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Abstract: There is an increasing need for the discovery of reliable and eco-friendly pesticides and
natural plant-derived products may play a crucial role as source of new active compounds. In this
research, a lipophilic extract of Onosma visianii roots extract containing 12% of shikonin derivatives
demonstrated significant toxicity and inhibition of oviposition against Tetranychus urticae mites.
Extensive chromatographic separation allowed the isolation of 11 naphthoquinone derivatives
that were identified by spectral techniques and were tested against Tetranychus urticae. All the
isolated compounds presented effects against the considered mite and isobutylshikonin (1) and
isovalerylshikonin (2) were the most active, being valuable model compounds for the study of new
anti-mite agents.
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1. Introduction

There is an urgent need for the discovery of new compounds to be used as pest control agents
because the synthetic pesticides currently marketed have harmful effects on human health and the
environment. Notably, these products may also kill natural enemies, allowing an exponential increase
of pest populations [1]. Therefore, there is a need to discover safe products with low risks for human
health and environmental damage. In this framework, research on plant secondary metabolites offers
new routes to explore in the search of alternatives to conventional pesticides causing no damage to the
environment and non-target organisms [2–5].

The two-spotted spider mite T. urticae (Acari: Tetranychidae) is a polyphagous herbivore feeding
on over 1100 species, including over 150 with economic value [6]. Thus, it represents a threat
for greenhouse and field crops, with special reference to Solanaceae and Cucurbitaceae species,
accounting for about 5% loss in agricultural productivity worldwide [7]. It has been reported that,
owing to the global warming, the two-spotted spider mite’s damages in agriculture are expected
to increase dramatically in the future because the mite’s development is strongly correlated with
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high temperatures [8]. An important hallmark of T. urticae is its quick capability to develop
resistance to synthetic insecticides. Furthermore, some biological features such as high fecundity, fast
development, and haplo-diploid sex determination make the two-spotted spider mite able to speed up
its development of pesticide resistance [9].

Onosma visianii Clem, belonging to the Boraginaceae family, sect. Haplotricha Boiss., is a biennial
herb occurring in steppic and rocky calcareous sites of Central and Southeastern Europe [10]. The plant
is characterized by simple indumentum on green organs, composed of multicellular tubercles, with
single setae on the top of tubercle and without asterosetules—short rays radially attached to the
base of tubercle. The species is characterized by a sterile rosette of linear-lanceolate densely-setose
leaves in first vegetation season; then usually a single reddish, erect, and branched stem with
terminal cymes arises from the rosette in the second vegetation season. Flowers are sympetalous
and heterochlamydeous, with short pedicels and pale-yellow tubular corolla. Fruits are minutely
tuberculate beaked nutlets [11]. Roots are characterized by a showy red bark and are traditionally
used to heal wounds and burns in several species of Onosma [12]. They are also used in folk veterinary
medicine as a feed additive for cattle in Montenegro.

Several members of the Boraginaceae family, such as Lithospermum erythrorhizon Siebold &
Zucc., Alkanna tinctoria (L.) Tausch, Arnebia euchroma (Royle) I.M.Johnst., Echium plantagineum L.
and O. heterophylla Griseb. have been extensively investigated from a phytochemical point of view [13].
A review has considered plants of the genus Onosma, showing the presence of several classes of
secondary metabolites as aliphatic ketones, lipids, naphthazarins, alkaloids, phenolic compounds,
flavones and naphthoquinones [14]. A recent paper considered O. panicolatum naphthoquinones for
their anti-inflammatory potential [15], and some oligomers of alkannin and shikonins obtained from
O. echioides were studied for wound-healing activity [16]. Specifically related to O. visianii, seven
naphthoquinones were isolated and studied for antibacterial and cytotoxic activities with significant
effects found [17].

Naphthoquinones are oxygen-derivatives of naphthalene, a class of plant secondary metabolites
formed on a C6–C4 skeleton (molecular formula C10H6O2) originating from the shikimate pathway and
widespread in several families, including Droseraceae, Juglandaceae, Nepenthaceae, Plumbaginaceae,
and Boraginaceae, where they act as allelochemicals and defense against predators [13,18,19].

This group of secondary metabolites has attracted high research attention due to their notable
pharmacological activities, which include antimicrobial, anticancer, wound healing, anti-inflammatory,
and antithrombotic uses [13,20]. They have also been employed as pigments, dyes, cosmetics, and food
additives [21]. The main examples are given by plumbagin, juglone, lawsone, alkannin, and shikonin
and its derivatives, with the latter as the most important pigments used commercially [22].

It is worth noting that naphthoquinones are considered as promising candidates for the development
of botanical pesticides. As an example, plumbagin and juglone showed important acaricidal and
insecticidal effects [20,23]. To date, only a few naphthoquinones have been evaluated for acaricidal
activity [24].

Here, the hexane extract of O. visianii roots was selected as a source of bioactive naphthoquinone
to be studied against the two-spotted spider mite T. urticae. Firstly, the activity of O. visianii extract
was tested on mortality and oviposition of T. urticae. Then, the activity of compounds 1–11 was also
determined and for the most active derivatives (1–2), deeper investigations were performed allowing
the observation of acute and chronic toxicity, as well as the oviposition inhibitory effects against the
target mite species. The findings of this work provide new insights into the potential of O. visianii as a
source of highly effective naphthoquinone derivatives as acaricides.
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2. Results and Discussion

2.1. Bioactivity of Hexane Extract on T. urticae

The application of the hexane extract from O. visianii roots with 12% of shikonin derivatives caused
significant mortality of T. urticae adults (Table 1) as early as 24 h from application, with lethal doses
causing 50% (LD50) and 90% (LD90) inhibition of oviposition, estimated as 83.2 and 112.6 µg·cm−2,
respectively. However, the dose needed to kill 50% of the adults decreased significantly as a function
of time, and on day 5 from application, LD50 was more than 30 times lower (2.6 µg·cm−2). The effect
of the hexane extract on inhibition of oviposition by T. urticae females is shown in Table 1. The extract
was found to inhibit oviposition, and the LD50 (LD90) was estimated as 2.4 (43.5) µg·cm−2.

Table 1. Activity and impact on Tetranychus urticae oviposition of the Onosma visianii root extract.

Activity LD50 (CI95) a LD90 (CI95) a Chi b

Acute toxicity (tarsal test, after 24 h, µg·cm−2) 83.2 (79.8–89.5) 112.6 (101.5–121.8) 0.158
Chronic toxicity (tarsal test, after 5 days, µg·cm−3) 2.6 (1.7–3.5) 9.4 (6.2–15.5) 0.634

Oviposition inhibition (µg·cm−3) 2.4 (2.2–3.9) 43.5 (41.8–45.9) 0.525
a LD50 and LD90 = dose in µg·cm−2 causing 50% and 90%, respectively, mortality of T. urticae adults; CI95 = 95%
confidence intervals, the activity is considered significantly different when the 95% CI fail to overlap; b Chi-square
value, not significant at p > 0.05 level.

2.2. Isolation of Naphthoquinones and Structure Elucidation of Constituents

Due to this effect, separation of the constituents of the extract was performed. By extensive
chromatographic purification, compounds 1–11 were isolated and characterized by the means of
spectral methods (Table 2). Among them, two structures (8 and 11) were revealed to be new natural
products (Figure 1).

Compound 8 was isolated as a yellow solid. The HR-MS spectrum of compound 8 showed
the presence of a pseudomolecular ion at m/z 401.1940, corresponding to the molecular formula of
C23H28O6 (calculated 401.1964 Da). The compound presented a single HPLC peak and the 1H-NMR
spectrum showed signals related to the aromatic part of the compound that was characterized by
the presence of singlet at δ 7.32 (H-6/7), 6.60 (H-3), and two identical methoxy groups in positions
5 and 8 (δ 3.96). The ester chain presents a triplet at δ 0.92 (3H, t, J = 7.42), and from a correlation
spectroscopy (COSY) spectrum the spin system was deduced, and was from H-4′ ′ (CH3 at δ 0.92) to
H-3′ ′ (δ 2.25, CH2) from this, later to H-2′ ′ (δ 2.42, CH), and from this later to the methyl group H-5′ ′ at
δ 1.15 (3H, d, J = 7.02). The NMR data support the presence of 2-(1-hydroxy-4-methylpent-3-en-1-yl)-
5,8-dimethoxynaphthalene-1,4-dione moiety with ester substituents at OH in position 1′. In particular,
the heteronuclear multiple bond coherence (HMBC) correlations from CH3-5′ ′ with carbon resonances
at δ 44.8 (C-3′ ′), 42.4 (C-2′ ′), and 175.0 (C-1′ ′) support the presence of a residue of 2-methylbutanoate.
Diagnostic HMBC correlations observed from H-2′ ′ ′ with carbon resonance at δ 170.0 (C-1′ ′ ′) and 23.9
(C-4′ ′ ′/5′ ′ ′) support the presence of a 3-methylbutanoate residue. Thus, compound 8 was identified as
1-(5,8-dimethoxy-1,4-dioxo-1,4-dihydronaphthalen-2-yl)-4-methylpent-3-en-1-yl 2-methylbutanoate.
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Figure 1. Structure of the eleven naphthoquinones isolated from O. visianii roots.

Compound 11 was isolated as a yellow solid. The HR-MS spectrum of compound 11 showed the
presence of a pseudomolecular ion at m/z 317.3520 corresponding to molecular formula of C18H20O5

(calculated 317.3563 Da). The 1H-NMR spectrum was characterized by the presence of a series of
signals ascribable to a naphthoquinone moiety, namely the singlets at δ 7.31 (2H, s), 7.21 (1H, s),
partially overlapped to chloroform signal, a doublet at δ 5.80 (1H, d, J = 15.85), and a doublet of triplets
at δ 5.73 (1H, dt, J = 15.85; 5.68) that support the presence of a trans olefin linked to a CH2, a singlet at δ
3.95 (6H, s) supporting the presence of two identical methoxy groups a broad doublet at δ 3.25 (2H,
d, J = 5.68), and two aliphatic singlets at δ 1.35 and 1.27 (3H each, s) suggesting the presence of two
quaternary methyl groups. The heteronuclear single quantum correlation-distortionless enhancement
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by polarization transfer (HSQC-DEPT) experiment allowed the assignment of the chemical shift of the
non-quaternary carbon positions, and revealed the presence in the molecule of four different sp2 CH,
one sp3 CH2, and three CH3. From the comparison of H, HSQC-DEPT and HMBC the correlations
between H and C were deduced and the structure of the compound was assigned. Namely the
aromatic portion was assigned to a 1 substituted 5,8-dimethoxynaphthalene-1,4-dione. Diagnostic
HMBC correlations were observed from H-6/7 (δ 7.31) with carbon resonances at δ 153.05 (C-5/8),
121.05 (C-6/7), and 100.25 (C-9/10). Further HMBC correlations were observed from H-3 (δ 7.21)
with carbon resonances at δ 184.7 (C-1) supporting the presence of keto group, and with a quaternary
carbon at δ 148.3 (C-2), suggesting the presence of a substituent in position 2. Considering the
signals ascribable to a side chain, HMBC correlations were observed from H-1′ with C-2 and C-1
(δ 184.7), supporting the linkage with the naphthalene moiety at position 2. Further diagnostic
HMBC signals were also observed from H-1′ with C-2′ (δ 121.8) and C-3′ (δ 142.1), supporting
the presence of a double bond in the side chain. COSY correlation revealed the scalar coupling
between H-1′ and H-2′, and from this later to H-3′. The coupling constant of H-3′ (J = 15.85) support
a trans geometry for the double bond. A linkage at position 3′ of a hydroxyl-isopropyl moiety
was deduced from the HMBC correlations observed from H-3′ with C-4′ (δ 69.9), C-5′ (δ 30.43),
and C-4′. Also, NOESY correlation from H-6′ (δ 1.27) and H-2′ confirm the structure of the side
chain as a (E)-2-(4-hydroxy-4-methylpent-2-en-1-yl) moiety. Thus, the structure of the compound
11 was assigned to (E)-2-(4-hydroxy-4-methylpent-2-en-1-yl)-5,8-dimethoxynaphthalene-1,4-dione.
The NMR assignments and the structures of the new isolated compounds are reported in Table 2 and
Figure 2, respectively.

Table 2. NMR assignments for the new isolated compounds.

Position
8 11

δH δC δH δC

1 - 184.7 - 182.8
2 - 148.3 - 147.5
3 7.21 s 118.9 6.60 t, J = 1.22 133.6
4 - 184.7 - 182.8
5 - 153.1 - 153.4
6 7.31 s 121.1 7.32 s 120.8
7 7.31 s 121.1 7.32 s 120.8
8 - 153.1 - 153.4
9 - 121.2 - 120.9
10 - 121.2 - 120.9

OCH3 3.95 s 57.3 3.96 s 57.8
1′ 3.25 d, J = 5.68 32.0 5.94 m 70.0
2′ 5.73 dt, J = 15.85; 5.68 121.8 2.45–2.60 m 31.1
3′ 5.80 d, J = 15.85 142.1 5.11 m 117.1
4′ - 69.9 - 134.9
5′ 1.35 s 30.4 1.57 brs 14.9
6′ 1.27 s 26.9 1.64 brs 27.1
1′′ - 175.0
2′′ 2.42 m 42.4
3′′ 2.25 m 44.8
4′′ 0.92 t, J = 7.32 12.7
5′′ 1.15 d, J = 7.02 17.6
1′′′ - 170.0
2′′′ 2.28 m 44.9
3′′′ 2.14 m 27.1
4′′′ 0.96 d, J = 6.71 23.9
5′′′ 0.97 d, J = 6.71 23.9

Note: Spectra were acquired at 40,014 MHz for 1H and 100 MHz for 13C in CDCl3 using TMS as internal reference.
The chemical shifts (δ) are expressed in ppm. All coupling constants (J) are expressed in Hz.
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2.3. Activity of Isolated Compounds against T. urticae

The eleven shikonin derivatives isolated from the root hexane extract (Figure 1) were tested at a
dose of 15 µg·cm−2, corresponding to the dose of shikonin administered in the test of the crude extract
showing LD50 and LD90. Compounds 1 and 2 caused 100% mortality of the adults and nymphs on day
5 from application (Table 3), and present a value larger than 94% for oviposition inhibition. The other
derivatives present significant effects. Despite the relatively low number of isolated compounds, some
preliminary structure activity relationships may be observed. Indeed, methoxylation of position 5 and
8 caused significant loss of activity, suggesting an important role of the two p-hydroxy groups (C-5
and C-8) for the activity.

Table 3. Activity and impact on Tetranychus urticae oviposition of shikonin derivatives from root of
Onosma visianii.

Compound
No.

Mortality a (%)
Inhibition of Oviposition a (%)Adults Nymphs

2nd Day 5th Day 2nd Day 5th Day 2nd Day 5th Day

1 48.1± 5.3 100.0± 0.0 28.2± 5.1 100.0± 0.0 78.7± 8.7 94.5± 8.6
2 84.1±6.9 100.0± 0.0 84.6± 5.8 100.0± 0.0 90.3± 3.3 97.4± 3.5
3 80.1 ± 7.2 91.7 ± 5.8 58.9 ± 7.4 74.3 ± 5.8 81.8 ± 5.8 94.8 ± 7.1
4 32.1 ± 3.9 62.5 ± 5.2 58.8 ± 4.6 67.9 ± 4.8 25.4 ± 5.4 52.8 ± 4.9
5 20.1 ± 3.5 41.7 ± 2.5 57.9 ± 6.2 80.7 ± 5.3 0.8 ± 0.3 33.1 ± 9.1
6 68.2 ± 5.3 89.7 ± 5.2 69.2 ± 7.1 80.7 ± 5.4 64.8 ± 4.8 91.5 ± 9.5
7 52.3 ± 4.8 58.4 ± 4.3 84.6 ± 5.3 87.1 ± 7.9 7.2 ± 2.7 48.7 ± 5.7
8 40.3 ± 3.7 50.1 ± 3.9 67.2 ± 3.7 69.2 ± 4.8 18.1 ± 8.2 50.1 ± 4.2
9 68.2 ± 7.9 79.9 ± 3.8 74.3 ± 5.8 75.3 ± 5.5 66.1 ± 6.1 80.7 ± 6.9
10 20.6± 3.9 41.7 ± 3.9 61.5 ± 3.9 68.8 ± 7.2 9.1 ± 1.5 49.5 ± 7.2
11 44.4 ± 4.7 66.7 ± 4.8 35.8 ± 7.2 36.4 ± 4.6 34.5 ± 4.5 54.7 ± 8.5

a Mortality (% after correction by Abbott) and oviposition inhibition values are followed by standard deviations
(S.D.); all compounds were at 15 µg·cm−2; the two most effective compounds are highlighted in bold.

Based on analyses of the isolated compounds, isobutyrylshikonin (1) and isovalerylshikonin (2)
were found to provide the highest efficacy. Lethal doses for day 5 from application (Tables 4 and 5)
were determined for these compounds in subsequent acaricidal tests. Isovalerylshikonin was found
to provide a significantly higher efficacy, with an LD50 (LD90) estimated as 1.06 (4.15) and 1.65 (6.67)
µg·cm−2 for adults and nymphs, respectively (Table 5). These doses were significantly lower compared
with isobutyrylshikonin, whose LD50 (LD90) values were estimated as 2.69 (15.55) and 6.65 (13.16)
µg·cm−2 for adults and nymphs, respectively (Table 4).
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Table 4. Activity of isobutyrylshikonin (1) on Tetranychus urticae mites.

Dose
(µg·cm−2)

Adults Nymphs

2nd Day a 5th Day a LD50
b

(CI95)
LD90

b

(CI95)
Chi c 2nd Day a 5th Day a LD50

b

(CI95)
LD90

b

(CI95)
Chi c

13.5 37.9 ± 5.8 92.8 ± 7.3

2.69
(2.25–3.17)

15.55
(11.67–18.93) 5.362

20.8 ± 7.5 94.4 ± 3.8

6.65
(3.95–8.12)

13.16
(12.97–15.89) 2.555

6.8 24.1 ± 7.2 67.8 ± 5.9 12.9 ± 3.2 33.6 ± 7.2
3.4 31.1 ± 5.9 57.1 ± 3.9 15.1 ± 4.4 21.3 ± 5.9
1.7 6.9 ± 3.8 35.6 ± 4.9 2.1 ± 0.8 3.3 ± 2.1
0.8 10.3 ± 5.5 21.4 ± 5.2 0.0 ± 0.0 0.0 ± 0.0

Control 9.6 ± 0.2 9.6 ± 0.2 16.6 ± 3.3 18.5 ± 1.3
a Mortality (% after correction by Abbott) of adults or nymphs ± standard deviation (S.D.); b LD50 (LD90) = dose
in µg·cm−2 causing 50% (90%) mortality of adults and nymphs T. urticae; CI95 = 95% confidence intervals, the
activity is considered significantly different when the 95% CI fail to overlap; c Chi-square value, not significant at
p > 0.05 level.

Table 5. Activity of isovalerylshikonin against Tetranychus urticae mites.

Dose
(µg·cm−2)

Adults Nymphs

2nd Day a 5th Day a LD50
b

(CI95)
LD90

b

(CI95)
Chi c 2nd Day a 5th Day a LD50

b

(CI95)
LD90

b

(CI95)
Chi c

13.5 75.8 ± 5.8 100.0 ± 0.0

1.06
(0.89–1.26)

4.15
(3.43–5.32) 3.121

20.8 ± 7.5 100.0 ± 0.0

1.65
(0.61–2.82)

6.67
(5.98–8.16) 1.292

6.8 44.9 ± 5.2 96.4 ± 2.6 12.9 ± 3.2 94.4 ± 3.5
3.4 24.2 ± 3.9 82.1 ± 6.2 15.1 ± 4.4 61.8 ± 3.2
1.7 20.7 ± 5.1 71.4 ± 5.5 2.1 ± 0.8 48.7 ± 2.1
0.8 1.1 ± 0.1 39.2 ± 4.9 0.0 ± 0.0 32.2 ± 2.5

Control 9.6 ± 0.2 9.6 ± 0.2 16.6 ± 3.3 18.5 ± 1.3
a Mortality (% after correction by Abbott) of adults or nymphs ± standard deviation (S.D.); b LD50 and LD90 = dose
in µg·cm−2 causing 50% and 90% mortality of adults and nymphs T. urticae; CI95 = 95% confidence intervals, the
activity is considered significantly different when the 95% CI fail to overlap; c Chi-square value, not significant at
p > 0.05 level.

Also, isovalerylshikonin provided a significantly higher inhibition of oviposition (ED50

(ED90) = 1.15 (2.75) µg·cm−2) compared with isobutyrylshikonin, whose ED50 (ED90) was estimated
as 2.71 (9.31) µg·cm−2 (Table 6). In addition, both compounds showed ovicidal effects on the
eggs of T. urticae (Table 7). However, these tests determined a more significant ovicidal effect
for isovalerylshikonin (ED50 (ED90) = 2.1 (5.4) µg·cm−2) compared with isobutyrylshikonin (ED50

(ED90) = 9.7 (60.6) µg·cm−2). Thus, as indicated by all the results, a significantly higher acaricidal
efficacy was shown by the isolated naphthoquinone isovalerylshikonin.

Table 6. Oviposition inhibition activity of isobutyrylshikonin and isovalerylshikonin on Tetranychus
urticae females.

Dose
(µg·cm−2)

Isobutyrylshikonin Isovalerylshikonin

Eggs/
Female±

SD a

Inhibition
Oviposition
(%± SD) b

ED50
(CI95) c

ED90
(CI95) c Chi d

Eggs/
Female±

SD a

Inhibition
Oviposition
(%± SD) b

ED50
(CI95) c

ED90
(CI95) c Chi d

13.5 2.6 ± 0.3 91.1 ± 3.2

2.71
(1.79–3.96)

9.31
(8.97–15.56) 2.524

0.3 ± 0.1 98.8 ± 2.1

1.15
(0.02–1.29)

2.75
(2.38–3.34) 2.253

6.8 4.3 ± 1.1 85.9 ± 5.5 0.9 ± 0.2 97.0 ± 3.5
3.4 11.2 ± 0.9 62.7 ± 4.3 2.5 ± 0.8 91.7 ± 2.8
1.7 19.3 ± 1.1 36.1 ± 4.6 7.5 ± 0.8 75.1 ± 3.1
0.8 28.4 ± 2.1 5.4 ± 0.9 21.6 ± 1.8 28.1 ± 1.7

Control 30.1 ± 4.5 - 30.1 ± 4.5 -
a Average number of eggs laid per female ± standard deviation (S.D.); b Mean inhibition of oviposition (in %) in
comparison with the control ± standard deviation; c Effective dose ED50 (ED90) in µg·cm−2 causing 50% (90%)
inhibition of egg laying by females T. urticae, compared with untreated control; CI95 = 95% confidence intervals, the
activity is considered significantly different when the 95% CI fail to overlap; d Chi-square value, not significant at
p > 0.05 level.
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Table 7. Ovicidal activity of isobutyrylshikonin and isovalerylshikonin against Tetranychus urticae.

Dose
µg·cm−2

Isobutyrylshikonin Isovalerylshikonin

Mortality of
Eggs (%) a

ED50
b

(CI95)
ED90

b

(CI95)
Chi c Mortality of

Eggs (%) a
ED50

b

(CI95)
ED90

b

(CI95)
Chi c

13.5 58.9 ± 6.5

9.7
(7.8–12.8)

60.6
(58.9–92.2) 1.546

100.0 ± 0.0

2.1
(1.7–2.3)

5.4
(4.5–7.6) 1.478

6.8 43.3 ± 5.5 95.6 ± 7.6
3.4 18.6 ± 3.9 70.7 ± 3.8
1.7 10.5 ± 3.6 42.3 ± 5.2
0.8 5.3 ± 0.8 27.3 ± 5.9

Control 1.2 ± 0.2 1.2 ± 0.2
a The average mortality (in %) of eggs after treatment with the compounds isobutyrylshikonin and isovalerylshikonin
± standard deviation (S.D.); b Effective dose ED50 (ED90) in µg·cm−2 causing 50% (90%) mortality of eggs of T. urticae,
CI95 = 95% confidence intervals, extract activity is considered significantly different when the 95% CI fail to overlap;
c Chi-square value, not significant at p > 0.05 level.

3. Discussion

The activity of quinone-containing compounds against mites can be related to the generation of
reactive oxygen species [25], inhibition of mitochondrial respiration [26,27], and DNA intercalation and
breakdown. Some shikonins were also active against the stored product pests, Acanthoscelides obtectus
and Epilachna varivestis [28]. Alkannin, the racemic mixture alkannin/shikonin, and acetylated shikonin
derivatives have been proved as effective on larvae of the West Nile virus vector Culex pipiens [29].
Lawsone synthetic derivatives were highly effective against susceptible and resistant strains of
T. urticae and Bemisia tabaci [30]. 1,4-Naphthoquinone, juglone, 2-methoxy-1,4-naphthoquinone
and plumbagin showed antifeedant effects against the cabbage looper, Trichoplusia ni, that were
higher than those of neem-based products [19]. Plumbagin showed toxicity against the two-spotted
spider mite T. urticae, the aphids Myzus persicae and Illinoia liriodendra, and the house fly Musca
domestica [31]. Acequinocyl, a synthetic compound related to the natural naphthoquinone plumbagin
marketed in 1999 [32], is a potent inhibitor of several species of agricultural mites with low effects on
beneficial mites, low mammalian toxicity, and short persistence in the environment [33]. The synthetic
2,3-dichloro-1,4-naphthoquinone is registered as an agricultural fungicide that is highly effective
against plant pathogens belonging to the genus Colletotrichum [34].

In the present work, the remarkable acaricidal effects of O. visianii root extracts and isolated
shikonin derivatives were reported for the first time. The total amount of shikonin derivatives was
measured by 1H-NMR analysis and was 12% (w/w) of the dried hexane extract. The activity of the
isolated compounds showed similar effects to those observed using the extract. For this reason and
for the previous literature report indicating the bioactivity of naphthoquinones, we considered such
constituents as the possible active compounds against T. urticae. Isolation of compounds and structure
elucidation revealed a series of six shikonin esters with hydroxyl and methoxy groups in C5 and C8
position. The observed bioactivity may be in part related to the lipophilicity of these compounds,
which allows passage through the insect cuticle and enter into individual cells where they interfere
with molting and other physiological processes [2,6]. Our study focused on compounds 1 and 2,
revealing significant effect.

The acaricidal effects of naphthoquinones are due to their capacity to act as potent inhibitors
of electron transport [35], as uncouplers of oxidative phosphorylation [36], as DNA intercalating
and alkylating agents, and as producers of reactive oxygen radicals [37]. With regard to the latter,
the ability of naphthoquinones to generate reactive oxygen species enhances the feeding deterring
effects [25], thus playing a pivotal role in the protection of plants against pathogens [18,19]. Also in
our experiments on derivatives, the presence of free hydroxyl groups was important for the observed
bioactivity. In fact, the derivatives with methoxylation in position 5 and 8 were less active than the
corresponding non-substituted compounds.

All the compounds present effects, and the naphthoquinones’ capacities to affect mitochondrial
respiration and mite growth and development is a hallmark of many acaricides available on the market,
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namely rotenone and piericidins [38,39]. In this regard, almost all shikonin derivatives isolated from
O. visianii are endowed with ester groups. Once they cross the cuticle and enter mite cells, they may
undergo breaking of the ester linkage, resulting in the active metabolite which is capable of inhibiting
the respiration of mitochondria at Complex III in the electron transfer chain. One of the possible
binding sites appeared to be the ubiquinol oxidation site (QO) of Complex III [38].

Finally, it can be noted that the extract from the roots of O. visianii provided significant
acaricidal efficacy due to the naphthoquinones contained in the extract. Thanks to isolation of
individual compounds contained in the extract and their chemical analysis, we successfully determined
the most efficient compound—isovalerylshikonin, which showed the most significant acaricidal,
antiovipositional, and ovicidal effects against T. urticae. The efficacy of the extract and the selected
compounds contained in the extract caused chronic mortality which manifested from day 5 after
application. However, given that the LD90 for the extract as well as for isovalerylshikonin was
estimated as less than 10 µg·cm−2, which is approximately equivalent to the concentration of 0.1%
considering the used application of 10 µL of the application liquid per 1 cm2, the acaricidal efficacy of
isovalerylshikonin as well as that of the extract from O. visianii roots can be considered sufficient for
the development of new commercial acaricides.

4. Experimentals

4.1. Plant Material

Roots of O. visianii were collected in the Strážovské vrchy hills, Dolné Vestenice, Rokošské
predhorie foothill, Stredná dolina valley, Trenčín Region, Slovakia (48◦44′01.0′ ′ N, 18◦23′50.8′ ′ E, ca.
500 m a.s.l.) in November 2014. Botanical identification was performed by V. Kolarčik, after checking
against The Plant List database (www.theplantlist.org). A voucher specimen was deposited in the KO
herbarium (Herbarium of the Botanical Garden, P. J. Šafárik University, Košice, Slovakia) with the
codex DV13.

4.2. Preparation of Extracts

Onosma visianii roots were air-dried in the shade at room temperature (~25 ◦C) for one week and
conserved in wrapping papers before extraction. Dry roots were then powdered using a blender MFC
DCFH 48 IKA-WERK (Staufen, Germany) equipped with sieves of 2 mm diameter. Eighty grams of
root powder were extracted in a Soxhlet apparatus using 500 mL of n-hexane. These conditions assured
the highest efficiency for extraction of naphthoquinones as reported in the literature [20]. The obtained
extracts were concentrated under reduced pressure at 30 ◦C with a rotary evaporator up to constant
weight (yield 2.7% w/w dry weight). The extract was kept in a glass vial sealed with silicon septa and
stored under darkness at −4 ◦C before chemical analysis and biological experiments.

4.3. Isolation and Chemical Analyses

Silica gel plates (cod 5171 Merck) and silica gel (60 mesh) were obtained from Sigma (Milan,
Italy). Solvents were obtained from Carlo Erba (Milan, Italy). HPLC Varian 920 chromatograph
(Varian, Palto Alto, CA, USA) was used for preparative chromatography. NMR (1D and 2D) spectra
were obtained on a Bruker Avance 400 spectrometer (Bruker, Billerica, MA, USA). NMR spectra for
compounds 8 and 11 can be found at Supplementary Materials. Chemical shifts (δ) are expressed
in ppm. The soxhlet hexane extract of O. visianii root (2.5 g) was eluted in a silica gel column
(5 × 30 cm, 300 g Silica Gel 80 mesh) using cyclohexane (A) and ethyl acetate (B) as the eluting
system, starting from 100% A and gradually increasing the B amount up to 50%. Fractions of
12 mL were collected and pooled on the basis of their chromatographic behavior by TLC in 11
different fractions: fr-1 (0.68 g), fr-2 (0.43 g), fr-3 (0.31 g), fr-4 (0.09 g), fr-5 (0.08 g), fr-6 (0.08 g), fr-7
(0.11 g), fr-8 (0.06 g), fr-9 (0.06 g), fr-10 (0.04 g), and fr-11 (0.01 g). All the fractions were used for
compound isolation. Further purifications were obtained with semipreparative HPLC on a Zorbax

www.theplantlist.org
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SB C-18 (21.2 × 150 mm, 5 µm) column using as mobile phase methanol and water (0.1% formic
acid) in isocratic elution (90:10) for 25 min. The flow rate was 5 mL/min. UV detection was used
at 545 and 254 nm. The purity of the isolated compounds was checked by HPLC analysis and was
>97% by software integration. Quantification of the shikonin derivatives in the crude extract was
performed using 1H-NMR as previously described. Briefly, 50 mg of crude extracts were exactly
weighed and dissolved in a deuterated chloroform solution of caffeine (1 mg/mL). Peaks were
assigned to the methyl groups of caffeine (δ 3.43) and clearly resolved peaks assigned to the H-3 of
shikonin derivatives (δ 7.00) were then used for quantitative analysis using a previously published
approach [40]. Isolated compounds were isovalerylshikonin 1 (37.2 mg), isobutyrylshikonin 2 (63.2 mg),
acetylshikonin 3 (16.6 mg), hydroxyisovalerylshikonin 4 (2.4 mg), shikonin-β,β-dimethylacrylate 5
(58.7 mg), propionylshikonin 6 (1.1 mg), 5,8 dimethoxy acetylshikonin 7 (8.1 mg), 1-(5,8-dimethoxy-
1,4-dioxo-1,4-dihydronaphthalen-2-yl)-4-methylpent-3-en-1-yl 2-methylbutanoate 8 (0.8 mg), 5,8
dimethoxy isobutyrylshikonin 9 (0.6 mg), 5,8-O-dimethyldeoxyshikonin 10 (4 mg), and (E)-2-(4-
hydroxy-4-methylpent-2-en-1-yl)-5,8-dimethoxynaphthalene-1,4-dione 11 (0.5 mg). The structures of
the compounds were elucidated on the basis of 1D and 2D NMR measurements, comparing obtained
data with previously published literature [41–44].

4.4. Mite Rearing

Two-spotted spider mites, T. urticae Koch (Acari: Tetranychidae), were obtained from the cultures
maintained at the Crop Research Institute (Prague, Czech Republic). The spider mites used in the
experiments were reared on bean plants (Phaseolus vulgaris L. var. Carmen) in a growth chamber
(22–25 ◦C; a 12 h photoperiod).

4.5. Tarsal Toxicity Tests

The method of Pavela [45] was used to determine the acaricidal efficacy of the extract from
O. visianii. The tarsal test was used to determine the extract efficacy in terms of mortality of T. urticae
adults after 24 h (considered as acute toxicity) and at 5 days (considered as chronic toxicity) from
application. The experiment was done in bean plants (P. vulgaris var. Carmen) with discs sized 2 cm−2.
First, stock solutions of the extract were prepared by dissolving an appropriate amount of the extract
in methanol to obtain the concentration series of 1.5%, 1.0%, 0.8%, 0.5%, 0.3%, 0.2%, 0.1%, 0.05%, 0.02%,
and 0.01% (w/v). An automatic pipette was used to uniformly apply 20 µL of the solution on one
side of the disc (10 µL·cm−2). A concentration series was thereby obtained, equivalent to the doses of
150, 100, 80, 50, 30, 20, 10, 5, 2, and 1 µg·cm−2. Only methanol was applied to the control discs. After
application, the discs were placed in Petri dishes (5 cm in diameter) with an agar layer 0.3 cm thick on
the bottom (to maintain the freshness of the discs and standard ambient humidity).

After evaporation of the solvent (approximately 10 min from application), a fine brush was used
to transfer 10 females of T. urticae (2–3 days old) on each of the treated sides of the leaf discs. The Petri
dishes were placed in a growth chamber (L16:D8, 25 ◦C). The cut leaf discs were checked after 24 h
and 5th day after application, determining the number of dead adults using binoculars. Death was
recorded when the larvae did not respond to prodding with forceps. The determined mortality was
used to estimate the lethal doses causing 50% (90%) mortality of T. urticae. The experiment was
repeated 5 times.

4.6. Effect on Oviposition

The same method as above was used to prepare bean discs treated with the extract. Five adults
(3–4 days old) were transferred using a fine brush on each of the cut bean leaf discs. The cut discs with
the adults were placed in Petri dishes with an agar bottom. The Petri discs were placed in a growth
chamber (L16:D8, 25 ◦C). After 24 h, the laid eggs were counted. For female mortality, the number
of oviposited eggs was recalculated to live females. The determined number of eggs oviposited by
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females was used to calculate the percent inhibition of oviposition and to estimate lethal doses causing
50% (90%) inhibition of oviposition compared to the control. The experiment was repeated 5 times.

4.7. Acaricidal and Antiovipositional Effect of Compounds Isolated from the Extract

The same method as above, with minor modifications, was used to determine mortality and
antioviposition. In order to determine the most active compounds, all 11 compounds were first tested
only in the dose of 15 µg·cm−2. Each time, 10 adults (2–3 days old) or 20 nymphs (5 days old) were
transferred to the treated discs using a fine brush. Mortality of T. urticae adults and nymphs was
assessed on days 2 and 5 from application. The same method as above was used to determine the
inhibition of oviposition for days 2 and 5 from application. For compounds showing 100% mortality
on day 5 from application, a series of different doses (13.5, 6.8, 3.4, 1.7, and 0.8 µg·cm−2) was used to
determine lethal doses causing 50% (90%) mortality or inhibition of oviposition.

4.8. Ovicidal Effect

Using a fine brush, we transferred five adults (3–4 days old) onto each 1 cm−2 cut bean leaf disc.
We placed the cut discs with the adults into Petri dishes having an agar bottom. After 24 h, the adults
were taken out and the eggs that had been laid were counted. We left the eggs for 24 h more; then,
we used an automatic pipette to uniformly apply 10 µL of methanol containing a specified dissolved
amount of the compounds to the cut pieces, so that the concentration series equaled doses of 13.5,
6.8, 3.4, 1.7, and 0.8 µg·cm−2. We applied pure methanol to the control discs, which were placed in
Petri dishes following application. The Petri dishes were 5 cm in diameter, with an agar layer 0.3 cm
thick on the bottom to maintain the freshness of the cut pieces and a standard ambient humidity. We
checked the eggs every day for 10 days and recorded the emerged nymphs, which were subsequently
removed. Ovicidal efficacy was calculated using the number of eggs that had not emerged 10 days
after application. The Petri dishes were put into a growth chamber (L16:D8, 25 ◦C). We repeated the
experiment 5 times.

4.9. Statistical Analysis

Experimental testing confirmed that over 20% of the controlled mortality was discharged and
repeated. The observed mortality was corrected by Abbott’s formula [46] after the controlled mortality
reached 1–20%. The LD50 and LD90 values and associated 95% confidence limits for each treatment
were estimated using probit analysis of dose–mortality data [47].

The following formula was used to determine the inhibition of oviposition (IO):

IO (%) = ((Co − To)/Co) × 100

where To = number of eggs/female in the treated disc, and Co = number of eggs/female in the
control disc.

5. Conclusions

The present work provided new scientific evidences for the industrial exploitation of naphthoquinones
belonging to the shikonin family. In particular, these lipophilic pigments, easily obtainable from the
roots of several Boraginaceae species, are promising candidate ingredients to be incorporated in
acaricidal products to be used in crop protection.

Supplementary Materials: Supplementary Materials are available online.
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