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Dear Professor Siepmann,

thank you very much for sending me the Reviewers’ comments on the manuscript “Nanoparticle 

drug delivery systems for inner ear therapy: an overview” (JDDST_2017_23) by Valente, Astolfi 

and coworkers.

One of the Reviewers mentioned that he/she did not find the Figure captions. Indeed, we had some 

problems in manuscript uploading: we checked on the journal site and could not find the file of 

Figure captions. We therefore enclose the missing Figure captions file for you and for the Reviewer.

Here enclosed you will find the detailed answers to the Reviewers. We hope that now our 

manuscript is suitable for publication on JDDST.

Kind regards,

Laura Astolfi, PhD

-----------------

Reviewer 1

The review presented by Valente et al « Nanoparticle drug delivery systems for inner ear therapy: 

an overview” is well-written and interesting.

I have the following minor comments/suggestions regarding the manuscript.

1. Lines 43-44 “The NP with size between 10 and 100 nm are useful for application in biology and 

medicine for innovative DD systems”. This range is a little bite too restrictive. The range 10 to 200 

nm is commonly used.

We thank the Reviewer for his/her comment and corrected the sentence according to the suggestion.



2. Line 53, please introduce the references of the reviews

According to the Reviewer’s suggestion, we introduced the references in the sentence.

3. Paragraph 2. Ear barrier

Drugs can also enter the inner ear via the oval window, another semi-permeable membrane located 

in the middle ear. It is important to mention in the paper the oval window as another route of 

penetration.

As suggested by the Reviewer, we mentioned the oval window together with the other inner ear 

barriers.

4. Lines 190 to 191 “Recently, the Food and Drug Administration (FDA) and the European 

Medicines Agency (EMA) approved PLGA for parenteral administration (48)”. Please remove 

recently because PLGA microspheres and PLGA implants for the treatment of prostate cancer were 

marketed at the end of the eighties.

We deleted “recently” according to the Reviewer’s suggestion.

5. Paragraph 5. Key aspects for nanoparticles-based delivery in the inner ear

Lines 279 to 282. Supermagnetic iron oxide NPs (SPIONs) particles are not biodegradable. Please, 

add a comment on the long persistence of these particles in the inner ear and their potential toxicity 

due to their accumulation in this compartment.

We changed the sentence according to the Reviewer’s suggestion.

Lines 298 to 300 “The incorporation of loaded NP into hydrogels could increase their residence 

time in the middle ear, thus enhancing drug release in the perilymph». Please, add the reference El 

Kechai et al., “Hyaluronic acid liposomal gel sustains delivery of a corticoid to the inner ear, 

Journal of Controlled release, 2016, 226, 248-257”. This paper presents in vivo results on pegylated 

liposomes dispersed in hyaluronic hydrogel following injection in the middle ear. This recent paper 

completes examples on liposomes. 



- A prolonged residence time at the site of injection as well as in the round window were achieved 

without any negative effect on the hearing thresholds of the animals.

- The presence of liposomes in the formulation resulted in sustained release of the drug in the 

perilymph for 30 days and promoted the conversion of the prodrug loaded within the liposomes 

(dexamethasone phosphate) into its active form (dexamethasone).

- A small amount of intact liposomes was visualized in the perilymph, whereas the main proportion 

of liposomes seemed to be trapped in the round window resulting in a reservoir effect.

We thank the Reviewer for his/her comment and added the reference as suggested.

6. The quality of the figure entitled “Inner ear nanoparticles delivery” is not good. It is difficult to 

read the legend. 

We thank the Reviewer for his/her comment and improved the quality of the figure legends.

Reviewer 2

The manuscript focuses on recent findings and applications of different nanoparticle-based systems 

locally administered in the inner ear. This review is extensive and interesting, thus is worth be 

publication. There are several issues to be addressed:

It might be worthwhile to at least briefly review the disadvantage of local delivery to the inner ear 

in the first paragraph of “Introduction”.

We modified the sentence as suggested by the Reviewer.

The hierarchy of the manuscript should be reconstructed to be quite clearer, i.e. PLGA NPs don’t 

belong to the polymersomes and should be separated from “4.3. Polymersomes”.

We agree with the Reviewer that PLGA NPs are not polymersomes sensu stricto, therefore we 

corrected the title of the paragraph as “4.3 Polymersomes and copolymers” and specified their 

classification as copolymers in the text of the paragraph.



Keywords: “intratympanic” should be “intratympanic administration”.

We corrected the keyword according to the Reviewer’s suggestion

Reviewer 3

The review submitted by Filippo Valente et al. deals with different nanoparticles (NPs) used to 

administer drugs to the inner ear for the prevention of hearing loss.

After a short introduction into inner ear physiology, the different administration routes have been 

discussed. Since a minimally invasive technique seems to be promising, the review is focused on 

intratympanic administration of NPs. Subsequently, seven types of NPs are discussed giving 

examples from recent findings. Finally, a discussion about key aspects of inner ear drug delivery 

with NPs is presented.

The article gives a good overview on recent findings providing an interesting insight into new 

research. Also, the article is within the scope of the journal’s topics and written according to the 

journal’s standards pointed out in the guidelines for submission.

Minor remarks:

I did not find the legends of the figures. Please add them in the final version. Since the legend is 

missing, I cannot give comments on the figures. 

We thank the Reviewer for his/her remark. We checked on the journal site and could not find the 

file containing the figure captions, probably because of problems in uploading manuscript files. We 

therefore enclose a copy of the file containing the figure captions, as reference for the Reviewer and 

for the Editor.

Page 2, line 29: “…administered in the inner ear.”: I would replace “inner” by “middle” ear or “to 

deliver drugs to the inner ear” because with intratympanic administration normally the drug is 

administered in the middle ear cavity.

We corrected the sentence according to the Reviewer’s suggestion.

Page 3, line 50: Could you precise what do you mean by “perilymph rheology” and why it is 

“facilitating the distribution”? 



Research from Stefan Plontke and Alec N. Salt indicate the opposite: distribution of a drug inside 

the cochlea is even hindered so that a large concentration gradient is observed when the drug is 

administered intratympanically.

The term “rheology” indicates the flow of the matter in the liquid state, thus it can be applied to 

perilymph. We accordingly modified the sentence on drug distribution in the perilymph.

Page 3, line 51: The term used frequently is “Noise Induced Hearing Loss” or only “Hearing Loss”.

We corrected the sentence according to the Reviewer’s suggestion.

Page 4, line 91: “…induced side effects are developed.” Delete “induced”. 

We deleted the word “induced” from the sentence.

Page 6, line 131: Change the term “middle ear barrier”. Before, you have written “blood inner ear 

barrier (BB)” (page 3, line 62) and in my opinion it might be confusing if you name the RWM 

“middle ear barrier”.

We corrected the sentence according to the Reviewer’s suggestion.

Page 8, line 191: “PLGA” is singular, if you want to use plural in the following paragraph replace 

by “PLGA nanoparticles” or something similar. Please consider this remark for the whole paragraph 

until page 9, line 207.

According to the Reviewer’s suggestion, we added “NP” (nanoparticles) where required.

Page 11, line 242: Please write out “FITC” at least once.

Following the Reviewer’s suggestion, we substituted “FITC” with “fluorescein isothiocyanate”

Please correct the references:

17, 70 – Author names



26 – Points after author names

65, 70 – abbreviation of the journal

We corrected all references according to the Reviewer’s suggestion



Answer to Reviewers 

Reviewer 1

The review presented by Valente et al « Nanoparticle drug delivery systems for inner ear therapy: 

an overview” is well-written and interesting.

I have the following minor comments/suggestions regarding the manuscript.

1. Lines 43-44 “The NP with size between 10 and 100 nm are useful for application in biology and 

medicine for innovative DD systems”. This range is a little bite too restrictive. The range 10 to 200 

nm is commonly used.

We thank the Reviewer for his/her comment and corrected the sentence according to the suggestion.

2. Line 53, please introduce the references of the reviews

According to the Reviewer’s suggestion, we introduced the references in the sentence.

3. Paragraph 2. Ear barrier

Drugs can also enter the inner ear via the oval window, another semi-permeable membrane located 

in the middle ear. It is important to mention in the paper the oval window as another route of 

penetration.

As suggested by the Reviewer, we mentioned the oval window together with the other inner ear 

barriers.

4. Lines 190 to 191 “Recently, the Food and Drug Administration (FDA) and the European 

Medicines Agency (EMA) approved PLGA for parenteral administration (48)”. Please remove 

recently because PLGA microspheres and PLGA implants for the treatment of prostate cancer were 

marketed at the end of the eighties.

We deleted “recently” according to the Reviewer’s suggestion.



5. Paragraph 5. Key aspects for nanoparticles-based delivery in the inner ear

Lines 279 to 282. Supermagnetic iron oxide NPs (SPIONs) particles are not biodegradable. Please, 

add a comment on the long persistence of these particles in the inner ear and their potential toxicity 

due to their accumulation in this compartment.

We changed the sentence according to the Reviewer’s suggestion.

Lines 298 to 300 “The incorporation of loaded NP into hydrogels could increase their residence 

time in the middle ear, thus enhancing drug release in the perilymph». Please, add the reference El 

Kechai et al., “Hyaluronic acid liposomal gel sustains delivery of a corticoid to the inner ear, 

Journal of Controlled release, 2016, 226, 248-257”. This paper presents in vivo results on pegylated 

liposomes dispersed in hyaluronic hydrogel following injection in the middle ear. This recent paper 

completes examples on liposomes. 

- A prolonged residence time at the site of injection as well as in the round window were achieved 

without any negative effect on the hearing thresholds of the animals.

- The presence of liposomes in the formulation resulted in sustained release of the drug in the 

perilymph for 30 days and promoted the conversion of the prodrug loaded within the liposomes 

(dexamethasone phosphate) into its active form (dexamethasone).

- A small amount of intact liposomes was visualized in the perilymph, whereas the main proportion 

of liposomes seemed to be trapped in the round window resulting in a reservoir effect.

We thank the Reviewer for his/her comment and added the reference as suggested.

6. The quality of the figure entitled “Inner ear nanoparticles delivery” is not good. It is difficult to 

read the legend. 

We thank the Reviewer for his/her comment and improved the quality of the figure legends.

Reviewer 2



The manuscript focuses on recent findings and applications of different nanoparticle-based systems 

locally administered in the inner ear. This review is extensive and interesting, thus is worth be 

publication. There are several issues to be addressed:

It might be worthwhile to at least briefly review the disadvantage of local delivery to the inner ear 

in the first paragraph of “Introduction”.

We modified the sentence as suggested by the Reviewer.

The hierarchy of the manuscript should be reconstructed to be quite clearer, i.e. PLGA NPs don’t 

belong to the polymersomes and should be separated from “4.3. Polymersomes”.

We agree with the Reviewer that PLGA NPs are not polymersomes sensu stricto, therefore we 

corrected the title of the paragraph as “4.3 Polymersomes and copolymers” and specified their 

classification as copolymers in the text of the paragraph.

Keywords: “intratympanic” should be “intratympanic administration”.

We corrected the keyword according to the Reviewer’s suggestion

Reviewer 3

The review submitted by Filippo Valente et al. deals with different nanoparticles (NPs) used to 

administer drugs to the inner ear for the prevention of hearing loss.

After a short introduction into inner ear physiology, the different administration routes have been 

discussed. Since a minimally invasive technique seems to be promising, the review is focused on 

intratympanic administration of NPs. Subsequently, seven types of NPs are discussed giving 

examples from recent findings. Finally, a discussion about key aspects of inner ear drug delivery 

with NPs is presented.

The article gives a good overview on recent findings providing an interesting insight into new 

research. Also, the article is within the scope of the journal’s topics and written according to the 

journal’s standards pointed out in the guidelines for submission.

Minor remarks:



I did not find the legends of the figures. Please add them in the final version. Since the legend is 

missing, I cannot give comments on the figures. 

We thank the Reviewer for his/her remark. We checked on the journal site and could not find the 

file containing the figure captions, probably because of problems in uploading manuscript files. We 

therefore enclose a copy of the file containing the figure captions, as reference for the Reviewer and 

for the Editor.

Page 2, line 29: “…administered in the inner ear.”: I would replace “inner” by “middle” ear or “to 

deliver drugs to the inner ear” because with intratympanic administration normally the drug is 

administered in the middle ear cavity.

We corrected the sentence according to the Reviewer’s suggestion.

Page 3, line 50: Could you precise what do you mean by “perilymph rheology” and why it is 

“facilitating the distribution”? 

Research from Stefan Plontke and Alec N. Salt indicate the opposite: distribution of a drug inside 

the cochlea is even hindered so that a large concentration gradient is observed when the drug is 

administered intratympanically.

The term “rheology” indicates the flow of the matter in the liquid state, thus it can be applied to 

perilymph. We accordingly modified the sentence on drug distribution in the perilymph.

Page 3, line 51: The term used frequently is “Noise Induced Hearing Loss” or only “Hearing Loss”.

We corrected the sentence according to the Reviewer’s suggestion.

Page 4, line 91: “…induced side effects are developed.” Delete “induced”. 

We deleted the word “induced” from the sentence.



Page 6, line 131: Change the term “middle ear barrier”. Before, you have written “blood inner ear 

barrier (BB)” (page 3, line 62) and in my opinion it might be confusing if you name the RWM 

“middle ear barrier”.

We corrected the sentence according to the Reviewer’s suggestion.

Page 8, line 191: “PLGA” is singular, if you want to use plural in the following paragraph replace 

by “PLGA nanoparticles” or something similar. Please consider this remark for the whole paragraph 

until page 9, line 207.

According to the Reviewer’s suggestion, we added “NP” (nanoparticles) where required.

Page 11, line 242: Please write out “FITC” at least once.

Following the Reviewer’s suggestion, we substituted “FITC” with “fluorescein isothiocyanate”

Please correct the references:

17, 70 – Author names

26 – Points after author names

65, 70 – abbreviation of the journal

We corrected all references according to the Reviewer’s suggestion
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22 Abstract

23 Local drug delivery based on nanoparticles (NP) represents a novel strategy to improve inner ear 

24 treatments. The intratympanic delivery of NP may be suitable to treat or prevent hearing loss 

25 originating from damage to hair cells and spiral ganglion neurons in the cochlea. Numerous 

26 experimental studies support in vitro and in vivo the biocompatibility of NP, their physical stability, 

27 target specificity, cell/tissue uptake and ability to internalize therapeutic agents. The topical use of 

28 NP helps to reduce the amount of drug required and avoid systemic side effects. This review 

29 focuses on recent findings and applications of different NP systems locally delivered to the inner 

30 ear. The perspectives for clinical application of NP in inner ear drug delivery are also discussed.

31

32 Keywords

33 Nanoparticles, inner ear, drug delivery, intratympanic administration, local administration

34 1. Introduction

35 The treatment of inner ear diseases through drug delivery (DD) faces numerous challenges (1), 

36 among which the limited blood flow to the inner ear (2), the presence of physical barriers acting as 

37 a selective filter for drug transportation to the inner ear from the circulatory system (3), the small 

38 size of the cochlea and its isolated location in the petrous bone. As a result, research in local drug 

39 applications and medications has recently attracted interest because it is a more effective and 

40 preferable treatment than the systemic one. Case studies involving steroids (4) and gentamicin 

41 treatment for Meniere’s disease (5) have been documented, but these approaches could be improved 

42 for clinical protocols by the development of controlled and targeted delivery systems.

43 Nanoparticles (NP) are a possible option to improve existing therapeutic strategies (6). The NP with 

44 size between 10 and 200 nm are useful for application in biology and medicine for innovative DD 

45 systems. NP-based strategy could be more efficient and reduce drug-associated side effects because 
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46 of the ability to deliver the therapeutic agent to the target site. Moreover, the controlled release of 

47 compounds conjugated to NP results in a lower dose of drug required to achieve the therapeutic 

48 effects (1, 7).

49 The cochlea is a good model for studying the NP-based DD due to its isolated structure and the 

50 perilymph rheology. The intratympanic delivery of NP could be suitable to treat the hearing loss 

51 and prevent its progression when hair cells and spiral ganglion neurons are damaged (8).

52 Several works and reviews have been published in the past decade, focusing on NP type, pathology 

53 involved, delivery approach or a combination of these topics (1-4, 6-8). The goal of the present 

54 review is to provide an updated general overview of NP-based strategies and their advantages and 

55 disadvantages for local DD into the inner ear.

56

57 2. Ear barriers

58 The human inner ear consists of two main parts, the auditory system (the cochlea) and the vestibular 

59 system. The cochlea is a bony spiral canal, about 30 mm long and divided in three fluid-filled 

60 compartments: the scala tympani, the scala media and the scala vestibuli. The round window 

61 membrane (RWM), the blood inner ear barrier (BB) and the oval window are physical barriers that 

62 isolate the cochlea from the middle ear and from the circulatory system (Figure 1). The RWM is a 

63 three-layer semi-permeable membrane, composed of an outer epithelial cell layer, a middle 

64 connection layer and an inner connection layer facing the perilymph of the scala tympani (9). In 

65 humans, the variable thickness of RWM affects the response of patients to DD treatments. In animal 

66 models, its thickness is different among species but its composition is similar (10).

67 Both the RWM and the oval window membranes have been investigated for DD, as connections 

68 between the middle ear cavity and the cochlear perilymph. The DD strategies for the inner ear 

69 currently rely mostly on RWM (11). The passage of molecules across this membrane is not only 
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70 influenced by thickness, but also by its morphological integrity, inflammation and weight, 

71 concentration, liposolubility and external charge of the therapeutic compound (12). The drugs 

72 deposited topically in the middle ear cavity are internalized by pinocytosis and transported to the 

73 perilymph through blood vessels or by diffusion. Thus the direct application of drugs in the 

74 proximity of RWM is a suitable approach for treatment of inner ear pathologies (13).

75 The BB is a major barrier in the stria vascularis separating the cochlear tissues from the circulatory 

76 system (14). Its role is to maintain the homeostasis of cochlear fluids and protect the inner ear 

77 integrity. Its main components are principally the endothelial capillaries whose cells are connected 

78 by tight junctions, which lay over a basement membrane. However numerous accessory cells have 

79 recently been observed in the complex structure of the barrier, such as perycites and perivascular 

80 resident macrophage-like (11). The BB has been described to act as a physical and biochemical 

81 barrier through an efflux pump, the P-glycoprotein 1 (P-gp) (15). The BB is therefore considered a 

82 rate-limiting barrier in the passage of therapeutic agents from the circulatory system to the inner ear. 

83 However, the current knowledge about drug transportation processes through BB is still limited 

84 (16).

85

86 3. Administration routes

87 The clinical protocols for inner ear therapies mostly rely on systemic and local DD routes. The 

88 systemic administration represents a classical route for DD, but in the inner ear only few drugs may 

89 reach the target site at therapeutic concentrations. If high doses of systemic drugs are employed, 

90 often side effects are developed (17, 18). Systemic applications of NP in inner ear have been 

91 recently investigated: poly(lactic-co-glycolic acid) NP conjugated with rhodamine B and applied 

92 systemically were detected in the liver, but not in the cochlea (19). The limited bioavailability of NP 

93 after systemic administration could be due to the rapid clearance from the circulation in liver and 

94 spleen (20).
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95 Local administration appears more suitable for inner ear DD (19). This approach allows a quick 

96 distribution of the drug inside the cochlea, improving their delivery to the target site; it also requires 

97 lower drug doses, avoiding side effects (21) (Figure 2). Two main routes are presently used for this 

98 purpose, the intratympanic (IT) or the intracochlear administration, but the second one is rarely 

99 performed because it is highly invasive and limited to surgery cases (22). On the contrary, the IT 

100 injection is minimally invasive and relies on passive diffusion of the active molecules through 

101 RWM to access the inner ear. This review focuses on development of these methods for DD with 

102 minimal trauma for the cochlea. However, local delivery trials show a high variability in results 

103 (23) because of some key factors: 1) the drug clearance within the middle ear through the 

104 Eustachian tube; 2) the permeability of RWM; and 3) the residence time of the drug in contact with 

105 RWM (24). A method to reduce variability of results and increase the drug concentration in the 

106 perilymph could be to better control the residence time of the drug at close range with RWM, using 

107 specific delivery systems based on NP (25).

108

109 4. Nanoparticle-based systems

110 The NP (also called nanocarriers or nanovectors) are artificial compounds with size at the 

111 nanoscale, which aim to compensate for adverse drug properties such as low solubility, degradation 

112 and short half-life (26). The NP may also be adapted to target a specific tissue of the inner ear. 

113 However, when injected in the middle ear as a liquid suspension, NP will undergo clearance 

114 through the Eustachian tube (27), thus significantly reducing their residence time near RWM. The 

115 NP suitable for DD systems should therefore increase the residence time, together with the ability to 

116 cross RWM and their biocompatibility (Figure 3). A detailed description of physico-chemical 

117 characteristics of NP and their applications is reported.

118 4.1. Lipid Core NP
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119 Lipid Core NP (LCN) possess a lipid core matrix (usually triglycerides) with a surrounding shell of 

120 lecithin, polyethylene glycol or poloxamers as stabilizing agents. The LCN structure can be 

121 changed to include different drugs and control the kinetics of drug release (28). It has been shown to 

122 be stable up to six months in aerosol dispersion (29). These NPs did not induce toxicological effects 

123 in vivo in mice after systemic applications (12 mg/kg intravenously for five days) (30) and their cell 

124 uptake and cell viability was in vitro verified on fibroblasts by confocal scanner laser microscopy 

125 (31). In rat animal models LCN were able to cross RWM and reach inner ear targets after middle 

126 ear application in vivo, while not affecting hearing capacity (32). Their preferred pathway to diffuse 

127 inside the cells was also investigated: they followed a “nerve pathway”, diffusing from the 

128 perilymph in the scala tympani to the spiral ganglion, nerve fibres and later approaching the inner 

129 and the outer hair cells (33). Their variability in diffusion and ability to cross RWM depends on 

130 their lipid composition, size and external charge. The ability to cross the RWM has been shown to 

131 be size-dependent, because the percentage of particle diffusion was inversely proportional to their 

132 size (31). Surface charge may also affect the uptake and biodistribution of LNC. Some NP 

133 candidates based on glycerol mono-oleate were studied under different external charges: after an in 

134 vivo application to RWM, LCN expressing stronger positive charges were detected in the deeper 

135 turns of the cochlea (34). The LCN were also tested as a drug carrier, delivering dexamethasone in 

136 the inner ear through IT injection and comparing the results with a systemic application of the same 

137 LCN. The amount of dexamethasone detected in cochlear fluid after local LCN application was 

138 significantly higher compared to the systemic application, also increasing the half-life and the 

139 average residence time of the drug in the perilymph by 1.9 folds (35). All these results indicate a 

140 great potential for LCN for sustained drug release and targeting of inner ear tissues after local 

141 administration.

142

143 4.2. Liposomes
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144 Liposomes are artificial phospholipid bilayers, similar to those found in the cell membrane, but 

145 surrounding an aqueous core. They exhibit a wide size range (between 50 nm and 5 µm) and 

146 morphology, depending on the phospholipid used and the preparation method (36). Liposomes can 

147 encapsulate either hydrophobic molecules in the phospholipid bilayer or hydrophilic molecules in 

148 their aqueous core (37). The uptake of these NP in vitro or in vivo usually relies on the passive 

149 diffusion inside the cells, but their surface can be modified with polyethylene glycol, antibodies, 

150 peptides, carbohydrates, hyaluronic acid and folic acid (35). Such modified liposomes successfully 

151 targeted cells expressing tropomyosin receptor-B (TrkB) by using 18-mer peptides to promote 

152 cellular uptake (38). Liposomes labelled with fluorescent markers applied in vivo to a mouse model 

153 with a single IT injection were identified in all cochlear turns, with a concentration gradient 

154 decreasing from the base to the apex and, to a lesser extent, in the lateral wall and in the organ of 

155 Corti. No morphological or functional damages to the inner ear were detected 24 hours after the 

156 application (8). Disulfiram, a neurotoxic agent, was used as model payload for DD analysis: NP 

157 loaded with Disulfiram damaged the spiral ganglion 48 hours after application, with an associated 

158 threshold shift reaching 35 dB. No significant effects were observed with a similar application of a 

159 pure Disulfiram solution (8). To test the drug delivery efficiency of liposome nanocarriers, NP of 

160 different size (95, 130, 240 nm) encapsulating the contrast agent gadolinium-tetra-azacyclo-

161 dodecane-tetra-acetic acid (Gd-DOTA) were applied in the middle ear and analyzed with MRI: the 

162 results showed that the liposome carrier efficiency was inversely proportional to NP size (39, 40).

163 4.3. Polymersomes and copolymers

164 The polymersomes (also called multifunctional NP) are a wide class of amphiphilic copolymers, 

165 consisting of a self-assembled membrane of hydrophobic units, surrounding an aqueous core, and of 

166 a hydrophilic corona (41). Structurally they are similar to liposomes, with the advantages that the 

167 membrane thickness can be controlled by the molecular weight of the hydrophobic block of 

168 copolymer to achieve stronger, thicker and more stable membranes. The hydrophilic corona can be 
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169 modified to regulate the biodistribution of polymersomes and induce specific cellular uptake (42). 

170 Hydrophilic drugs can be loaded in the core, while hydrophobic ones in the membrane (43).

171 Different multifunctional polymersomes were studied for inner ear DD targeting specific tissue or 

172 conjugated with ferromagnetic materials. 

173 In a mouse model, poly(ethylene glycol)-b-poly (ε-caprolactone) NP (PEG-b-PCL) labeled with 

174 fluorescent markers were detected in the spiral ganglion, in the organ of Corti and in the lateral wall 

175 after 24 hours from RWM application in vivo (8). Tissue specificity was also investigated: PEG-b-

176 PCL were conjugated with a nerve growth factor derived peptide and tested ex-vivo on explanted 

177 mouse cochleae and in vitro on PC12 cells. No significant toxic effect was observed and a specific 

178 targeting to spiral ganglion neurons, Schwann cells and nerve fibres was achieved by conjugating 

179 the NP with tyrosin kinase and p75 neurotrophin receptors (44).

180 Poly(2-hydroxyethyl aspartamide) NP (PHEA) were observed to enter in vitro the immortalized 

181 mouse organ of Corti cell line (HEI-OC1) and the human middle ear cell line (HMEEC). When 

182 applied in vivo near the RWM in a mouse model, PHEA were also detected in the inner ear tissue 

183 (45). In order to improve NP uptake, PHEA were modified with oligoarginine peptide, a positively 

184 charged copolymer, and conjugated with fluorescent Nile red as a hydrophobic model drug (46). In 

185 these conditions the NP uptake in vitro on HEI-OC1 and HMEEC cells was significantly improved 

186 after 15 and 24 hours, compared to pure Nile red solution. Modified PHEA were detected after 24 

187 hours from application in the inner hair cells and supporting cells (47).

188 Poly(lactic-co-glycolic acid) (PLGA) NP are copolymers among the novel carrier developed for 

189 DD. The Food and Drug Administration (FDA) and the European Medicines Agency (EMA) 

190 approved PLGA NP for parenteral administration (47). PLGA NP are interesting because of their 

191 hydrophilicity, biocompatibility and easy derivatization by functional groups on the surface or 

192 inside the polymer. Their surface may be modified for target specificity by PEGylation, chitosan 
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193 absorption and binding of antibodies and oligopeptides (48), and different molecules (proteins, 

194 steroids, antibiotics and nucleic acids) have been successfully encapsulated and delivered by PLGA 

195 NP (49). Programmed degradation of the polymer may therefore yield quantitative delivery of 

196 drugs, plasmids or other bioactive molecules. The PLGA NP tested in the inner ear were first 

197 conjugated with rhodamine B, a red fluorescent dye, and applied via IT injection: they were 

198 identified in the scala tympani, showing that PLGA NP are able to cross RWM by diffusion and 

199 their clearance depends on the perilymph flow rate (19). A quantitative pharmacokinetic study 

200 recently showed that PLGA NP applied locally in vivo in Guinea pigs significantly improved the 

201 drug distribution within the inner ear (52). When PLGA NP were loaded with the fluorescent dye 

202 coumarin-6 and applied through IT injection, the concentration of the compound after 96 hours 

203 from treatment was 10.9-fold higher in the perilymph than when administered in pure solution. 

204 Similar results were obtained for other therapeutic payloads such as antioxidants and antiapoptotic 

205 drugs (50). Thus PLGA NP are an useful DD system for inner ear because of their high versatility 

206 in adaptation to drug properties and tissue targets (51).

207

208 4.5. Silica NP

209 Silica NP are modified colloidal silica particles (52) used to transfect in vitro plasmid DNA (53) but 

210 also as a DD system (54). A pilot study in mice tested the efficacy of diffusion of Cy3-labeled silica 

211 NP administered near the RWM: these NP were found inside the inner hair cells, the vestibular hair 

212 cells, the spiral ganglion neurons and the supporting cells, without any hearing impairment. Since 

213 the NP also reached the dorsal cochlear nucleus and the superior olivary complex, the authors 

214 suggested a retrograde axonal transport and concluded that silica NP could be applied for safe drug 

215 deliver in the auditory system (55).

216 4.6. Supermagnetic iron oxide NPs (SPIONs)
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217 Magnetic NP are synthetic Fe3O4 (magnetite) particles, with a core diameter around 15 nm, that can 

218 be widely applied for magnetic targeting of cells (56). Unlike large ferromagnetic materials, the 

219 smaller supermagnetic iron oxide NP (SPION) are characterized by the absence of residual 

220 magnetic interactions when the magnetic field is not active, thus they are more suitable for 

221 biomedical applications (57). The SPION derivatized to increase biocompatibility and cell 

222 interactions could be guided by an external magnetic field to a specific biological target, but they 

223 cannot encapsulate any drug (58). For in vivo applications, to prevent particle aggregation and 

224 favour dispersion SPION were coated by organic compounds (59). In inner ear drug delivery, 

225 SPION have been encapsulated in PLGA (60), silica (58) and dextran (61) and their 

226 biocompatibility was tested and verified in vitro and in vivo (59). The mobility of SPION induced 

227 by a magnetic field was also quantified and the results of flux density, gradients and NP properties 

228 were compared between in vitro and in vivo models (62). The magnetic force required for SPION to 

229 cross RWM in vivo in Guinea pigs was significantly lower than that of the in vitro RWM model 

230 (63). Another study in vivo in Guinea pigs revealed that the concentration of coated SPION inside 

231 the cochlea significantly increased (330% above control) when a magnetic field was active (64). 

232 Recently, SPION coated with PGLA NP were tested as drug carriers with dexamethasone-acetate 

233 (Dex-Ac) as a payload: the levels of Dex-Ac detected in the inner ear fluids after 1 hour from 

234 treatment were significantly higher compared with those in absence of a magnetic field (65). All 

235 these results support the application of SPION for inner ear drug delivery protocols.

236

237 4.7. Hyperbranched poly-L-lysine NP

238 Hyperbranched poly-L-lysine (HBPL) are high cationic charged dendrimers widely used for non-

239 viral gene transfer (67, 68). The HBPL were applied in vivo in Guinea pig inner ears without any 

240 sign of cell toxicity or permanent hearing loss (31): they were detected in the stria vascularis and 

241 hair cells (31). Nanoparticles based on HBPL and conjugated with fluorescein isothiocyanate were 
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242 tested ex-vivo on freshly frozen human temporal bones, placing them near the intact RWM: HBPL 

243 were detected in hair cells, nerve fibres and other cochlear tissues (66).

244

245 5. Key aspects for nanoparticle-based drug delivery in the inner ear 

246 There are several key parameters to consider for NP-based local DD in the inner ear: the RWM 

247 permeability; the NP cochlear targeting; their payload ability and the controlled drug release; their 

248 biocompatibility and their stability in cochlear fluids and tissues. All these aspects were evaluated 

249 with different NP systems in vitro, ex-vivo or in vivo in animal models. However, studies on their 

250 therapeutic efficacy are still in progress (26). 

251 The RWM is considered the main access to the inner ear after the administration in the middle ear 

252 (67). NP with different composition and size between 10 and 640 nm were able to cross RWM. The 

253 size and the surface charge are determinant factors that affect NP diffusion through RWM. The 

254 number of NP crossing from middle ear to inner ear was inversely proportional to lipid NP size (39) 

255 and in the cochlea the positively charged glycerol mono-oleate NP achieved a larger distribution 

256 than neutral or negatively charged ones (34). The process responsible for this passage was firstly 

257 described for lipid NPs as a paracellular pathway (33). Recent studies in rat RWM suggested that 

258 the passage of liposome NP may occur either via the paracellular pathway or by endocytotic 

259 mechanisms based on clathrin and caveolin (8). 

260 In most studies NP were loaded or labelled with a fluorescent dye (Rhodamine B, Carboxycyanine, 

261 Nile-red) or a contrast agent (gadolinium) for visualization of particles in cochlear cells or fluids by 

262 imaging techniques: however, the reported data mostly detected the presence of NP in inner ear 

263 tissues without a quantitative analysis. Liposome NP were detected in RWM until 11 days and in 

264 the cochlea until 6 days post-injection (67); lipid nanocapsules were detected in the cochlea until 7 

265 days post-injection (33). However, for treatment of sensorineural hearing loss, the cochlear target 
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266 cells are hair cells and spiral ganglion neurons: all populations are selectively reached by the 

267 functionalized NP tested (51). For example, the NP functionalized with nerve growth factor-derived 

268 peptides showed specificity for spiral ganglion neurons and nerve fibres (44).

269 The ability of NP to carry the drugs into the cochlea through the RWM was shown in vivo by 

270 several studies. Smaller supermagnetic iron oxide NP (SPION) coated with PGLA and conjugated 

271 with dexamethasone enabled the release of the drug in inner ear fluids, resulting in a higher 

272 concentration of dexamethasone in the perilymph compared to the pure drug diffusion (10% higher 

273 after 60 minutes, p<0.01) (65). The PLGA loaded with coumarin-6 enhanced up to 10.9 times the 

274 local bioavailability of the dye in the perilymph in comparison to pure drug solution (50). When the 

275 neutoxic agent disulfiram was loaded on liposomes and polymersomes, the number of spiral 

276 ganglion cells significantly decreased two days after administration (8). However, drug release by 

277 NP has not yet been examined by long-term studies.

278 Biocompatibility is one of the major concerns in NP clinical applications. Up to date no hearing 

279 impairment, loss of hair cells or histological damages were reported (31, 32, 45, 68), thus NP 

280 systems appear reasonably safe. However, SPION tend to aggregate when the magnetic field is 

281 removed and the long persistence of these nanoparticles on the inner ear may induce toxicity due to 

282 accumulation (8). The effects of LNC were evaluated 20 days post-injection and no toxicity was 

283 detected (67). Topic applications of liposomes in rats did not affect hearing, but a NP concentration-

284 dependent toxicity was observed in vitro in primary cochlear cell cultures (32). A possible 

285 explanation was that a NP overload occurred in these cells, resulting in cytoplasm condensation and 

286 cell function impairment (69). In most of these studies a single intratympanic administration was 

287 employed: recently, in order to improve liposome efficiency, a continuous NP release was obtained 

288 through a high-performance polymide tubing (HPPT) equipped with an ALZET© micro-pump 

289 (DURECT Corp, CA; USA). Liposomes loaded with gadolinium-tetra-azacyclo-dodecane-tetra-

290 acetic acid were visualized both in vitro by TEM and in vivo by MRI. In vitro, intact NP were free 
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291 to diffuse in the medium, and in vivo were detected in the cochlea without adverse effects within six 

292 days (67). Again, no long-term effects of exposure to NP after multiple applications in the inner ear 

293 have yet been evaluated.

294 The residence time of the drug within the middle ear cavity may be increased by NP, but this does 

295 not guarantee direct contact between the loaded NP and the RWM, because the RWM is the access 

296 point for the inner ear in the case of trans-tympanic administration. The NP also undergo middle ear 

297 clearance through the Eustachian tube (70). A possible strategy to bypass these limits could be to 

298 combine different DD systems together, for example using hydrogels. The incorporation of loaded 

299 NP into hydrogels could increase their residence time in the middle ear, thus enhancing drug release 

300 in the perilymph (26, 71).The hydrogel is applied near the RWM and releases the loaded NP in the 

301 perilymph along with its degradation. This approach has been recently reported: a poloxamer 407 

302 hydrogel combined with SPION was successfully applied on ex vivo models (human temporal 

303 bones and explanted mouse inner ear cultures) (72). More recently, a nanohydrogel based on 

304 chitosan polymer incorporating liposomes was tested in vitro and in vivo in the mouse model (73). 

305 The in vitro results showed that NP persisted without significant degradation for at least two weeks 

306 and were released in a controlled and continuous way by the nanohydrogel. The in vivo results 

307 showed that the NP were successfully released by the nanohydrogel across the RWM and were able 

308 to reach the perilymph and Organ of Corti cells (73).

309 Although NP research in local DD for inner ear therapy appears promising, there are still many 

310 difficulties to overcome, mostly related to the inner ear anatomy, to the complexity of the cochlea 

311 and its highly differentiated cell populations, as well as the possibility to cause hearing loss using 

312 microsurgical approaches. The in vivo analyses of perilymph samples represent a technical 

313 challenge (27), because of the small volume of inner ear fluids in animal models (the total volume 

314 of perilymph in a Guinea pig amounts to about 10 µl) (74), and the possible contamination of 

315 samples by cerebrospinal fluid (27). The pharmacokinetics of drugs in the inner ear is therefore still 
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316 unclear and there are no reliable quantitative data about local bioavailability, drug distribution and 

317 RWM permeability (26). Only recently, a computer pharmacokinetic for inner ear fluids and drug 

318 distribution has been developed (75). The software (Cochlear Fluids Simulator V3.083) outlines a 

319 model based on inner ear anatomy in humans and rodents, pharmacokinetic and solute distribution 

320 parameters. This model has been used to simulate the distribution of therapeutic drugs and other 

321 compounds in the perilymph (24, 76). However, because of intraspecific variability of animal 

322 models in the volume of inner ear fluids and RWM thickness and conditions, it is difficult to 

323 compare the current studies using different DD systems and to draw quantitative conclusions about 

324 drug pharmacokinetics in the inner ear.

325

326 6. Conclusions and Future Perspectives

327 The NP-based systems show a high potential for inner ear delivery of various therapeutic agents. 

328 Their use could minimize the side effects of treatments, allow target specificity and provide a 

329 sustained release of drugs in inner ear fluids. The type of NP may be adapted to the drug to be 

330 carried and different formulations have been tested. The NP could also be combined with other 

331 nanomaterials, such as hydrogels, to improve the local application of drugs. However, several 

332 problems have yet to be solved and more in vivo studies are necessary to verify their bioavailability 

333 and effectiveness before a successful clinical application.

334

335
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22 Abstract

23 Local drug delivery based on nanoparticles (NP) represents a novel strategy to improve inner ear 

24 treatments. The intratympanic delivery of NP may be suitable to treat or prevent hearing loss 

25 originating from damage to hair cells and spiral ganglion neurons in the cochlea. Numerous 

26 experimental studies support in vitro and in vivo the biocompatibility of NP, their physical stability, 

27 target specificity, cell/tissue uptake and ability to internalize therapeutic agents. The topical use of 

28 NP helps to reduce the amount of drug required and avoid systemic side effects. This review 

29 focuses on recent findings and applications of different NP systems locally delivered to the inner 

30 ear. The perspectives for clinical application of NP in inner ear drug delivery are also discussed.

31

32 Keywords

33 Nanoparticles, inner ear, drug delivery, intratympanic administration, local administration

34 1. Introduction

35 The treatment of inner ear diseases through drug delivery (DD) faces numerous challenges (1), 

36 among which the limited blood flow to the inner ear (2), the presence of physical barriers acting as 

37 a selective filter for drug transportation to the inner ear from the circulatory system (3), the small 

38 size of the cochlea and its isolated location in the petrous bone. As a result, research in local drug 

39 applications and medications has recently attracted interest because it is a more effective and 

40 preferable treatment than the systemic one. Case studies involving steroids (4) and gentamicin 

41 treatment for Meniere’s disease (5) have been documented, but these approaches could be improved 

42 for clinical protocols by the development of controlled and targeted delivery systems.

43 Nanoparticles (NP) are a possible option to improve existing therapeutic strategies (6). The NP with 

44 size between 10 and 200 nm are useful for application in biology and medicine for innovative DD 

45 systems. NP-based strategy could be more efficient and reduce drug-associated side effects because 
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46 of the ability to deliver the therapeutic agent to the target site. Moreover, the controlled release of 

47 compounds conjugated to NP results in a lower dose of drug required to achieve the therapeutic 

48 effects (1, 7).

49 The cochlea is a good model for studying the NP-based DD due to its isolated structure and the 

50 perilymph rheology. The intratympanic delivery of NP could be suitable to treat the hearing loss 

51 and prevent its progression when hair cells and spiral ganglion neurons are damaged (8).

52 Several works and reviews have been published in the past decade, focusing on NP type, pathology 

53 involved, delivery approach or a combination of these topics (1-4, 6-8). The goal of the present 

54 review is to provide an updated general overview of NP-based strategies and their advantages and 

55 disadvantages for local DD into the inner ear.

56

57 2. Ear barriers

58 The human inner ear consists of two main parts, the auditory system (the cochlea) and the vestibular 

59 system. The cochlea is a bony spiral canal, about 30 mm long and divided in three fluid-filled 

60 compartments: the scala tympani, the scala media and the scala vestibuli. The round window 

61 membrane (RWM), the blood inner ear barrier (BB) and the oval window are physical barriers that 

62 isolate the cochlea from the middle ear and from the circulatory system (Figure 1). The RWM is a 

63 three-layer semi-permeable membrane, composed of an outer epithelial cell layer, a middle 

64 connection layer and an inner connection layer facing the perilymph of the scala tympani (9). In 

65 humans, the variable thickness of RWM affects the response of patients to DD treatments. In animal 

66 models, its thickness is different among species but its composition is similar (10).

67 Both the RWM and the oval window membranes have been investigated for DD, as connections 

68 between the middle ear cavity and the cochlear perilymph. The DD strategies for the inner ear 

69 currently rely mostly on RWM (11). The passage of molecules across this membrane is not only 



4

70 influenced by thickness, but also by its morphological integrity, inflammation and weight, 

71 concentration, liposolubility and external charge of the therapeutic compound (12). The drugs 

72 deposited topically in the middle ear cavity are internalized by pinocytosis and transported to the 

73 perilymph through blood vessels or by diffusion. Thus the direct application of drugs in the 

74 proximity of RWM is a suitable approach for treatment of inner ear pathologies (13).

75 The BB is a major barrier in the stria vascularis separating the cochlear tissues from the circulatory 

76 system (14). Its role is to maintain the homeostasis of cochlear fluids and protect the inner ear 

77 integrity. Its main components are principally the endothelial capillaries whose cells are connected 

78 by tight junctions, which lay over a basement membrane. However numerous accessory cells have 

79 recently been observed in the complex structure of the barrier, such as perycites and perivascular 

80 resident macrophage-like (11). The BB has been described to act as a physical and biochemical 

81 barrier through an efflux pump, the P-glycoprotein 1 (P-gp) (15). The BB is therefore considered a 

82 rate-limiting barrier in the passage of therapeutic agents from the circulatory system to the inner ear. 

83 However, the current knowledge about drug transportation processes through BB is still limited 

84 (16).

85

86 3. Administration routes

87 The clinical protocols for inner ear therapies mostly rely on systemic and local DD routes. The 

88 systemic administration represents a classical route for DD, but in the inner ear only few drugs may 

89 reach the target site at therapeutic concentrations. If high doses of systemic drugs are employed, 

90 often side effects are developed (17, 18). Systemic applications of NP in inner ear have been 

91 recently investigated: poly(lactic-co-glycolic acid) NP conjugated with rhodamine B and applied 

92 systemically were detected in the liver, but not in the cochlea (19). The limited bioavailability of NP 

93 after systemic administration could be due to the rapid clearance from the circulation in liver and 

94 spleen (20).



5

95 Local administration appears more suitable for inner ear DD (19). This approach allows a quick 

96 distribution of the drug inside the cochlea, improving their delivery to the target site; it also requires 

97 lower drug doses, avoiding side effects (21) (Figure 2). Two main routes are presently used for this 

98 purpose, the intratympanic (IT) or the intracochlear administration, but the second one is rarely 

99 performed because it is highly invasive and limited to surgery cases (22). On the contrary, the IT 

100 injection is minimally invasive and relies on passive diffusion of the active molecules through 

101 RWM to access the inner ear. This review focuses on development of these methods for DD with 

102 minimal trauma for the cochlea. However, local delivery trials show a high variability in results 

103 (23) because of some key factors: 1) the drug clearance within the middle ear through the 

104 Eustachian tube; 2) the permeability of RWM; and 3) the residence time of the drug in contact with 

105 RWM (24). A method to reduce variability of results and increase the drug concentration in the 

106 perilymph could be to better control the residence time of the drug at close range with RWM, using 

107 specific delivery systems based on NP (25).

108

109 4. Nanoparticle-based systems

110 The NP (also called nanocarriers or nanovectors) are artificial compounds with size at the 

111 nanoscale, which aim to compensate for adverse drug properties such as low solubility, degradation 

112 and short half-life (26). The NP may also be adapted to target a specific tissue of the inner ear. 

113 However, when injected in the middle ear as a liquid suspension, NP will undergo clearance 

114 through the Eustachian tube (27), thus significantly reducing their residence time near RWM. The 

115 NP suitable for DD systems should therefore increase the residence time, together with the ability to 

116 cross RWM and their biocompatibility (Figure 3). A detailed description of physico-chemical 

117 characteristics of NP and their applications is reported.

118 4.1. Lipid Core NP
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119 Lipid Core NP (LCN) possess a lipid core matrix (usually triglycerides) with a surrounding shell of 

120 lecithin, polyethylene glycol or poloxamers as stabilizing agents. The LCN structure can be 

121 changed to include different drugs and control the kinetics of drug release (28). It has been shown to 

122 be stable up to six months in aerosol dispersion (29). These NPs did not induce toxicological effects 

123 in vivo in mice after systemic applications (12 mg/kg intravenously for five days) (30) and their cell 

124 uptake and cell viability was in vitro verified on fibroblasts by confocal scanner laser microscopy 

125 (31). In rat animal models LCN were able to cross RWM and reach inner ear targets after middle 

126 ear application in vivo, while not affecting hearing capacity (32). Their preferred pathway to diffuse 

127 inside the cells was also investigated: they followed a “nerve pathway”, diffusing from the 

128 perilymph in the scala tympani to the spiral ganglion, nerve fibres and later approaching the inner 

129 and the outer hair cells (33). Their variability in diffusion and ability to cross RWM depends on 

130 their lipid composition, size and external charge. The ability to cross the RWM has been shown to 

131 be size-dependent, because the percentage of particle diffusion was inversely proportional to their 

132 size (31). Surface charge may also affect the uptake and biodistribution of LNC. Some NP 

133 candidates based on glycerol mono-oleate were studied under different external charges: after an in 

134 vivo application to RWM, LCN expressing stronger positive charges were detected in the deeper 

135 turns of the cochlea (34). The LCN were also tested as a drug carrier, delivering dexamethasone in 

136 the inner ear through IT injection and comparing the results with a systemic application of the same 

137 LCN. The amount of dexamethasone detected in cochlear fluid after local LCN application was 

138 significantly higher compared to the systemic application, also increasing the half-life and the 

139 average residence time of the drug in the perilymph by 1.9 folds (35). All these results indicate a 

140 great potential for LCN for sustained drug release and targeting of inner ear tissues after local 

141 administration.

142

143 4.2. Liposomes
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144 Liposomes are artificial phospholipid bilayers, similar to those found in the cell membrane, but 

145 surrounding an aqueous core. They exhibit a wide size range (between 50 nm and 5 µm) and 

146 morphology, depending on the phospholipid used and the preparation method (36). Liposomes can 

147 encapsulate either hydrophobic molecules in the phospholipid bilayer or hydrophilic molecules in 

148 their aqueous core (37). The uptake of these NP in vitro or in vivo usually relies on the passive 

149 diffusion inside the cells, but their surface can be modified with polyethylene glycol, antibodies, 

150 peptides, carbohydrates, hyaluronic acid and folic acid (35). Such modified liposomes successfully 

151 targeted cells expressing tropomyosin receptor-B (TrkB) by using 18-mer peptides to promote 

152 cellular uptake (38). Liposomes labelled with fluorescent markers applied in vivo to a mouse model 

153 with a single IT injection were identified in all cochlear turns, with a concentration gradient 

154 decreasing from the base to the apex and, to a lesser extent, in the lateral wall and in the organ of 

155 Corti. No morphological or functional damages to the inner ear were detected 24 hours after the 

156 application (8). Disulfiram, a neurotoxic agent, was used as model payload for DD analysis: NP 

157 loaded with Disulfiram damaged the spiral ganglion 48 hours after application, with an associated 

158 threshold shift reaching 35 dB. No significant effects were observed with a similar application of a 

159 pure Disulfiram solution (8). To test the drug delivery efficiency of liposome nanocarriers, NP of 

160 different size (95, 130, 240 nm) encapsulating the contrast agent gadolinium-tetra-azacyclo-

161 dodecane-tetra-acetic acid (Gd-DOTA) were applied in the middle ear and analyzed with MRI: the 

162 results showed that the liposome carrier efficiency was inversely proportional to NP size (39, 40).

163 4.3. Polymersomes and copolymers

164 The polymersomes (also called multifunctional NP) are a wide class of amphiphilic copolymers, 

165 consisting of a self-assembled membrane of hydrophobic units, surrounding an aqueous core, and of 

166 a hydrophilic corona (41). Structurally they are similar to liposomes, with the advantages that the 

167 membrane thickness can be controlled by the molecular weight of the hydrophobic block of 

168 copolymer to achieve stronger, thicker and more stable membranes. The hydrophilic corona can be 
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169 modified to regulate the biodistribution of polymersomes and induce specific cellular uptake (42). 

170 Hydrophilic drugs can be loaded in the core, while hydrophobic ones in the membrane (43).

171 Different multifunctional polymersomes were studied for inner ear DD targeting specific tissue or 

172 conjugated with ferromagnetic materials. 

173 In a mouse model, poly(ethylene glycol)-b-poly (ε-caprolactone) NP (PEG-b-PCL) labeled with 

174 fluorescent markers were detected in the spiral ganglion, in the organ of Corti and in the lateral wall 

175 after 24 hours from RWM application in vivo (8). Tissue specificity was also investigated: PEG-b-

176 PCL were conjugated with a nerve growth factor derived peptide and tested ex-vivo on explanted 

177 mouse cochleae and in vitro on PC12 cells. No significant toxic effect was observed and a specific 

178 targeting to spiral ganglion neurons, Schwann cells and nerve fibres was achieved by conjugating 

179 the NP with tyrosin kinase and p75 neurotrophin receptors (44).

180 Poly(2-hydroxyethyl aspartamide) NP (PHEA) were observed to enter in vitro the immortalized 

181 mouse organ of Corti cell line (HEI-OC1) and the human middle ear cell line (HMEEC). When 

182 applied in vivo near the RWM in a mouse model, PHEA were also detected in the inner ear tissue 

183 (45). In order to improve NP uptake, PHEA were modified with oligoarginine peptide, a positively 

184 charged copolymer, and conjugated with fluorescent Nile red as a hydrophobic model drug (46). In 

185 these conditions the NP uptake in vitro on HEI-OC1 and HMEEC cells was significantly improved 

186 after 15 and 24 hours, compared to pure Nile red solution. Modified PHEA were detected after 24 

187 hours from application in the inner hair cells and supporting cells (47).

188 Poly(lactic-co-glycolic acid) (PLGA) NP are copolymers among the novel carrier developed for 

189 DD. The Food and Drug Administration (FDA) and the European Medicines Agency (EMA) 

190 approved PLGA NP for parenteral administration (47). PLGA NP are interesting because of their 

191 hydrophilicity, biocompatibility and easy derivatization by functional groups on the surface or 

192 inside the polymer. Their surface may be modified for target specificity by PEGylation, chitosan 
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193 absorption and binding of antibodies and oligopeptides (48), and different molecules (proteins, 

194 steroids, antibiotics and nucleic acids) have been successfully encapsulated and delivered by PLGA 

195 NP (49). Programmed degradation of the polymer may therefore yield quantitative delivery of 

196 drugs, plasmids or other bioactive molecules. The PLGA NP tested in the inner ear were first 

197 conjugated with rhodamine B, a red fluorescent dye, and applied via IT injection: they were 

198 identified in the scala tympani, showing that PLGA NP are able to cross RWM by diffusion and 

199 their clearance depends on the perilymph flow rate (19). A quantitative pharmacokinetic study 

200 recently showed that PLGA NP applied locally in vivo in Guinea pigs significantly improved the 

201 drug distribution within the inner ear (52). When PLGA NP were loaded with the fluorescent dye 

202 coumarin-6 and applied through IT injection, the concentration of the compound after 96 hours 

203 from treatment was 10.9-fold higher in the perilymph than when administered in pure solution. 

204 Similar results were obtained for other therapeutic payloads such as antioxidants and antiapoptotic 

205 drugs (50). Thus PLGA NP are an useful DD system for inner ear because of their high versatility 

206 in adaptation to drug properties and tissue targets (51).

207

208 4.5. Silica NP

209 Silica NP are modified colloidal silica particles (52) used to transfect in vitro plasmid DNA (53) but 

210 also as a DD system (54). A pilot study in mice tested the efficacy of diffusion of Cy3-labeled silica 

211 NP administered near the RWM: these NP were found inside the inner hair cells, the vestibular hair 

212 cells, the spiral ganglion neurons and the supporting cells, without any hearing impairment. Since 

213 the NP also reached the dorsal cochlear nucleus and the superior olivary complex, the authors 

214 suggested a retrograde axonal transport and concluded that silica NP could be applied for safe drug 

215 deliver in the auditory system (55).

216 4.6. Supermagnetic iron oxide NPs (SPIONs)
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217 Magnetic NP are synthetic Fe3O4 (magnetite) particles, with a core diameter around 15 nm, that can 

218 be widely applied for magnetic targeting of cells (56). Unlike large ferromagnetic materials, the 

219 smaller supermagnetic iron oxide NP (SPION) are characterized by the absence of residual 

220 magnetic interactions when the magnetic field is not active, thus they are more suitable for 

221 biomedical applications (57). The SPION derivatized to increase biocompatibility and cell 

222 interactions could be guided by an external magnetic field to a specific biological target, but they 

223 cannot encapsulate any drug (58). For in vivo applications, to prevent particle aggregation and 

224 favour dispersion SPION were coated by organic compounds (59). In inner ear drug delivery, 

225 SPION have been encapsulated in PLGA (60), silica (58) and dextran (61) and their 

226 biocompatibility was tested and verified in vitro and in vivo (59). The mobility of SPION induced 

227 by a magnetic field was also quantified and the results of flux density, gradients and NP properties 

228 were compared between in vitro and in vivo models (62). The magnetic force required for SPION to 

229 cross RWM in vivo in Guinea pigs was significantly lower than that of the in vitro RWM model 

230 (63). Another study in vivo in Guinea pigs revealed that the concentration of coated SPION inside 

231 the cochlea significantly increased (330% above control) when a magnetic field was active (64). 

232 Recently, SPION coated with PGLA NP were tested as drug carriers with dexamethasone-acetate 

233 (Dex-Ac) as a payload: the levels of Dex-Ac detected in the inner ear fluids after 1 hour from 

234 treatment were significantly higher compared with those in absence of a magnetic field (65). All 

235 these results support the application of SPION for inner ear drug delivery protocols.

236

237 4.7. Hyperbranched poly-L-lysine NP

238 Hyperbranched poly-L-lysine (HBPL) are high cationic charged dendrimers widely used for non-

239 viral gene transfer (67, 68). The HBPL were applied in vivo in Guinea pig inner ears without any 

240 sign of cell toxicity or permanent hearing loss (31): they were detected in the stria vascularis and 

241 hair cells (31). Nanoparticles based on HBPL and conjugated with fluorescein isothiocyanate were 
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242 tested ex-vivo on freshly frozen human temporal bones, placing them near the intact RWM: HBPL 

243 were detected in hair cells, nerve fibres and other cochlear tissues (66).

244

245 5. Key aspects for nanoparticle-based drug delivery in the inner ear 

246 There are several key parameters to consider for NP-based local DD in the inner ear: the RWM 

247 permeability; the NP cochlear targeting; their payload ability and the controlled drug release; their 

248 biocompatibility and their stability in cochlear fluids and tissues. All these aspects were evaluated 

249 with different NP systems in vitro, ex-vivo or in vivo in animal models. However, studies on their 

250 therapeutic efficacy are still in progress (26). 

251 The RWM is considered the main access to the inner ear after the administration in the middle ear 

252 (67). NP with different composition and size between 10 and 640 nm were able to cross RWM. The 

253 size and the surface charge are determinant factors that affect NP diffusion through RWM. The 

254 number of NP crossing from middle ear to inner ear was inversely proportional to lipid NP size (39) 

255 and in the cochlea the positively charged glycerol mono-oleate NP achieved a larger distribution 

256 than neutral or negatively charged ones (34). The process responsible for this passage was firstly 

257 described for lipid NPs as a paracellular pathway (33). Recent studies in rat RWM suggested that 

258 the passage of liposome NP may occur either via the paracellular pathway or by endocytotic 

259 mechanisms based on clathrin and caveolin (8). 

260 In most studies NP were loaded or labelled with a fluorescent dye (Rhodamine B, Carboxycyanine, 

261 Nile-red) or a contrast agent (gadolinium) for visualization of particles in cochlear cells or fluids by 

262 imaging techniques: however, the reported data mostly detected the presence of NP in inner ear 

263 tissues without a quantitative analysis. Liposome NP were detected in RWM until 11 days and in 

264 the cochlea until 6 days post-injection (67); lipid nanocapsules were detected in the cochlea until 7 

265 days post-injection (33). However, for treatment of sensorineural hearing loss, the cochlear target 
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266 cells are hair cells and spiral ganglion neurons: all populations are selectively reached by the 

267 functionalized NP tested (51). For example, the NP functionalized with nerve growth factor-derived 

268 peptides showed specificity for spiral ganglion neurons and nerve fibres (44).

269 The ability of NP to carry the drugs into the cochlea through the RWM was shown in vivo by 

270 several studies. Smaller supermagnetic iron oxide NP (SPION) coated with PGLA and conjugated 

271 with dexamethasone enabled the release of the drug in inner ear fluids, resulting in a higher 

272 concentration of dexamethasone in the perilymph compared to the pure drug diffusion (10% higher 

273 after 60 minutes, p<0.01) (65). The PLGA loaded with coumarin-6 enhanced up to 10.9 times the 

274 local bioavailability of the dye in the perilymph in comparison to pure drug solution (50). When the 

275 neutoxic agent disulfiram was loaded on liposomes and polymersomes, the number of spiral 

276 ganglion cells significantly decreased two days after administration (8). However, drug release by 

277 NP has not yet been examined by long-term studies.

278 Biocompatibility is one of the major concerns in NP clinical applications. Up to date no hearing 

279 impairment, loss of hair cells or histological damages were reported (31, 32, 45, 68), thus NP 

280 systems appear reasonably safe. However, SPION tend to aggregate when the magnetic field is 

281 removed and the long persistence of these nanoparticles on the inner ear may induce toxicity due to 

282 accumulation (8). The effects of LNC were evaluated 20 days post-injection and no toxicity was 

283 detected (67). Topic applications of liposomes in rats did not affect hearing, but a NP concentration-

284 dependent toxicity was observed in vitro in primary cochlear cell cultures (32). A possible 

285 explanation was that a NP overload occurred in these cells, resulting in cytoplasm condensation and 

286 cell function impairment (69). In most of these studies a single intratympanic administration was 

287 employed: recently, in order to improve liposome efficiency, a continuous NP release was obtained 

288 through a high-performance polymide tubing (HPPT) equipped with an ALZET© micro-pump 

289 (DURECT Corp, CA; USA). Liposomes loaded with gadolinium-tetra-azacyclo-dodecane-tetra-

290 acetic acid were visualized both in vitro by TEM and in vivo by MRI. In vitro, intact NP were free 
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291 to diffuse in the medium, and in vivo were detected in the cochlea without adverse effects within six 

292 days (67). Again, no long-term effects of exposure to NP after multiple applications in the inner ear 

293 have yet been evaluated.

294 The residence time of the drug within the middle ear cavity may be increased by NP, but this does 

295 not guarantee direct contact between the loaded NP and the RWM, because the RWM is the access 

296 point for the inner ear in the case of trans-tympanic administration. The NP also undergo middle ear 

297 clearance through the Eustachian tube (70). A possible strategy to bypass these limits could be to 

298 combine different DD systems together, for example using hydrogels. The incorporation of loaded 

299 NP into hydrogels could increase their residence time in the middle ear, thus enhancing drug release 

300 in the perilymph (26, 71).The hydrogel is applied near the RWM and releases the loaded NP in the 

301 perilymph along with its degradation. This approach has been recently reported: a poloxamer 407 

302 hydrogel combined with SPION was successfully applied on ex vivo models (human temporal 

303 bones and explanted mouse inner ear cultures) (72). More recently, a nanohydrogel based on 

304 chitosan polymer incorporating liposomes was tested in vitro and in vivo in the mouse model (73). 

305 The in vitro results showed that NP persisted without significant degradation for at least two weeks 

306 and were released in a controlled and continuous way by the nanohydrogel. The in vivo results 

307 showed that the NP were successfully released by the nanohydrogel across the RWM and were able 

308 to reach the perilymph and Organ of Corti cells (73).

309 Although NP research in local DD for inner ear therapy appears promising, there are still many 

310 difficulties to overcome, mostly related to the inner ear anatomy, to the complexity of the cochlea 

311 and its highly differentiated cell populations, as well as the possibility to cause hearing loss using 

312 microsurgical approaches. The in vivo analyses of perilymph samples represent a technical 

313 challenge (27), because of the small volume of inner ear fluids in animal models (the total volume 

314 of perilymph in a Guinea pig amounts to about 10 µl) (74), and the possible contamination of 

315 samples by cerebrospinal fluid (27). The pharmacokinetics of drugs in the inner ear is therefore still 
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316 unclear and there are no reliable quantitative data about local bioavailability, drug distribution and 

317 RWM permeability (26). Only recently, a computer pharmacokinetic for inner ear fluids and drug 

318 distribution has been developed (75). The software (Cochlear Fluids Simulator V3.083) outlines a 

319 model based on inner ear anatomy in humans and rodents, pharmacokinetic and solute distribution 

320 parameters. This model has been used to simulate the distribution of therapeutic drugs and other 

321 compounds in the perilymph (24, 76). However, because of intraspecific variability of animal 

322 models in the volume of inner ear fluids and RWM thickness and conditions, it is difficult to 

323 compare the current studies using different DD systems and to draw quantitative conclusions about 

324 drug pharmacokinetics in the inner ear.

325

326 6. Conclusions and Future Perspectives

327 The NP-based systems show a high potential for inner ear delivery of various therapeutic agents. 

328 Their use could minimize the side effects of treatments, allow target specificity and provide a 

329 sustained release of drugs in inner ear fluids. The type of NP may be adapted to the drug to be 

330 carried and different formulations have been tested. The NP could also be combined with other 

331 nanomaterials, such as hydrogels, to improve the local application of drugs. However, several 

332 problems have yet to be solved and more in vivo studies are necessary to verify their bioavailability 

333 and effectiveness before a successful clinical application.

334

335



15

336 Acknowledgements

337 We are grateful to the Foundation Onlus ‘Staminali e Vita’ (Padua, Italy) for providing support.

338

339 Funding

340 This work was supported by the Italian Ministry of Education, University and Research (MIUR), 

341 Italy [grant n. PRIN- 2010S58B38_004]. 

342

343 References 

344 1. Chen G, Zhang X, Yang F and Mu L: Disposition of nanoparticle-based delivery system via 
345 inner ear administration. Curr Drug Metab 11: 886-897, 2010.
346 2. Juhn SK and Rybak LP: Labyrinthine barriers and cochlear homeostasis. Acta Otolaryngol 
347 91: 529-534, 1981.
348 3. Inamura N and Salt AN: Permeability changes of the blood-labyrinth barrier measured in 
349 vivo during experimental treatments. Hear Res 61: 12-18, 1992.
350 4. Lefebvre PP and Staecker H: Steroid perfusion of the inner ear for sudden sensorineural 
351 hearing loss after failure of conventional therapy: a pilot study. Acta Otolaryngol 122: 698-702, 
352 2002.
353 5. Minor LB, Schessel DA and Carey JP: Meniere's disease. Curr Opin Neurol 17: 9-16, 2004.
354 6. Malam Y, Loizidou M and Seifalian AM: Liposomes and nanoparticles: nanosized vehicles 
355 for drug delivery in cancer. Trends Pharmacol Sci 30: 592-599, 2009.
356 7. Gelperina S, Kisich K, Iseman MD and Heifets L: The potential advantages of nanoparticle 
357 drug delivery systems in chemotherapy of tuberculosis. Am J Respir Crit Care Med 172: 1487-
358 1490, 2005.
359 8. Buckiova D, Ranjan S, Newman TA, et al: Minimally invasive drug delivery to the cochlea 
360 through application of nanoparticles to the round window membrane. Nanomedicine (Lond) 7: 
361 1339-1354, 2012.
362 9. Banerjee A and Parnes LS: The biology of intratympanic drug administration and 
363 pharmacodynamics of round window drug absorption. Otolaryngol Clin North Am 37: 1035-1051, 
364 2004.
365 10. Goycoolea MV and Lundman L: Round window membrane. Structure function and 
366 permeability: a review. Microsc Res Tech 36: 201-211, 1997.
367 11. Shi X: Pathophysiology of the cochlear intrastrial fluid-blood barrier (review). Hear Res 
368 338: 52-63, 2016.
369 12. Goycoolea MV: The round window membrane under normal and pathological conditions. 
370 Acta Otolaryngol Suppl 493: 43-55, 1992.
371 13. Salt AN: Pharmacokinetics of Drug Entry into Cochlear Fluids. Volta Rev 105: 277-298, 
372 2005.
373 14. Jahnke K: [Permeability barriers of the inner ear. Fine structure and function]. Fortschr Med 
374 98: 330-336, 1980.



16

1 15. Saito T, Zhang ZJ, Tokuriki M, et al: Expression of p-glycoprotein is associated with that of 
2 multidrug resistance protein 1 (MRP1) in the vestibular labyrinth and endolymphatic sac of the 
3 guinea pig. Neurosci Lett 303: 189-192, 2001.
4 16. Liu H, Hao J, Li KS : Current strategies for drug delivery to the inner ear. Acta 
5 Pharmaceutica Sinica B 3: 86-96, 2013.
6 17. Swan EE, Mescher MJ, Sewell WF, Tao SL and Borenstein JT: Inner ear drug delivery for 
7 auditory applications. Adv Drug Deliv Rev 60: 1583-1599, 2008.
8 18. McCall AA, Swan EE, Borenstein JT, Sewell WF, Kujawa SG and McKenna MJ: Drug 
9 delivery for treatment of inner ear disease: current state of knowledge. Ear Hear 31: 156-165, 2010.

10 19. Tamura T, Kita T, Nakagawa T, et al: Drug delivery to the cochlea using PLGA 
11 nanoparticles. Laryngoscope 115: 2000-2005, 2005.
12 20. Horie RT, Sakamoto T, Nakagawa T, Ishihara T, Higaki M and Ito J: Stealth-nanoparticle 
13 strategy for enhancing the efficacy of steroids in mice with noise-induced hearing loss. 
14 Nanomedicine (Lond) 5: 1331-1340, 2010.
15 21. Bowe SN and Jacob A: Round window perfusion dynamics: implications for intracochlear 
16 therapy. Curr Opin Otolaryngol Head Neck Surg 18: 377-385, 2010.
17 22. De Ceulaer G, Johnson S, Yperman M, et al: Long-term evaluation of the effect of 
18 intracochlear steroid deposition on electrode impedance in cochlear implant patients. Otol Neurotol 
19 24: 769-774, 2003.
20 23. Paulson DP, Abuzeid W, Jiang H, Oe T, O'Malley BW and Li D: A novel controlled local 
21 drug delivery system for inner ear disease. Laryngoscope 118: 706-711, 2008.
22 24. Hahn H, Kammerer B, DiMauro A, Salt AN and Plontke SK: Cochlear microdialysis for 
23 quantification of dexamethasone and fluorescein entry into scala tympani during round window 
24 administration. Hear Res 212: 236-244, 2006.
25 25. Ciorba A, Astolfi L, Jolly C, Martini A: Cochlear Implants and Inner Ear Based Therapy. 
26 European Journal of Nanomedicine 2: 4, 2009.
27 26. El Kechai N, Agnely F, Mamelle E, Nguyen Y, Ferrary E and Bochot A: Recent advances in 
28 local drug delivery to the inner ear. Int J Pharm 494: 83-101, 2015.
29 27. Salt AN and Plontke SK: Local inner-ear drug delivery and pharmacokinetics. Drug Discov 
30 Today 10: 1299-1306, 2005.
31 28. Jager E, Venturini CG, Poletto FS, et al: Sustained release from lipid-core nanocapsules by 
32 varying the core viscosity and the particle surface area. J Biomed Nanotechnol 5: 130-140, 2009.
33 29. Hureaux J, Lagarce F, Gagnadoux F, et al: Lipid nanocapsules: ready-to-use nanovectors for 
34 the aerosol delivery of paclitaxel. Eur J Pharm Biopharm 73: 239-246, 2009.
35 30. Hureaux J, Lagarce F, Gagnadoux F, et al: Toxicological study and efficacy of blank and 
36 paclitaxel-loaded lipid nanocapsules after i.v. administration in mice. Pharm Res 27: 421-430, 2010.
37 31. Scheper V, Wolf M, Scholl M, et al: Potential novel drug carriers for inner ear treatment: 
38 hyperbranched polylysine and lipid nanocapsules. Nanomedicine (Lond) 4: 623-635, 2009.
39 32. Zhang Y, Zhang W, Lobler M, et al: Inner ear biocompatibility of lipid nanocapsules after 
40 round window membrane application. Int J Pharm 404: 211-219, 2011.
41 33. Zou J, Saulnier P, Perrier T, et al: Distribution of lipid nanocapsules in different cochlear 
42 cell populations after round window membrane permeation. J Biomed Mater Res B Appl Biomater 
43 87: 10-18, 2008.
44 34. Liu H, Chen S, Zhou Y, et al: The effect of surface charge of glycerol monooleate-based 
45 nanoparticles on the round window membrane permeability and cochlear distribution. J Drug Target 
46 21: 846-854, 2013.
47 35. Chen G, Hou SX, Hu P, Hu QH, Guo DD and Xiao Y: [In vitro dexamethasone release from 
48 nanoparticles and its pharmacokinetics in the inner ear after administration of the drug-loaded 
49 nanoparticles via the round window]. Nan Fang Yi Ke Da Xue Xue Bao 28: 1022-1024, 2008.
50 36. Bozzuto G and Molinari A: Liposomes as nanomedical devices. Int J Nanomedicine 10: 
51 975-999, 2015.



17

1 37. Wang AZ, Langer R and Farokhzad OC: Nanoparticle delivery of cancer drugs. Annu Rev 
2 Med 63: 185-198, 2012.
3 38. Ranjan S, Sood R, Dudas J, et al: Peptide-mediated targeting of liposomes to TrkB receptor-
4 expressing cells. Int J Nanomedicine 7: 3475-3485, 2012.
5 39. Zou J, Sood R, Ranjan S, et al: Size-dependent passage of liposome nanocarriers with 
6 preserved posttransport integrity across the middle-inner ear barriers in rats. Otol Neurotol 33: 666-
7 673, 2012.
8 40. Zou J, Sood R, Ranjan S, et al: Manufacturing and in vivo inner ear visualization of MRI 
9 traceable liposome nanoparticles encapsulating gadolinium. J Nanobiotechnology 8: 32, 2010.

10 41. Letchford K and Burt H: A review of the formation and classification of amphiphilic block 
11 copolymer nanoparticulate structures: micelles, nanospheres, nanocapsules and polymersomes. Eur 
12 J Pharm Biopharm 65: 259-269, 2007.
13 42. Farokhzad OC and Langer R: Nanomedicine: developing smarter therapeutic and diagnostic 
14 modalities. Adv Drug Deliv Rev 58: 1456-1459, 2006.
15 43. Lin JJ, Ghoroghchian PP, Zhang Y and Hammer DA: Adhesion of antibody-functionalized 
16 polymersomes. Langmuir 22: 3975-3979, 2006.
17 44. Roy S, Johnston AH, Newman TA, et al: Cell-specific targeting in the mouse inner ear using 
18 nanoparticles conjugated with a neurotrophin-derived peptide ligand: potential tool for drug 
19 delivery. Int J Pharm 390: 214-224, 2010.
20 45. Kim DK, Park SN, Park KH, et al: Development of a drug delivery system for the inner ear 
21 using poly(amino acid)-based nanoparticles. Drug Deliv 22: 367-374, 2015.
22 46. Yoon JY, Yang KJ, Kim da E, et al: Intratympanic delivery of oligoarginine-conjugated 
23 nanoparticles as a gene (or drug) carrier to the inner ear. Biomaterials 73: 243-253, 2015.
24 47. Kumari A, Yadav SK and Yadav SC: Biodegradable polymeric nanoparticles based drug 
25 delivery systems. Colloids Surf B Biointerfaces 75: 1-18, 2010.
26 48. Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A and Preat V: PLGA-based 
27 nanoparticles: an overview of biomedical applications. J Control Release 161: 505-522, 2012.
28 49. Grottkau BE, Cai X, Wang J, Yang X and Lin Y: Polymeric nanoparticles for a drug 
29 delivery system. Curr Drug Metab 14: 840-846, 2013.
30 50. Cai H, Wen X, Wen L, et al: Enhanced local bioavailability of single or compound drugs 
31 delivery to the inner ear through application of PLGA nanoparticles via round window 
32 administration. Int J Nanomedicine 9: 5591-5601, 2014.
33 51. Pritz CO, Dudas J, Rask-Andersen H, Schrott-Fischer A and Glueckert R: Nanomedicine 
34 strategies for drug delivery to the ear. Nanomedicine (Lond) 8: 1155-1172, 2013.
35 52. Le VH, Thuc CN and Thuc HH: Synthesis of silica nanoparticles from Vietnamese rice husk 
36 by sol-gel method. Nanoscale Res Lett 8: 58, 2013.
37 53. Sameti M, Bohr G, Ravi Kumar MN, et al: Stabilisation by freeze-drying of cationically 
38 modified silica nanoparticles for gene delivery. Int J Pharm 266: 51-60, 2003.
39 54. Ahola M, Rich J, Kortesuo P, Kiesvaara J, Seppala J and Yli-Urpo A: In vitro evaluation of 
40 biodegradable epsilon-caprolactone-co-D, L-lactide/silica xerogel composites containing toremifene 
41 citrate. Int J Pharm 181: 181-191, 1999.
42 55. Praetorius M, Brunner C, Lehnert B, et al: Transsynaptic delivery of nanoparticles to the 
43 central auditory nervous system. Acta Otolaryngol 127: 486-490, 2007.
44 56. Sun C, Lee JS and Zhang M: Magnetic nanoparticles in MR imaging and drug delivery. Adv 
45 Drug Deliv Rev 60: 1252-1265, 2008.
46 57. Cao ZG, Zhou SW, Sun K, Lu XB, Luo G and Liu JH: [Preparation and feasibility of 
47 superparamagnetic dextran iron oxide nanoparticles as gene carrier]. Ai Zheng 23: 1105-1109, 
48 2004.
49 58. Ye F, Laurent S, Fornara A, et al: Uniform mesoporous silica coated iron oxide 
50 nanoparticles as a highly efficient, nontoxic MRI T(2) contrast agent with tunable proton 
51 relaxivities. Contrast Media Mol Imaging 7: 460-468, 2012.



18

1 59. Kopke RD, Wassel RA, Mondalek F, et al: Magnetic nanoparticles: inner ear targeted 
2 molecule delivery and middle ear implant. Audiol Neurootol 11: 123-133, 2006.
3 60. Ge X, Jackson RL, Liu J, et al: Distribution of PLGA nanoparticles in chinchilla cochleae. 
4 Otolaryngol Head Neck Surg 137: 619-623, 2007.
5 61. Mondalek FG, Zhang YY, Kropp B, et al: The permeability of SPION over an artificial 
6 three-layer membrane is enhanced by external magnetic field. J Nanobiotechnology 4: 4, 2006.
7 62. Barnes AL, Wassel RA, Mondalek F, Chen K, Dormer KJ and Kopke RD: Magnetic 
8 characterization of superparamagnetic nanoparticles pulled through model membranes. Biomagn 
9 Res Technol 5: 1, 2007.

10 63. Zou J, Zhang W, Poe D, et al: MRI manifestation of novel superparamagnetic iron oxide 
11 nanoparticles in the rat inner ear. Nanomedicine (Lond) 5: 739-754, 2010.
12 64. Dormer Kea: Magnetically-targeted, technetium 99m-labeled nanoparticles to the inner ear. 
13 J Biomed Nanotechnol 4: 10, 2008.
14 65. Du X, Chen K, Kuriyavar S, et al: Magnetic targeted delivery of dexamethasone acetate 
15 across the round window membrane in guinea pigs. Otol Neurotol 34: 41-47, 2013.
16 66. Roy S, Glueckert R, Johnston AH, et al: Strategies for drug delivery to the human inner ear 
17 by multifunctional nanoparticles. Nanomedicine (Lond) 7: 55-63, 2012.
18 67. Zou J, Sood R, Zhang Y, Kinnunen PK and Pyykko I: Pathway and morphological 
19 transformation of liposome nanocarriers after release from a novel sustained inner-ear delivery 
20 system. Nanomedicine (Lond) 9: 2143-2155, 2014.
21 68. Wu TH, Liu CP, Chien CT and Lin SY: Fluorescent hydroxylamine derived from the 
22 fragmentation of PAMAM dendrimers for intracellular hypochlorite recognition. Chemistry 19: 
23 11672-11675, 2013.
24 69. Moss OR: Insights into the healthy effects of nanoparticles: why numbers matter. Int J 
25 Nanotechnol 5: 1-8, 2008.
26 70. Sheppard WM, Wanamaker HH, Pack A, Yamamoto S and Slepecky N: Direct round 
27 window application of gentamicin with varying delivery vehicles: a comparison of ototoxicity. 
28 Otolaryngol Head Neck Surg 131: 890-896, 2004.
29 71. El Kechai N, Mamelle E, Nguyen Y, et al: Hyaluronic acid liposomal gel sustains delivery 
30 of a corticoid to the inner ear. J Control Release 226: 248-257, 2016.
31 72. Thaler M, Roy S, Fornara A, et al: Visualization and analysis of superparamagnetic iron 
32 oxide nanoparticles in the inner ear by light microscopy and energy filtered TEM. Nanomedicine 7: 
33 360-369, 2011.
34 73. Lajud SA, Nagda DA, Qiao P, et al: A novel chitosan-hydrogel-based nanoparticle delivery 
35 system for local inner ear application. Otol Neurotol 36: 341-347, 2015.
36 74. Wang X, Dellamary L, Fernandez R, et al: Dose-dependent sustained release of 
37 dexamethasone in inner ear cochlear fluids using a novel local delivery approach. Audiol Neurootol 
38 14: 393-401, 2009.
39 75. Salt AN and Plontke SK: Principles of local drug delivery to the inner ear. Audiol Neurootol 
40 14: 350-360, 2009.
41 76. Astolfi L, Guaran V, Marchetti N, et al: Cochlear implants and drug delivery: In vitro 
42 evaluation of dexamethasone release. J Biomed Mater Res B Appl Biomater 102: 267-273, 2014.

43



Figure Legends

Fig. 1. Scheme of the cochlea structure, highlighting the cochlear barriers, the round window and 
the stria vascularis.

Fig. 2. Scheme of nanoparticle administration routes. Arrow: intratympanic route; black arrowhead: 
intracochlear route by round window; white arrowhead: intracochlear route by cochleostomy.

Fig. 3. Structures of nanoparticles (NP) useful for drug delivery. LCN: lipid core NP; SPION: 
supermagnetic iron oxide NP; HBPL: hyperbranched poly-L-lysine NP; P: hydrophilic region; NP: 
hydrophobic region.








