canine lymphoma is a heterogeneous group of diseases that exhibit distinct biological behaviors according to histological subtype and extent of systemic distribution.^{1,2} In addition to histopathological classification, clinical stage is one of the most important prognostic factors and may therefore represent a key variable in dictating treatment with respect to drug choice. Indeed, modern methods for diagnosis and staging of human lymphoma have improved in parallel with the spectrum of therapeutic options in recent years.³

Modern lymphoma classifications are based on the rationale of defining clinicopathological disease entities, enabling greater insight into the biological mechanisms that underlie specific diseases and the clinical consequences in terms of progression patterns and responses to different treatments.^{4,5} The ultimate goal is to develop treatment protocols that are specifically tailored to the characteristics of the individual disease entity.⁶

Much emphasis has lately been placed on the morphological subtype of disease.^{1,4,7} Whereas morphological subtype is not expected to change in response to therapy, for accurate evaluation of treatment response, a complete knowledge of lymphoma extension prior to therapy makes it possible to

accurately re-stage dogs at the end of therapy and thus to define the quality of
response. Standardized methods for staging are essential to make critical
assessments and comparisons between different therapeutic strategies;
incomplete or inconsistent staging work-up impedes comparison of study
results.

92 Currently, controversies exist regarding the extent of staging work-up that 93 needs to be carried out at initial presentation and after completion of 94 chemotherapy to assess treatment response. Over the years, much of this 95 controversy arose from the assumption that an extensive staging work-up, while 96 it might result in stage migration, did not influence prognosis or therapy.⁸

Recent progress in the field of canine lymphoma is not limited to improvements in determining morphological subtype. Refinements have also been made in molecular diagnosis and detection of minimal residual disease (MRD). A prognostic impact of the presence of MRD as detected by thymidine kinase assav⁹ or PARR (PCR for Antigen Receptor Rearrangement) testing¹⁰ has been demonstrated. While progress has been made in the publication of consensus guidelines concerning the standardization of lymph node assessment by physical examination (VCOG, Veterinary Cooperative Oncology Group), in the light of such recent progress, it can now be considered very likely that these guidelines would tend to overstate complete remission rates and understate progression rates.¹¹

 In order to continue the current trajectory of progress in our understanding and
management of canine lymphoma, and to be able to retrospectively evaluate
and compare between clinical studies, it is clear that there is a need for greater

accuracy in the staging of lymphoma at first presentation and the assessment of treatment response. In this systematic review, data that report various staging methods in canine lymphoma are summarized. The main aim was to determine to what extent different approaches to evaluate treatment efficacy were comparable. In conclusion, we will make some recommendations for further studies that may help address significant unresolved clinical issues surrounding the disease. Methods Literature search and study selection processes A literature search limited to manuscripts published from January 1999 to December 2014 was performed. The search was limited to a 15 year period to ensure the studies represented contemporary diagnostic procedures and management options. A systematic MEDLINE search of articles was conducted by using the following search terms: "lymphoma" AND "dog" OR "canine" AND "treatment" OR "therapy" OR "chemotherapy" OR "immunotherapy" OR "adoptive therapy" AND "prognosis" OR "outcome" OR "assessment" OR "survival" OR "progression" OR "remission" OR "relapse" OR "disease-free". The following were inclusion criteria for the studies to be selected: the article was published in English; the full text was available for review; the number of cases was more than 5; and finally the study was published in a peer-reviewed journal. Eligible studies for inclusion in the final data analysis were those evaluating the efficacy of first-line protocols for canine multicentric lymphoma. Exclusion criteria were studies

describing dogs with extranodal lymphoma, dogs undergoing rescue treatment,or dogs for which treatment efficacy was not recorded.

After the initial search, article titles and abstracts were first evaluated for relevance and potential exclusion, then the studies included for manuscript review were subjected to full article review. The resulting list was therefore screened for non-research articles, duplicates, case reports and irrelevant references.

Two authors were assigned to a time-period as follows: 1999-2001 MD and OAG, 2002-2004 IG and JH, 2005-2007 TH and GL, 2008-2011 LM and EM, 2012-2014 DS and GAP. Selected papers were independently reviewed on the basis of the selected criteria by the two authors for each assigned time period and a consensus on the requested information was reached.

151 Data extraction

Studies were selected based on completeness of data and inclusion criteria only. From eligible articles, the following data were extracted: study characteristics (authors, nationality, publishing year, journal), study design (prospective versus retrospective, randomized versus non-randomized, controlled versus non-controlled), recruitment period, recruiting practices/ institutions, disease (all histotypes versus B-cell lymphoma versus T-cell lymphoma versus specific histotype), number of enrolled dogs, staging work-up (including complete blood count and serum biochemical profile, urinalysis, thoracic radiographs, abdominal radiographs, abdominal ultrasound, fine-needle aspirate of liver and spleen, bone marrow aspirate, flow cytometry to quantify peripheral blood and bone marrow infiltration, others), diagnosis (histological review with or without immunohistochemistry, cytological review, flow 164 cytometry), type of chemotherapeutic protocol (drugs used, duration), type of
165 remission assessment (physical examination and subjective assessment of
166 lymph node size reduction/ enlargement, with or without confirmative cytology,
167 flow cytometry, PARR), duration of first remission, and survival time.
168

Any uncertainty about the inclusion of data from any article was resolved with a consensus meeting. No attempt was made to contact authors for additional information.

Descriptive analysis

Descriptive analysis was performed to present the proportion of studies with each characteristic. Given the small sample size and heterogeneous study methodologies, no statistical comparisons were performed.

178 Agreement by the Editors and Participants of the European Canine 179 Lymphoma Network

The European Canine Lymphoma Network (ECLN) is a network created in 2009 with the aim of establishing cooperation among different institutions working on canine lymphoma across the fields of diagnosis and therapy.¹² The definition of common guidelines and approaches is one of the main goals of ECLN. This review was submitted to the 25 Editors and Participants of Workgroup 2. The review was planned to be submitted to a peer-reviewed journal only if at least 75% of the participants agreed on its content.

56 188

59 189 **Results**

Page 9 of 40

1		
2 3	190	The initial search yielded over 508 references, many of which were not
4 5 6	191	specifically relevant to our topic. After the exclusion of irrelevant studies, 63
7 8	192	articles that appeared relevant to our aim and that met all study criteria were
9 10	193	identified and fully reviewed.4,10,13-72 The main characteristics of the included
11 12	194	studies are summarized in Table 1.
13 14 15	195	
16 17	196	Among these studies, 40 (63.5%) were from the USA, 9 (14.3%) were from
18 19	197	Italy, 3 (4.8%) were from Germany, 3 (4.8%) were from Brazil, 2 (3.2%) were
20 21	198	from Japan, 2 (3.2%) were from UK, 2 (3.2%) were from The Netherlands, 1
22 23	199	(1.6%) was from France, and 1 (1.6%) was from Poland.
24 25 26	200	Forty-five (71.4%) studies were conducted in single centres, 7 (11.1%) were
27 28	201	multicentre studies and 6 (9.5%) were undertaken by two centres. The number
29 30	202	of recruiting practices was not stated in 5 (7.9%) studies.
31 32	203	Thirty-seven (58.7%) studies were conducted prospectively, 7 of which were
33 34 35	204	randomized controlled trials comparing chemotherapy alone with chemotherapy
36 37	205	and steroids, chemotherapy alone and chemo-immunotherapy, chemotherapy
38 39	206	alone and chemotherapy plus total body hyperthermia, chemotherapy plus
40 41	207	control diet and chemotherapy plus experimental diet, or two different
42 43 44	208	chemotherapy protocols. Three studies were Phase 1 clinical trials. Twenty-five
44 45 46	209	(39.7%) studies were retrospective and the design of 1 (1.6%) study was
47 48	210	unclear.
49 50	211	
51 52	212	The median number of dogs per study was 46 (mean, 58; range, 7-456; IQR,
53 54	213	interquantile range, 63).
55 56 57	214	Forty-nine (77.8%) studies included all lymphoma histotypes; 10 (15.9%)
58 59	215	studies focused on B-cell lymphomas (3 specifically on high-grade B-cell
60		2

2 3	216	lymphoma and 2 on diffuse large B-cell lymphoma, DLBCL); 4 (63.5%) focused
4 5 6	217	on T-cell lymphoma (1 specifically on high-grade T-cell lymphoma) (Figure 1).
6 7 8	218	Depending on the study, dogs had diagnostic assessment of disease by
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	219	cytological review only (n=12; 19%), histological review only (n=17; 27%),
	220	cytology or histology (n=20; 31.7%), cytology and histology (n= 13; 20.6%),
	221	whereas the diagnostic method was not stated in 1 (1.6%) study.
	222	Immunophenotype of disease was determined either by flow cytometry or by
	223	immunohistochemistry or by PARR in 47 (74.6%) of the 63 studies examined.
	224	Immunophenotype of disease was determined in all dogs in 29 (46%) studies, in
	225	the majority to half of the cases in 5 (7.9%) studies, and only occasionally (less
	226	than 50% of cases) in 13 (20.6%) studies.
26 27 28	227	
29 30	228	The evaluation of disease extent differed significantly among studies. In 52
31 32	229	(82.5%) studies, staging work-up was described, while in 11 (17.5%) studies the
33 34	230	tests performed to assess disease extent were not mentioned.
35 36 37	231	Considering the 52 studies in which staging was described, the most commonly
37 38 39 40 41 42 43	232	suggested tests included a complete blood cell count (CBC), serum biochemical
	233	profile (83.1%), and/or urinalysis (100%), thoracic radiographs (82.7%),
	234	abdominal radiographs (28.8%), abdominal ultrasound examination with or
44 45	235	without fine-needle aspiration of liver and spleen regardless of their sonographic
46 47 48	236	appearance (59.6%), and bone marrow evaluation (73.1%). In some studies,
48 49 50 51 52	237	the following tests were also performed: serology for infectious diseases (3.8%),
	238	and echocardiography and/or electrocardiography (9.6%).
53 54	239	For the purpose of this analysis, staging procedures were grouped in the
55 56	240	following categories: minimum work-up (including a CBC and serum
57 58 59	241	biochemical profile and/or radiography or ultrasound, and/or bone marrow
60		Veterinary and Columnative Openlogy

 evaluation; 25 [39.7%] studies) or full staging (including a CBC and serum
biochemical profile, thoracic radiography, abdominal ultrasound, and bone
marrow evaluation; 27 [42.8%] studies) (Figure 2). When specifically focusing
on studies in which a full-staging was suggested, tests were not always
performed on all dogs.

The most commonly used first-line treatment protocols included vincristine, cyclophosphamide, doxorubicin, and prednisone, with or without other drugs, radiation therapy or immunotherapy (CHOP-based protocols; 45 studies, 71.4%). Fourteen (22.2%) papers evaluated the efficacy of other drugs or combinations of drugs. The adopted protocol was not described in 4 (6.3%) studies.

The duration of the chemotherapeutic protocols was described in 49 (77.8%) studies, and not reported in 8 (12.7%) studies. In 6 (9.5%) studies, the duration of the protocol depended on treatment response and was therefore variable. When described, the median duration of the chemotherapeutic protocol was 19 weeks (range, 4 to 130 weeks; IQR, 12).

Regarding treatment efficacy, if response to treatment was generically described as "regression of measurable tumours", it was assumed that peripheral lymph nodes were at least measured. Thus, for the purpose of this review, this type of remission assessment was grouped into the category "subjective or radiological/sonographic measurement of peripheral lymph nodes". The methods for assessing treatment response varied greatly among studies. In 41 (65.1%) studies, treatment response was based on subjective or radiological/sonographic measurement of peripheral lymph nodes; in none of

them, confirmative nodal cytology was described as mandatory. In 2 (3.2%) studies, a complete end-staging was carried out, including bloodwork, urinalysis, imaging and confirmative cytology. In 9 (14.3%) studies, minimal residual disease analysis was carried out, including flow cytometry and/or PARR. Finally, the methods were not described in 11 (17.5%) studies (Figure 3). The endpoint remission duration was described in 57 (90.5%) studies; the endpoint survival was reported in slightly fewer studies (n=52; 82.5%). Discussion For each dog with suspected multicentric lymphoma, the overall goal is a timely diagnosis and administration of appropriate therapy. Needless to say, accurate staging influences management decisions and predicts prognosis for cancer patients in general. Also, clinical staging procedures allow determination of a patient's response to therapy. Finally, clinical stage evaluations serve an important role in allowing the comparison of treatments between studies. The purpose of this work was to review the last 15 years of published literature to determine to what extent different approaches to evaluate treatment efficacy in the first-line setting were comparable. To the authors' knowledge, there are no other published systematic reviews assessing the methods used for staging canine lymphoma at diagnosis and post treatment.

2	
3	
4	
5	
6	
о _	
7	
8	
9	
1	0
4	1
1	1
1	2
1	3
1	4
1	5
1	6
4	7
1	1
1	012345678901234567890123456789
1	9
2	0
2	1
<u>م</u>	י ר
2	2
2	3
2	4
2	5
2	e e
2 2	7
2	1
2	8
2	9
ર	0
ົ່	4
ა ი	1
3	2
3	3
3	4
ર	5
ົ່	6
З -	0
3	1
3	8
3	9
4	Ô
4	-
4	
4	
4	4
4	
4	
4	1
4	8
4	9
5	
5	1
5	
5	3
5	4
5	5
5	
5	
5	
5	q

This systematic review identified a total of 63 articles that satisfied the search criteria. The total number of dogs in the current systematic review is relatively large, with a median 46 dogs per study.

295 Based on the results of the current review, certain points of controversy were 296 found.

297

First, there was significant variability across studies concerning histotypes. The 298 299 greatest majority of studies have been severely hampered by the admixture of a 300 variety of lymphoma subtypes in the analysis of outcome, making it difficult to 301 assess the clinical efficacy of any given treatment. Indeed, it has been well 302 documented that canine lymphomas encompass a group of types of tumors, with different biologic behaviors, patterns of chemosensitivity and treatment 303 responses.^{1,2} Thus, clinical trial results need to be interpreted in the context of 304 305 the distribution of histologic subtypes treated. This, in turn, complicates the 306 assessment of chemotherapy efficacy, making it impossible, in studies 307 describing mixed lymphoma subtypes, to determine whether high or low 308 response rates are due to the specific treatment or to the specific population 309 under study. Only 2 out of the 63 studies evaluated a single lymphoma subtype.

310

60

Second, there were striking differences in the criteria for the diagnosis and the extent of the staging procedures. These differences inevitably have an unquantifiable influence on the patients' final outcome, and preclude meaningful comparisons between studies. Briefly, in 17.5% of the studies the staging workup was not described. Furthermore, almost half of the studies relied on a minimum work-up. Unfortunately, to date no single diagnostic algorithm sufficiently addresses the complexity and variation in disease patterns of canine

318 lymphoma. Furthermore, local expertise and financial resources can also 319 influence the approach taken. Doubtless, the different opinions concerning the 320 minimum criteria for the diagnosis of canine lymphoma do result in differences 321 in patient selection for different chemotherapeutic protocols and therefore do 322 bias treatment outcome.

Third, the comparability of efficacy between studies was also hampered by differences in response assessment criteria employed.

The importance of response assessment criteria is well described in the literature: recently, the VCOG developed a consensus document, dictating guidelines to standardize definition of normal lymph node size, when and how responses should be assessed, and definitions for response categories and endpoints.⁸ However, cytological and molecular diagnostic techniques allow one to state that the VCOG guidelines would tend to overstate complete remission rates and understate progression rates.⁸ Indeed, most of the limitations of this document reside in the inter- and intra-observer variability of physical examination, rendering the guidelines not suited for end-staging; furthermore, they do not allow assessment of MRD. A recent study has indeed shown presence of MRD by PARR despite clinical remission in 9 of 12 (75%) dogs with diffuse large B-cell lymphoma.⁹ As a matter of fact, despite the ease and practicality of lymph node measurement, the VCOG guidelines have not been validated in clinical and therapeutic studies.

According to the results obtained here, a good proportion of studies (17.5%) did not describe the methods used for evaluating treatment response at all. The majority of studies relied on subjective or radiological measurement of peripheral lymph nodes, whereas few studies defined treatment response

Page 15 of 40

1		
2 3	344	based on MRD evaluation. Although the induction of clinical remission is
4 5 6 7 8	345	associated with clinical benefit, RECIST criteria are restricted to measuring
	346	tumor size, being insensitive to changes in tumor load in other matrices (such
9 10	347	as peripheral blood, bone marrow and abdominal organs), and may therefore
11 12	348	overestimate the anti-tumor treatment effect.
13 14 15	349	
16 17	350	In this study it was shown that the absence of accurate diagnostic work-up
18 19	351	during the initial and the end-staging may be one of the confounding factors
20 21	352	leading to controversial results and different rates of success of antitumoral
22 23	353	treatment in the different studies. Clearly, standardization of staging techniques,
24 25 26	354	both initially and after treatment, is needed to decrease, if not eliminate,
26 27 28	355	variability due to selection bias. Until the validity and reliability of measurement
29 30	356	tools are ensured, it cannot be accurately determined which of the published
31 32	357	treatment protocols will benefit lymphoma dogs. Awareness of these effects for
33 34 35	358	patient selection and for treatment outcome may help in the design of future
36 37	359	clinical trials. These trials will require international collaboration and should
38 39	360	ideally be designed following multidisciplinary clinical input and include dogs
40 41	361	classified according to histological guidelines to ensure homogeneous
42 43 44	362	enrolment.
44 45 46	363	
47 48	364	The participants in the Clinical Working Group of ECLN make the following
49 50	365	concluding observations and recommendations.
51 52	366	While the shortcomings of retrospective studies are familiar to all, such clinical
53 54 55	367	studies describing historical actions to real patients will always be of value to
55 56 57	368	our understanding of treatment and disease.
58 59		
60		15

369 When clinical information concerning canine nodal lymphoma is gained 370 prospectively, thought must be given to the utility of that information for the 371 scientific community at large.

For all dogs enrolled in prospective studies, optimal diagnosis, clinical stage
 evaluation and response evaluation criteria should comprise as a minimum:

Diagnosis: WHO classification of lymphoma type and/or flow cytometry and cytomorphological analysis to define B/T immunophenotype and morphological subtype within the limits of what is possible using those diagnostic modalities. For the histopathological diagnosis of lymphoma, lymph node excision biopsies (lymphadenectomy) rather than core biopsies are regarded as standard of care.

Clinical Stage: Complete blood count and smear evaluation; thoracic and abdominal imaging (x-ray, ultrasound, CT/MRI as appropriate); cytology of splenic and hepatic aspirates, and bone marrow evaluation prior to initiation of therapy.

Response Evaluation: Two to four weeks following administration of final chemotherapy treatment for discontinuous protocols or four to six months after initiation of therapy for continuous protocols: complete blood count and smear evaluation; thoracic and abdominal imaging (x-ray, ultrasound, CT/MRI as appropriate); cytology of splenic and hepatic aspirates, bone marrow evaluation, and MRD monitoring.

 It is recognized that these observations and recommendations are pertinent in
the present; future discoveries and trends should lead to their modification. By
achieving conformity as suggested, such progress, it is hoped, will be made
faster.

References

- Valli VE, San Myint M, Barthel A, Bienzle D, Caswell J, Colbatzky F, *et al.* Classification of canine malignant lymphomas according to the World
 Health Organization criteria. *Veterinary Pathology* 2011; **48**: 198-211.
- Aresu L, Martini V, Rossi F, Vignoli M, Sampaolo M, Aricò A, *et al.*Canine indolent and aggressive lymphoma: clinical spectrum with
 histologic correlation. *Veterinary and Comparative Oncology* 2013. doi:
 10.1111/vco.12048.
- 20
21
224043. Marconato L. The staging and treatment of multicentric high-grade22
23
24405lymphoma in dogs: a review of recent developments and future24
25
26406prospects. The Veterinary Journal 2011; **188**: 34-38.
- 4. Valli VE, Kass PH, San Myint M and Scott F. Canine lymphomas: association of classification type, disease stage, tumor subtype, mitotic rate, and treatment with survival. Veterinary Pathology 2013; 50: 738-748.
- 411 5. Frantz AM, Sarver AL, Ito D, Phang TL, Karimpour-Fard A, Scott MC, et
 412 al. Molecular profiling reveals prognostically significant subtypes of
 413 canine lymphoma. *Veterinary Pathology* 2013; **50**: 693-703.
- 42
 43
 44
 45
 45
 45
 46
 6. Klopfleisch R. Personalised medicine in veterinary oncology: One to cure just one. *The Veterinary Journal* doi: 10.1016/j.tvjl.2015.01.004.
- Ponce F, Marchal T, Magnol JP, Turinelli V, Ledieu D, Bonnefont C, et al. A morphological study of 608 cases of canine malignant lymphoma in France with a focus on comparative similarities between canine and human lymphoma morphology. Veterinary Pathology 2010; 47: 414-433.

- 8. Flory AB, Rassnick KM, Stokol T, Scrivani PV and Erb HN. Stage migration in dogs with lymphoma. Journal of Veterinary Internal Medicine 2007; **21**: 1041-1047.
- 9. von Euler H, Einarsson R, Olsson U, Lagerstedt AS and Eriksson S. Serum thymidine kinase activity in dogs with malignant lymphoma: a potent marker for prognosis and monitoring the disease. Journal of Veterinary Internal Medicine 2004; **18**: 696-702.
- 10. Aresu L, Aricò A, Ferraresso S, Martini V, Comazzi S, Riondato F, et al. Minimal residual disease detection by flow cytometry and PARR in lymph node, peripheral blood and bone marrow, following treatment of dogs with diffuse large B-cell lymphoma. The Veterinary Journal 2014; 200: 318-324.
- 11. Piek CJ, Rutteman GR and Teske E. Evaluation of the results of a L-asparaginase-based continuous chemotherapy protocol versus a short doxorubicin-based induction chemotherapy protocol in dogs with malignant lymphoma Veterinary Quarterly 1999; 21:44-49.
- 12. Comazzi S, Marconato L, Argyle DJ, Aresu L, Stirn M, Grant IA, et al. The European canine lymphoma network: a joining initiative to generate consensus guidelines for the diagnosis and therapy in canine lymphoma and research partnership. Veterinary and Comparative Oncology 2015; :494-497.
- 13. Larue SM, Fox MH, Ogilvie GK, Page RL, Getzy DM, Thrall DE, et al. Tumour cell kinetics as predictors of response in canine lymphoma treated with chemotherapy alone or combined with whole body hyperthermia. International Journal of Hyperthermia 1999; **15**:475-486.

1		
2 3	445	14. Phillips BS, Kass PH, Naydan DK, Winthrop MD, Griffey SM and
4 5 6	446	Madewell BR. Apoptotic and proliferation indexes in canine lymphoma.
7 8	447	Journal of Veterinary Diagnostic Investigation 2000; 12 :111-117.
9 10	448	15.Ogilvie GK, Fettman MJ, Mallinckrodt CH, Walton JA, Hansen RA,
11 12	449	Davenport DJ, et al. Effect of fish oil, arginine, and doxorubicin
13 14 15	450	chemotherapy on remission and survival time for dogs with lymphoma: a
16 17	451	double-blind, randomized placebo-controlled study. Cancer 2000;
18 19	452	88 :1916-1928.
20 21	453	16. Chun R, Garrett LD and Vail DM. Evaluation of a high-dose
22 23	454	chemotherapy protocol with no maintenance therapy for dogs with
24 25 26	455	lymphoma. Journal of Veterinary Internal Medicine 2000; 14 :120-124.
20 27 28	456	17.Boyce KL and Kitchell BE. Treatment of canine lymphoma with
29 30	457	COPLA/LVP. Journal of the American Animal Hospital Association 2000;
31 32	458	36 :395-403.
33 34 25	459	18. Moore AS, Cotter SM, Rand WM, Wood CA, Williams LE, London CA, et
35 36 37	460	al. Evaluation of a discontinuous treatment protocol (VELCAP-S) for
38 39	461	canine lymphoma. Journal of Veterinary Internal Medicine 2001; 15:348-
40 41	462	354.
42 43	463	19. Dobson JM, Blackwood LB, McInnes EF, Bostock DE, Nicholls P,
44 45 46	464	Hoather TM, et al. Prognostic variables in canine multicentric
40 47 48	465	lymphosarcoma. Journal of Small Animal Practice 2001; 42:377-384.
49 50	466	20. Garrett LD, Thamm DH, Chun R, Dudley R and Vail DM. Evaluation of a
51 52	467	6-month chemotherapy protocol with no maintenance therapy for dogs
53 54	468	with lymphoma. Journal of Veterinary Internal Medicine 2002; 16:704-
55 56 57	469	709.
57 58 59		
60		20

2 3 4	470	21. Jagielski D, Lechowski R, Hoffmann-Jagielska M and Winiarczyk S. A
4 5 6	471	retrospective study of the incidence and prognostic factors of multicentric
7 8	472	lymphoma in dogs (1998-2000). Journal of Veterinary Medicine. A,
9 10	473	Physiology, Pathology and Clinical Medicine 2002; 49:419-424.
11 12	474	22. Mutsaers AJ, Glickman NW, DeNicola DB, Widmer WR, Bonney PL,
13 14	475	Hahn KA, et al. Evaluation of treatment with doxorubicin and piroxicam or
15 16 17	476	doxorubicin alone for multicentric lymphoma in dogs. Journal of the
18 19	477	American Veterinary Medical Association 2002; 220:1813-1817.
20 21	478	23. Morrison-Collister KE, Rassnick KM, Northrup NC, Kristal O, Chretin JD,
22 23	479	Williams LE, et al. A combination chemotherapy protocol with MOPP and
24 25	480	CCNU consolidation (Tufts VELCAP-SC) for the treatment of canine
26 27 28	481	lymphoma. Veterinary and Comparative Oncology 2003; 1:180-90.
29 30	482	24. Moore AS, Imondi AR, de Souza PL and Wood CA. Intravenous
31 32	483	administration of 9-aminocamptothecin to dogs with lymphoma.
33 34	484	Veterinary and Comparative Oncology 2003; 1:86-93.
35 36 37	485	25. Ponce F, Magnol JP, Ledieu D, Marchal T, Turinelli V, Chalvet-Monfray
38 39	486	K, et al. Prognostic significance of morphological subtypes in canine
40 41	487	malignant lymphomas during chemotherapy. The Veterinary Journal
42 43	488	2004; 167 :158-166.
44 45	489	26. Ricci Lucas SR, Pereira Coelho BM, Marquezi ML, Franchini ML,
46 47 48	490	Miyashiro SI, et al. Carmustine, vincristine, and prednisone in the
49 50	491	treatment of canine lymphosarcoma. Journal of the American Animal
51 52	492	Hospital Association 2004; 40:292-299.
53 54	493	27. Williams LE, Johnson JL, Hauck ML, Ruslander DM, Price GS and Thrall
55 56	494	DE. Chemotherapy followed by half-body radiation therapy for canine
57 58 59	495	lymphoma. Journal of Veterinary Internal Medicine 2004; 18:703-709.
60		Veterinary and Comparative Oncology
		vetermary and comparative Oncology

- 28. Gustafson NR, Lana SE, Mayer MN and LaRue SM. A preliminary assessment of whole-body radiotherapy interposed within а chemotherapy protocol for canine lymphoma. Veterinary and Comparative Oncology 2004; 2:125-131.
- 29. MacDonald VS, Thamm DH, Kurzman ID, Turek MM and Vail DM. Does L-asparaginase influence efficacy or toxicity when added to a standard CHOP protocol for dogs with lymphoma? Journal of Veterinary Internal *Medicine* 2005; **19**:732-736.
- 30. Simon D, Nolte I, Eberle N, Abbrederis N, Killich M and Hirschberger J. Treatment of dogs with lymphoma using a 12-week, maintenance-free combination chemotherapy protocol. Journal of Veterinary Internal *Medicine* 2006; **20**:948-954.
- 31. Turner AI, Hahn KA, Rusk A, Gamblin RM, Cosgrove SB, Griffice K, et al. Single agent gemcitabine chemotherapy in dogs with spontaneously occurring lymphoma. Journal of Veterinary Internal Medicine 2006; :1384-1388.
- 32. Siedlecki CT, Kass PH, Jakubiak MJ, Dank G, Lyons J and Kent MS. Evaluation of an actinomycin-D-containing combination chemotherapy protocol with extended maintenance therapy for canine lymphoma. Canadian Veterinary Journal 2006; 47:52-59.
- 33. Turek MM, Thamm DH, Mitzey A, Kurzman ID, Huelsmeyer MK, Dubielzig RR, et al. Human granulocyte-macrophage colony-stimulating factor DNA cationic-lipid complexed autologous tumour cell vaccination in the treatment of canine B-cell multicentric lymphoma. Veterinary and Comparative Oncology 2007; 5:219-231.

2		
2 3 4	521	34. Hosoya K, Kisseberth WC, Lord LK, Alvarez FJ, Lara-Garcia A, Kosarek
5 6	522	CE, et al. Comparison of COAP and UW-19 protocols for dogs with
7 8	523	multicentric lymphoma. Journal of Veterinary Internal Medicine 2007;
9 10	524	21 :1355-1363.
11 12	525	35. Kaiser CI, Fidel JL, Roos M and Kaser-Hotz B. Reevaluation of the
13 14	526	University of Wisconsin 2-year protocol for treating canine
15 16 17	527	lymphosarcoma. Journal of the American Animal Hospital Association
18 19	528	2007; 43 :85-92.
20 21	529	36. Gavazza A, Lubas G, Valori E and Gugliucci B. Retrospective survey of
22 23	530	malignant lymphoma cases in the dog: clinical, therapeutical and
24 25 26	531	prognostic features. Veterinary Research Communications 2008;
20 27 28	532	32 :S291-S293.
29 30	533	37. Marconato L, Bonfanti U, Stefanello D, Lorenzo MR, Romanelli G,
31 32	534	Comazzi S, et al. Cytosine arabinoside in addition to VCAA-based
33 34	535	protocols for the treatment of canine lymphoma with bone marrow
35 36 37	536	involvement: does it make the difference? Veterinary and Comparative
38 39	537	Oncology 2008; 6 :80-89.
40 41	538	38. Merlo A, Rezende BC, Franchini ML, Monteiro PR and Lucas SR. Serum
42 43	539	amyloid A is not a marker for relapse of multicentric lymphoma in dogs.
44 45	540	Veterinary Clinical Pathology 2008; 37 :79-85.
46 47 48	541	39. Rebhun RB, Lana SE, Ehrhart EJ, Charles JB and Thamm DH.
49 50	542	Comparative analysis of survivin expression in untreated and relapsed
51 52	543	canine lymphoma. Journal of Veterinary Internal Medicine 2008; 22:989-
53 54	544	95.
55 56	545	40. Simon D, Moreno SN, Hirschberger J, Moritz A, Kohn B, Neumann S, et
57 58 59	546	al. Efficacy of a continuous, multiagent chemotherapeutic protocol versus
60 60		
		Veterinary and Comparative Oncology

1		
2 3 4	547	a short-term single-agent protocol in dogs with lymphoma. Journal of the
5 6	548	American Veterinary Medical Association 2008; 232:879-885.
7 8	549	41. Gavazza A, Sacchini F, Lubas G, Gugliucci B and Valori E. Clinical,
9 10	550	laboratory, diagnostic and prognostic aspects of canine lymphoma: A
11 12	551	retrospective study. Comparative Clinical Pathology 2009; 18:291-299.
13 14	552	42. Miller AG, Morley PS, Rao S, Avery AC, Lana SE and Olver CS. Anemia
15 16 17	553	is associated with decreased survival time in dogs with lymphoma.
18 19	554	Journal of Veterinary Internal Medicine 2009; 23:116-122.
20 21	555	43. Brodsky EM, Maudlin GN, Lachowicz JL and Post GS. Asparaginase and
22 23	556	MOPP treatment of dogs with lymphoma. Journal of Veterinary Internal
24 25	557	<i>Medicine</i> 2009; 23 :578-584.
26 27 28	558	44. Daters AT, Mauldin GE, Mauldin GN, Brodsky EM and Post GS.
29 30	559	Evaluation of a multidrug chemotherapy protocol with mitoxantrone
31 32	560	based maintenance (CHOP-MA) for the treatment of canine lymphoma.
33 34	561	Veterinary and Comparative Oncology 2010; 8:11-22.
35 36 37	562	45. Lori JC, Stein TJ and Thamm DH. Doxorubicin and cyclophosphamide
37 38 39	563	for the treatment of canine lymphoma: a randomized, placebo-controlled
40 41	564	study. Veterinary and Comparative Oncology 2010; 8:188-195.
42 43	565	46. Marconato L, Crispino G, Finotello R, Mazzotti S and Zini E. Clinical
44 45	566	relevance of serial determinations of lactate dehydrogenase activity used
46 47 48	567	to predict recurrence in dogs with lymphoma. Journal of the American
49 50	568	Veterinary Medical Association 2010; 236:969-974.
51 52	569	47. Rassnick KM, Bailey DB, Malone EK, Intile JL, Kiselow MA, Flory AB, et
53 54	570	al. Comparison between L-CHOP and an L-CHOP protocol with
55 56	571	interposed treatments of CCNU and MOPP (L-CHOP-CCNU-MOPP) for
57 58 59		
60		24

1		
2 3 4	572	lymphoma in dogs. Veterinary and Comparative Oncology 2010; 8:243-
5 6	573	53.
7 8	574	48. Sorenmo K, Overley B, Krick E, Ferrara T, LaBlanc A and Shofer F.
9 10	575	Outcome and toxicity associated with a dose-intensified, maintenance-
11 12	576	free CHOP-based chemotherapy protocol in canine lymphoma: 130
13 14 15	577	cases. Veterinary and Comparative Oncology 2010; 8:196-208.
16 17	578	49. Yamazaki J, Takahashi M, Setoguchi A, Fujino Y, Ohno K and Tsujimoto
18 19	579	H. Monitoring of minimal residual disease (MRD) after multidrug
20 21	580	chemotherapy and its correlation to outcome in dogs with lymphoma: a
22 23 24	581	proof-of-concept pilot study. Journal of Veterinary Internal Medicine
24 25 26	582	2010; 24 :897-903.
27 28	583	50. Zenker I, Meichner K, Steinle K, Kessler M and Hirschberger J. Thirteen-
29 30	584	week dose-intensifying simultaneous combination chemotherapy protocol
31 32	585	for malignant lymphoma in dogs. The Veterinary Record 2010; 167:744-
33 34 35	586	748.
36 37	587	51. Sato M, Yamazaki J, Goto-Koshino Y, Takahashi M, Fujino Y, Ohno K, et
38 39	588	al. Evaluation of cytoreductive efficacy of vincristine, cyclophosphamide,
40 41	589	and Doxorubicin in dogs with lymphoma by measuring the number of
42 43 44	590	neoplastic lymphoid cells with real-time polymerase chain reaction.
45 46	591	Journal of Veterinary Internal Medicine 2011; 25 :285-291.
47 48	592	52. Marconato L, Stefanello D, Valenti P, Bonfanti U, Comazzi S,
49 50	593	Roccabianca P, et al. Predictors of long-term survival in dogs with high-
51 52	594	grade multicentric lymphoma. Journal of the American Veterinary
53 54 55	595	Medical Association 2011; 238:480-485.
56 57	596	53. Perry JA, Thamm DH, Eickhoff J, Avery AC and Dow SW. Increased
58 59 60	597	monocyte chemotactic protein-1 concentration and monocyte count
		Veterinary and Comparative Oncology

independently associate with a poor prognosis in dogs with lymphoma. Veterinary and Comparative Oncology 2011; 9:55-64. 54. Flory AB, Rassnick KM, Erb HN, Garrett LD, Northrup NC, Selting KA, et al. Evaluation of factors associated with second remission in dogs with lymphoma undergoing retreatment with cyclophosphamide, а doxorubicin, vincristine, and prednisone chemotherapy protocol: 95 cases (2000-2007). Journal of the American Veterinary Medical Association 2011; 238:501-506. 55. Rebhun RB, Kent MS, Borrofka SA, Frazier S, Skorupski K and Rodriguez CO. CHOP chemotherapy for the treatment of canine multicentric T-cell lymphoma. Veterinary and Comparative Oncology 2011; **9**:38-44. 56. Sorenmo KU, Krick E, Coughlin CM, Overley B, Gregor TP, Vonderheide RH, et al. CD40-activated B cell cancer vaccine improves second clinical remission and survival in privately owned dogs with non-Hodgkin's lymphoma. PLoS One 2011; 6:e24167. 57. O'Connor CM, Sheppard S, Hartline CA, Huls H, Johnson M, Palla SL, et al. Adoptive T-cell therapy improves treatment of canine non-Hodgkin lymphoma post chemotherapy. Scientific Reports 2012; 2:249. 58. Silver M, Rusk A, Phillips B, Beck E, Jankowski M, Philibert J, et al. Evaluation of the oral antimitotic agent (ABT-751) in dogs with lymphoma. Journal of Veterinary Internal Medicine 2012; 26:349-354. 59. Willcox JL, Pruitt A and Suter SE. Autologous peripheral blood hematopoietic cell transplantation in dogs with B-cell lymphoma. Journal of Veterinary Internal Medicine 2012; 26:1155-1163. Veterinary and Comparative Oncology

2 3	623	60. Vail DM, Husbands BD, Kamerling SG, Simpson H, Kurzman ID and
4 5 6	624	McDonnell A. Phase I study to determine the maximal tolerated dose and
7 8	625	dose-limiting toxicities of orally administered idarubicin in dogs with
9 10	626	lymphoma. Journal of Veterinary Internal Medicine 2012; 26:608-613.

- 61. Gentilini F, Turba ME and Forni M. Retrospective monitoring of minimal residual disease using hairpin-shaped clone specific primers in B-cell lymphoma affected dogs. Veterinary Immunology and Immunopathology 2013; 153:279-288.
- 62. Sato M, Yamzaki J, Goto-Koshino Y, Takahashi M, Fujino Y, Ohno K, et al. The prognostic significance of minimal residual disease in the early phases of chemotherapy in dogs with high-grade B-cell lymphoma. The Veterinary Journal 2013; **195**:319-324.
- 63. Marconato L, Martini V, Aresu L, Sampaolo M, Valentini F, Rinaldi V, et al. Assessment of bone marrow infiltration diagnosed by flow cytometry in canine large B cell lymphoma: prognostic significance and proposal of a cut-off value. The Veterinary Journal 2013; 197:776-781.
- 639
 64. Elliott JW, Cripps P, Marrington AM, Grant IA and Blackwood L.
 640
 640
 640
 640
 640
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 641
 <l
- 45
46
47
48
49
5064265. Burton JH, Garrett-Mayer E and Thamm DH. Evaluation of a 15-week
47 and Comparative Characteria and Comparative Oncology 2013; **11**:306-315.45
48
49
50644Veterinary and Comparative Oncology 2013; **11**:306-315.
- 66. Zandvliet M, Rutteman GR and Teske E. Prednisolone inclusion in a first-line multidrug cytostatic protocol for the treatment of canine lymphoma does not affect therapy results. The Veterinary Journal 2013; 197:656-661.

- 649 67. Warry EE, Willcox JL and Suter SE. Autologous peripheral blood
 650 hematopoietic cell transplantation in dogs with T-cell lymphoma. *Journal* 651 of Veterinary Internal Medicine 2014; 28:529-537.
- 652 68. Avery PR, Burton J, Bromberek JL, Seelig DM, Elmslie R, Correa S, et
 653 al. Flow cytometric characterization and clinical outcome of CD4+ T-cell
 654 lymphoma in dogs: 67 cases. *Journal of Veterinary Internal Medicine*655 2014; **28**:538-546.
- 656 69. Marconato L, Frayssinet P, Rouquet N, Comazzi S, Leone VF, Laganga
 657 P, et al. Randomized, placebo-controlled, double-blinded
 658 chemoimmunotherapy clinical trial in a pet dog model of diffuse large B 659 cell lymphoma. *Clinical Cancer Research* 2014; **20**:668-677.
- 660 70. Mutz M, Boudreaux B, Kearney M, Stroda K, Gaunt S and Shiomitsu K.
 661 Prognostic value of baseline absolute lymphocyte concentration and
 662 neutrophil/lymphocyte ratio in dogs with newly diagnosed multi-centric
 663 lymphoma. *Veterinary and Comparative Oncology* 2015; **13**:337-347.
- 6
766471. Lucas SR, Maranhão RC, Guerra JL, Coelho BM, Barboza R and Pozzi8
9665DH. Pilot clinical study of carmustine associated with a lipid0
1666nanoemulsion in combination with vincristine and prednisone for the2
3
4667treatment of canine lymphoma. Veterinary and Comparative Oncology56682015; **13**:184-193.
- 669
 72. Childress MO, Fulkerson CM, Lahrman SA, Weng HY. Inter- and intra670
 670
 670
 671
 671
 671
 671
 671
 671
 671
 671
 671
 671
 671
 672
 2014 Nov 16. doi: 10.1111/vco.12125.
 - Veterinary and Comparative Oncology

1		
2 3 4	674	Captions to figures
4 5 6	675	Figure 1. Pie chart showing the distribution of disease types in dogs
7 8	676	enrolled in the 63 studies. (DLBCL: diffuse large B-cell lymphoma).
9 10	677	
11 12 13	678	Figure 2. Pie chart showing the staging methods according to the 63
14 15	679	studies.
16 17	680	
18 19	681	Figure 3. Pie chart showing the methods used to assess treatment
20 21 22 23 24 25 26 27 28 29 30 31 23 34 35 36 37 89 40 41 23 44 56 27 28 90 31 23 34 35 36 37 89 40 41 23 44 56 57 56 57 58 50 50 50 50 50 50 50 50 50 50 50 50 50	682	response according to the 63 studies. (LN: lymph node).

Table 1. Characteristics of included studies (chronologic order).

Author (n)	Study	Disease		Staging	methods		D	agnosis	s methods	Ren	nission	assessme	nt
	type		B+U	IM	BM	Other*	С	Η	РН	LN meas	С	B+IM	MRD
Piek et al 1999	R	All		N	R		X	(or)	no	X	no	no	no
(117)		histotypes	R					x					
Larue et al 1999	Р	All	C	N	R		no	X	no	x	no	no	no
(42)		histotypes											
Phillips et al	Р	All	X	x	X	no	no	X	х	x	no	no	no
2000 (41)		histotypes											
Ogilvie et al 2000	Р	All	х	Х	X	no	no	x	no	Х	no	no	no
(32)		histotypes											
Chun et al 2000	Р	All	X	Х	X	no	no	x	OCC		N	R	
(49)		histotypes							h,				
Boyce et al 2000	NR	All	X	x	OCC	no	х	(or)	no	x	no	no	no
(75)		histotypes						х					
Moore et al 2001	R	All	X	OCC	OCC	no	X	(or)	no	X	no	no	no
(82)		histotypes						х					

Dobson et al	Р	All	Х	Х	OCC	no	no	х	Х	Х	no	no	
2001 (49)		histotypes											
Garrett et al 2002	Р	All	X	X	X	no	X	OCC	no		N	R	<u> </u>
(53)		histotypes											
Jagielski et al	R	All	X	X	x	no	no	X	no	x	no	no	
2002 (43)		histotypes											
Mutsaers et al	Р	All	x	x	X	no	no	X	no	x	no	x (IM	1
2002 (33)		histotypes		0								only)	
Morrison-	R	All	Х	x	x	no	no	X	MOST	x	no	X	1
Collister et al		histotypes											
2003 (94)													
Moore et al 2003	Р	All	Х	Х	Х	no	no	X	MOST	Х	no	no	
(10)		histotypes											
Ponce et al 2004	R	All	Х	х	X	no	X	X	X	x	no	no	
(57)		histotypes											
Ricci Lucas et al	Р	All	Х	Х	x	no	X	X	no	x	no	no	1
2004 (7)		histotypes											
Williams et al	Р	All	Х	X	OCC	x	x	(or)	X	X	no	x	\vdash

Page	32	of	40
------	----	----	----

2004 (52)		histotypes						Х					
Gustafson et al	Р	All	X	x	x	no	X	X	Х	Х	no	no	no
2004 (8)		histotypes											
MacDonald et al	R	All	x	х	x	no	no	X	Х		N	R	
2005 (115)		histotypes											
Simon et al 2006	Р	All	x	Х	OCC	Х	X	(or)	MOST	Х	no	no	nc
(77)		histotypes	C					х					
Turner et al 2006	Р	All	X	x	X	no	no	X	no	Х	no	no	nc
(21)		histotypes			R								
Siedlecki et al	R	All	X	X	OCC	no	X	(or)	OCC	Х	no	no	nc
2006 (39)		histotypes				Via		х					
Turek et al 2007	Р	B-cell	Х	х	х	no	no	X	Х	Х	no	no	no
(52)													
Hosoya et al	R	All	x	x	OCC	no	x	(or)	OCC	х	no	no	no
2007 (101)		histotypes						x					
Kaiser et al 2007	R	All	X	MOST	OCC	no	X	(or)	no	х	no	no	nc
(96)		histotypes						x					
Gavazza et al	R	All	X	no	x	X	X	no	OCC		N	R	L

2008 (114)		histotypes											
Marconato et al	Р	All	Х	Х	X	X	X	no	Х	X	X	Х	Τ
2008 (17)		histotypes											
Merlo et al 2008	Р	All	х	х	no	no	Х	no	no	X	no	no	
(20)		histotypes											
Rebhun et al	R	All	x	Х	Х	no	no	Х	Х	X	no	Х	
2008 (31)		histotypes											
Simon et al 2008	Р	All	х	x	OCC	Х	х	Х	OCC		N	R	
(106)		histotypes			R								
Gavazza et al	R	All	Х	no	x	Х	X	no	OCC	x	no	no	
2009 (114)		histotypes											
Miller et al 2009	R	All		N	R	C	X	(or)	OCC		N	R	
(84)		histotypes						х					
Brodsky et al	R	T-cell	Х	Х	OCC	no	Х	(or)	x	X	no	no	
2009 (50)								Х					
Daters et al 2010	Р	All	Х	х	X	no	Х	х	no	х	no	no	
(65)		histotypes											
Lori et al 2010	Р	All	X	OCC	OCC	no	x	(or)	OCC	X	no	no	

Page	34	of	40
------	----	----	----

(32)		histotypes						х					
Marconato et al	Р	All	X	Х	X	Х	X	no	Х	Х	x	Х	no
2010 (50)		histotypes											
Rassnick et al	Р	All	X	x	X	no	no	X	Х	Х	no	Х	no
2010 (66)		histotypes											
Sorenmo et al	R	All	x	х	X	Х	x	no	OCC	х	OC	NR	no
2010 (119)		histotypes	C								C		
Yamazaki et al	Р	All		N	IR		x	no	Х	х	no	no	X
2010 (17)		histotypes											
Zenker et al 2010	Р	All	Х	Х	OCC	no	x	OCC	no	Х	no	no	no
(17)		histotypes											
Sato et al 2011	Р	B-cell high	Х	Х	no	no	x	no	Х	Х	no	no	no
(29)		grade											
Marconato et al	R	All	Х	Х	Х	Х	X	no	X	Х	no	no	no
2011 (127)		histotypes											
Perry et al 2011	R	All	Х	no	OCC	Х	no	Х	MOST		N	R	
(26)		histotypes											
Flory et al 2011	R	All	Х	OCC	OCC	no	X	(or)	OCC		N	R	

(95)		histotypes						х					
Rebhun et al	R	T-cell	x	Х	X	no	x	(or)	X	X	no	no	1
2011 (24)		(intermediate or high grade)						х					
Sorenmo et al	Р	B-cell	x	X	x	no	X	x	X	x	X	X	1
2011 (83)			6										
O'Connor et al 2012 (8)	Р	B-cell			NR		x	Х	Х		N	R	1
Silver et al 2012	Р	All	Х	Х	no	no		N	R	X	no	no	1
(19)		histotypes											
Willcox et al 2012 (19)	Р	B-cell]	NR		x	(or) x	X	no	no	no	
Vail et al 2012 (19)	Р	All histotypes	х	OCC	OCC	no	no	X	MOST	x	no	no	1
Gentilini et al 2013 (8)	R	B-cell]	NR		X	no	x	х	no	no	
Sato et al 2013	Р	B-cell high	Х	Х	no	no	X	no	x	X	no	no	

Page	36	of	40
------	----	----	----

(36)		grade											
Valli et al 2013	R	All	NR					X	Х	NR			
(456)		histotypes											
Marconato et al	Р	B-cell high	Х	Х	Х	Х	x	OCC	Х	X	Х	Х	X
2013 (46)		grade											
Elliott et al 2013	R	All	x	MOST	OCC	OCC	x	(or)	OCC	Х	no	no	no
(97)		histotypes	Č C					х					
Burton et al 2013	R	All		N	R		x	(or)	OCC	Х	no	no	no
(31)		histotypes						х					
Zandvliet et al	Р	All	Х	OCC	x	OCC	x	no	Х	Х	no	no	no
2013 (81)		histotypes											
Warry et al 2014	Р	T-cell high	NR				x	(or)	Х	no	no	no	X
(14)		grade						x					
Avery et al 2014	R	T-cell	OCC	OCC	OCC	no	X	(or)	Х		N	R	
(67)								Х					
Marconato et al	Р	DLBCL	Х	Х	X	no	X	X	x	Х	X	no	X
2014 (19)													
Aresu et al 2014	Р	DLBCL	Х	X	X	no	X	X	Х	X	X	Х	x

(14)													
Mutz et al	R	All	х	Х	OCC	no	X	(or)	OCC	х	no	Х	no
2015** (77)		histotypes						х					
Lucas et al	Р	All	Х	Х	X	no	х	X	Х	Х	no	no	no
2015** (15)		histotypes											
Childress et al	Р	All	R	NR				(or)	no	Х	no	no	no
2015** (15)		histotypes						х					

n: number of dogs, P: prospective, R: retrospective, B+U: blood and urinalysis, IM: imaging (thoracic radiography and/or abdominal radiography and/or abdominal ultrasound), BM: bone marrow evaluation, C: cytology, H: histology, PH: phenotype assessment, LN meas: subjective or radiological measurement of peripheral lymph nodes, MRD: minimal residual disease

NR: not reported, OCC: occasionally (<50% of cases), MOST: most cases (>50%)

* Other: infectious disease serology or cardiac evaluation or fine-needle aspiration of liver and spleen regardless of their sonographic appearance

** The papers published in 2015 were available for early view already when this review was started and were therefore included in the analysis.

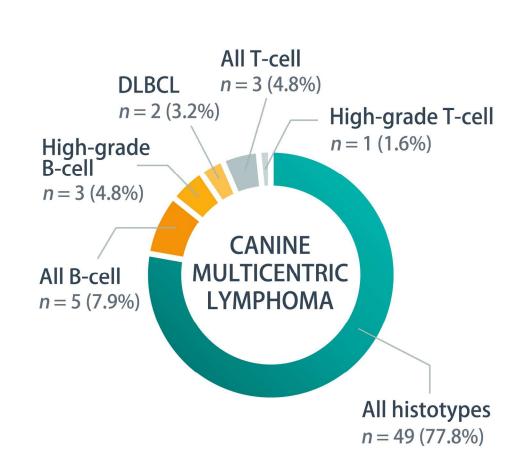
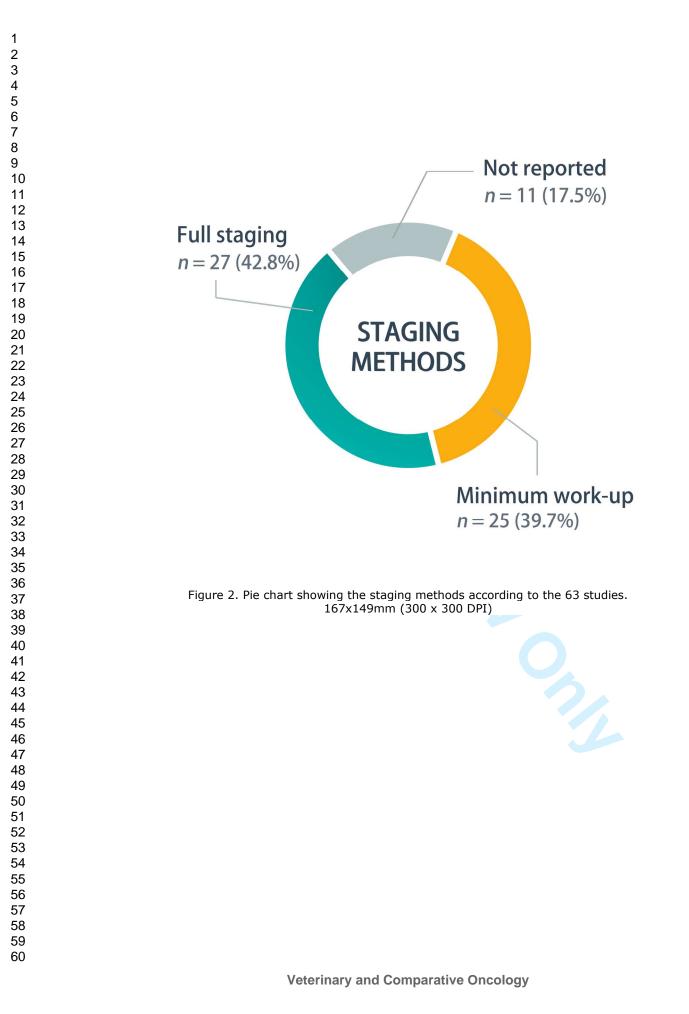
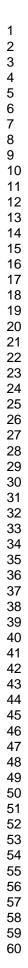




Figure 1. Pie chart showing the distribution of disease types in dogs enrolled in the 63 studies. (DLBCL: diffuse large B-cell lymphoma). 167x149mm (300 x 300 DPI)

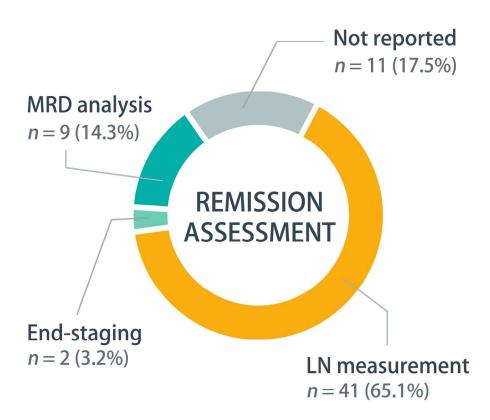


Figure 3. Pie chart showing the methods used to assess treatment response according to the 63 studies. (LN: lymph node). 167x149mm (300 x 300 DPI)