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Abstract

The study describes a multi-objective optimization algorithm for an innovative integration of

forced ventilated PV-PCM modules in glazed façade buildings: the aim is to identify and

optimize the parameters that most affect thermal and energy performances. 1-D model, finite

difference method FDM, thermal resistances technique and enthalpy method were applied to

describe different façade solutions and transient thermal performance of PCM. The coupling

between the PV-PCM façade code implemented in MATLAB and the TRNSYS software was

developed to estimate the dynamic thermal energy profiles. An exploratory step has also been

considered prior to the optimization algorithm: it evaluates the energy profiles before and

after the application of PCM to PV module integrated in glazed building. The optimization

analysis investigate parameters such as ventilation flow rates and time schedule to obtain the

best combination suiting the PCM performance and external-internal loads. A group of solution

were identified on the Pareto front. Savings in thermal loads for the best individual reached

26.4% while the best in temperature increment in operating temperatures was recorded as 6.8%

comparing to the design set temperature.
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1. Introduction

1.1. Background - PCM integration to PV and building sector

Although the building sector represents more than 40% of the total energy consumption in

Europe (El-Sawi et al. [1]), it includes a wide range of possible solutions concerning innovative

energetic technologies. PV modules integration in the building sector is one of the effective5

and easiest application (Machniewicz et al. [2]). The efficiency of PV modules depends on the

solar radiation intensity and temperature of the panel (Ma. et al. [3]). Six basic techniques

of PV thermal management could be identified: natural or forced air circulation, hydraulic or

thermoelectric cooling, heat pipes and implementation of phase changing materials. Although

the implementation of PCM on the back side of PV panel reduces and stabilizes its surface10

temperature (Pielichowska et al. [4]), the system, as a whole, needs a detailed analysis since

that PCM thermal performance is depending on many uncontrolled dynamic conditions such as

external temperature and wind speed (Brano et al. [5]). Elarga at al. [6] highlighted that the

correct choice of the transition temperature of the PCM, coupled with a synchronized ventilation

strategy for the material solidification phase, are the key features to ensure the effectiveness of15

the PV-PCM integration. On the other hand, there are many reported studies concerning the

PCM integration in buildings in active (Li, et al. [7]) and passive systems (Elarga et al. [8]).

De Gracia et al. [9] have investigated active thermal storage system TES applying a control

system based on reinforcement learning technique. This proposed optimization algorithm has

evaluated the system performance based on energy savings, cost reduction and CO2 mitigation20

under different climates condition which obtained a more realistic evaluation concerning the

building sector development.

1.2. Background - Building optimization algorithms

The analysis of the energy consumption in a building is complex and includes several

parameters that could affect the performances, furhtermore, the parameters to be considered25

in an optimzation algorithm are diverse and overlapping. The necessity to implement co-

simulation between different dynamic models is essential to obtain realistic results. Concerning

the energy and thermal comfort performance, the optimization should include set of parameters

such as the effect of climate, building architectural design, ventilation schedule and control of

energy storage systems. Several novel method/design tools have been developed for aiding the30
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optimal building design (Lu et al. [10]). Hamdy et al. [11] proposed a modified multi-objective

optimization approach which is combined with IDA ICE (building performance simulation

program)[12] to minimize the investment and the equivalent CO2 emissions for a family house

including the HVAC system. Asadi et al. [13] have analyzed multiple choices for retrofitting

a building implementing simulation-based multi-objective optimization scheme (a combination35

of TRNSYS, GenOpt and a Tchebycheff optimization technique developed in MATLAB) to

optimize the retrofit cost, energy savings and thermal comfort of a residential building.GenOpt is

an optimization program for the minimization of a cost function that is evaluated by an external

simulation program. However, GenOpt is not capable of handling multi-objective optimization.

A Tchebycheff programming procedure has been developed in MATLAB to tackle the multi-40

objective optimization problem. A real case study is used to demonstrate the functionality

of the proposed approach. The results verify the practicability of the approach and highlight

that, by taking into consideration more possibilities available for building retrofit as well as

more objectives for making the solving procedure extremely difficult and time-consuming.

Ascione at al. [14] have proposed a simulation based model predictive control (MPC) procedure45

(EnergyPlus and MATLAB) consisting in the multi-objective optimization for operating cost

and thermal comfort of a space conditioning system. The critical issue of huge computational

time, typical of simulation-based MPC, is overcome by adopting a reliable minimum run period.

Carlucci et al. [15] have implemented a multi-objective optimization to minimize thermal and

visual discomfort, concluding that design procedures unsupported by automated optimization50

tools might find a hard challenge in exploring the entire space if variables and covering towards

optimal solutions. Bambrook et al. [16] conducted a design optimization using a building energy

simulation program IDA ICE for a detached low energy house in the mild warm Sydney climate.

The aim of the optimization was to reduce the building heating and cooling demand to the level

at which the heating and cooling system was no longer necessary. Wang et al. [17] investigated55

the optimal design solutions for zero energy building design in UK. Optimal design strategies

and energy systems, including passive design parameters (external walls, window to wall ratios

and orientations) and energy efficient mechanical systems as well as renewable energy systems,

were provided by employing EnergyPlus and TRNSYS 16 simulation software. The weighing of

the parameters on the under investigated objectives is one of the important aspects to be taken60

into consideration during the optimization phase. Bucking et al.[18] proposed a methodology to

identify the influential variations on the building performance. A back-tracking search identified
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that 8 of 26 variables have significant effects on the net-energy consumption in a house case-

study, especially solar orientation, variables related to the sizing of a roof-based PV system

and energy-related occupant behavior. Sun [19] studied the impacts of macro-parameters of65

buildings and systems (such as wall thickness, window to wall ratio, system COP) and their

variations in a nearly zero energy buildings (nZEB) on the system design through a systematic

sensitivity analysis. He found that the indoor temperature set-point is the most significant

factor in determining all building system sizes and the overall initial investment cost, followed

by the system COP and internal gain intensity.70

In the present work, the innovative integration of PV-PCM inside galzed facade cavity [8] has

taken a step forward. The PV-PCM calculation module is integrated in an optimization loop,

based on genetic algorithms. The multi-objective optimization schema has been developped

on the basis of S.O.C.R.A.TE. algorithm (Dal Monte et al. [20] and [21]) in order to force

the creation and mutation functions of the Matlab gamultiobj to assume integer values in part75

of the genetic pool. The mathematical problem results in a mixed-integer optimization where

two types of design variables are considered: the ventilation schedule variables assume values

in an integer domain, the mass flow variables take values in a continuous domain. The fitness

functions used in the optimization represent two conflicting objectives of thermal load and

thermal comfort.80

2. Methodology

The objective behind the optimization analysis is to identify the best combination of

investigated parameters and comprehend which of them mainly affect both the thermal loads

and thermal comfort. However, it was necessary to highlight on a preliminarily basis the

energy performance before and after implementing PCM to the PV integrated façades. The85

methodology section is subdivided into five parts. The first gives a brief introduction to

the thermal resistance method, the second is discussing the PV integrated façade numerical

model, the third is dedicated to the PV-PCM façade module. Following this, an illustration

of how to couple the two numerical models (TRNSYS and MATLAB) is given. Finally the

genetic optimization algorithm is clarified. Finite difference method FDM, fixed nodal grid and90

thermal resistances techniques were implemented to describe different façadessolutions under

investigation.
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2.1. Brief introduction to thermal resistances method

Thermal resistances Rk, Rc and Rrad represents respectively conduction, convection, and

radiation heat transfer between the wall layers and they are determined respectively through95

Equations 1, 2, and 5.

Rk = x/k (1)

where x is thickness and k is thermal conductivity.

Rc = 1/hc (2)

where hc is the convection heat transfer coefficient.

The convection heat transfer coefficients have been evaluated by different empirical laws:

For the outdoor surface the McAdams correlation [22] was adopted;

ho = 5.62 + 3.9v (3)

For the indoor layer, the convection heat transfer is evaluated using Equation 4, [23]100

hi =

{[
1.5

∣∣∣∣∆Thf
∣∣∣∣0.25]6

+

[
1.23(∆T )0.33

]6}1/6

(4)

where ∆T is the difference between the indoor air temperature and the indoor surface

temperature, while hf is the floor height.

Rr = 1/hr (5)

where hr is the radiation heat transfer coefficient.

For the radiation heat exchange, Equations 6 and 7 were used [24].

Rrad =

(
1
ε1

+ 1
ε2
− 1

)
4σ(Tavg)3

(6)

And hence:

hr =
4σ(Tavg)3](
1
ε1

+ 1
ε2
− 1

) (7)

where Tavg is the average temperature of the two opposite surfaces, which has been evaluated105

as function of temperature previous time step values.

More details related to the numerical modelling techniquecs are found in [25],[26].
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2.2. PV integrated façade

The exploratory step evaluates the yearly preliminary energy profiles estimated by TRNSYS

between PV and PV-PCM integaretd facade. PV integrated facade grid is represented by eight110

nodes as shown in Figure 1 and the thermal resistance scheme is illustrated in Figure 2. The

coupling of the fixed grid model developed on MATLAB to TRNSYS is further discussed in

Section 2.4.

Figure 1: Representation of the PV configuration scheme.

Figure 2: Representation of the RC model.

2.2.1. Description of the mathematical model

The mathematical model is composed by a sequence of 8 nodes, as illustrated in Figures 1115

and 2. In the external nodes 1 and 8, the heat transfer through the outer and inner layers of

the glazed façade is described by two thermal resistances, the convection heat transfer with the

ambient conditions and the conduction transfer within the layer itself.

(
− kgl
xg1
− ho

)
T1 +

( kgl
xg1

)
T2 = −Itr1

(ag1

2

)
− (Toho) (8)

(kg2

xg2

)
T7 +

(
− h1 −

kg2

xg2

)
T8 = −Itr3

(ag2

2

)
− (Tihi) (9)
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Nodes 2, 4, 5 and 7 are representing glazed layers and PV module surfaces. Thermal

resistances include thermal conductivity, thermal radiation between opposed surfaces and120

convection heat transfer through the ventilated cavity. The equations are:

(kg1

xg1

)
T1 +

(
− kg1

xg1
− hC1 − hr −

)
T2 + hC1T3 + hrT4 = −Itr1

(ag1

2

)
(10)

(kpv
xpv

)
T5 +

(
− kpv
xpv
− hC1 − hr −

)
T4 + hC1T3 + hrT2 = −Itr2

(apv
2

)
(11)

(kpv
xpv

)
T4 +

(
− kpv
xpv
− hC2 − hr −

)
T5 + hC2T6 + hrT7 = −Itr2

(apv
2

)
(12)

(kg3

xg3

)
T8 +

(
− kg3

xg3
− hC2 − hr −

)
T7 + hC2T6 + hrT5 = −ltr3

(ag2

2

)
(13)

Nodes 3 and 6 implements the energy balance of the two air cavities (cav1 and cav2) which

are seperated by the PV module integrated in the middle [27]. The cavities ventilation is (out

to out) technique i.e. air comes form outside, ventilates the cavity and is exhausted to the

outside again:125

hC1T2 + (−2hC1 − ṁc)T3 + hC1T4 = −(mc)To (14)

hC2T5 + (−2hC2 − ṁc)T6 + hC2T7 = −(ṁc)To (15)

2.3. PV-PCM model

In this subsection, the enthalpy numerical method which describes thermal performance of

PCM is brielfy presented. Later the energy balance equations describing the PV-PCM fixed grid

model are shown. However, the enthalpy method has been previously illustrated and validated

against experimantal data [6]. For more details concerning the experimental campaign, reader130

should refer to [28].

The enthalpy method was proposed by Voller and Swaminathan [29], to model the thermal

behaviour of materials undergoing a phase change, under the assumption that phase change

occurs over an arbitrarily narrow temperature range. In this way, the enthalpy can be related to

the temperature by a piecewise continuous function. Assuming constant specific heat capacity135
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in each phase, the enthalpy can be approximated using three temperature possibility ranges as

in Equation 16:

H =


csT if T ≤ Tm − ε

cs(Tm − ε) +
[
cs+cl

2 + L
2ε

]
(T − Tm + ε) if Tm − ε ≤ T ≤ Tm + ε

clT + (cs − cl)Tm + L if T ≥ Tm + ε

(16)

Where ε is an arbitrarily small value representing half the phase change temperature

interval. The approximate definition H(T) can be differentiated into Equation 17 with respect

to temperature.140

CA =
dH

dT
=


cs if T ≤ Tm − ε[
cs+cl

2 + L
2ε

]
(T − Tm + ε) if Tm − ε ≤ T ≤ Tm + ε

cl if T ≥ Tm + ε

(17)

The definitions of H(T ) and CA can be used to linearise the discretized enthalpy equation

in an iterative form, as in Equation 18.

anb
Tnb
− (ap + ρCA)(TP )n = apρC

A(TP )n−1 − ρ V
∆τ

[H◦
p −Hn−1

p ] (18)

where H◦
p is the enthalpy node value of the previous time step, Hn−1

p represents the enthalpy

node value of iteration n− 1, a are the nodal coefficients and τ is the time step.

The solution domain is defined where the derived linear equations form a matrix system, which145

is instantaneously solved by inverting the matrix to obtain the temperature values according

to an iterative scheme. The initial values of each time step are represented by the converged

solution of the previous time step. From the known temperature field and enthalpy at iteration

n − 1, the temperatures in each node are updated. In order to ensure solution consistency,

a correction and iterative loop has to be followed by saving the solution of the matrix in the150

previous iteration and then re-solving the system after correcting the nodal temperature Tn
P by

Equation 19 with three possibilities of enthalpy ranges until the convergence is reached. The
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code thus saves the calculated temperature field, and starts a new time step.

Tn
P =



(
Hn

P

cs

)
if Hn

P ≤ cs(Tm − ε)(
Hn

P +

[
cs+cl

2 + L
2ε

]
(Tm−ε)

cs+cl
2 + L

2ε

)
if cs(Tm − ε) ≤ Hn

P ≤ cs(Tm + ε)

Hn
P−(cs−cl)Tm−L

cl
if Hn

P ≥ cs(Tm + ε) + L

(19)

2.3.1. Description of the mathematical model

In the PV-PCM mathematical model a scheme composed by 15 nodes is adopted, as shown155

in Figures 3 and 4.

Figure 3: Representation of the PV-PCM facade configuration scheme.

Figure 4: Representation of the RC scheme.

Thermal conduction and convection resistances are moderating the thermal performance of

the external nodes 1 and 15.

(
− Kgl

xg1
− ho

)
T1 +

(Kgl

xg1

)
T2 = −Itr1

(ag1

2

)
− (hoTo) (20)

(
− Kg3

xg3
− hi

)
T15 +

(Kgl

xg1

)
T14 = −Itr5

(ag1

2

)
− (hiTi) (21)
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Radiation heat exchange between surfaces is appeared in the energy balance between nodes

2, 4 and between 12 and 14.160

(Kg1

xg1

)
T1 +

(
− Kgl

xg1
− hC1 − hr

)
T2 + hC1T3 + hrT4 = −Itr1

(ag1

2

)
(22)

hrT2 + hC1T3 +
(
− hr − hC1 −

kpv
xpv

)
T4 +

(kpv
xpv

)
T5 = −Itr2

(apv
2

)
(23)

(kg2

xg2

)
T11 +

(
− hr − hC2 −

kg2

xg2

)
T12 + hC2T13 + hrT14 = −Itr4

(ag2

2

)
(24)

(Kg3

xg3

)
T15 +

(
− Kg3

xg3
− hC2 − hr

)
T14 + hC2T13 + hrT12 = −Itr5

(ag3

2

)
(25)

Forced convection was implemented within both cavities represented by node 3 and 13.

hC1T2 + (−2hC1 − ṁc)T3 + hC1T4 = −(ṁc)To (26)

hC2T12 + (−2hC2 − ṁc)T13 + hC2T14 = −(ṁc)To (27)

In Nodes 5 and 11 thermal conductivity is the only heat transfer mode dominating the

energy balance.

(kpv
xpv

)
T4 +

(
− kpv
xpv
− kp1

xp1

)
T5 +

(kp1

xp1

)
Tp1 = −Itr2

(apv
2

)
(28)

(kp5

xp5

)
Tp5 +

(
− kp5

xp5
− kg2

xg2

)
T11 +

(kg2

xg2

)
T12 = −Itr4

(ag2

2

)
(29)

Each homogeneous sub layer from the five nodes composing PCM layer (nodes from P1 to

P5, as shown in Figure 4 ) is represented by a conductive resistance and an enthalpy term, for165

the sake of brevity; clarified only one node thermal balance node P2, in Equation 30:

(kp
xp

)
Tp1 +

(
− 2

kp
xp
− ρxp(cA)p2

∆τ

)
Tp2 +

(kp
xp

)
Tp3 =

−Itr3

(apcm
2

)
+
(ρxp(cA)p2

∆τ

)n−1

Tn−1
p2 − ρ xp

∆τ

[
H0

P −Hn−1
P

] (30)
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2.4. MATLAB-TRNSYS coupling

In order to obtain a reliable simulation of the impact of a PV-PCM combination on the

building energy demand, a yearly thermal loads analysis has to be clarified. The previously

presented PV-PCM 1-D model developed in MATLAB has to be linked to TRNSYS (Klein170

et al. [30]). TRNSYS is a dynamic thermal model that takes into account both the external

and internal loads and the stored heat in the building components. The interaction between

MATLAB and TRNSYS Simulation Studio has been carried out using TYPE155 from TRNYS

library. This type is dedicated to read external codes executed by MATLAB. The numerical

algorithm starts by linking the required weather condition from TYPE16 to both the MATLAB175

and the zone built in TRNbld TYPE56. Generally, it is mandatory to link the weather file to

TYPE56 in order to operate the simulation model . On the other hand, for each listed inner

zone on TYPE56, there is availability to set its input data and boundary conditions as a user

defined option. The PV-PCM -1D numerical code estimates the temperature and transmitted

solar radiation for each of the fixed grid nodes including the last node which represents the180

inner surface layer temperature i.e. node 15. However, the transient interface between TRNSYS

and MATLAB models occurs in air node 13 (see Figure 4). The estimated transmitted solar

radiation and air temperature with a 15 minutes time step are read as a user defined value for the

inner layer zone on TYPE56. The reason behind considering the coincident interface between

the two models in node 13 is that to obtain the correct inner glazed surface energy balance and185

its final temperature, the complete room structure and the correspondent radiative/convective

heat exchange between all room inner surfaces(which includes also thermal storage of the room

walls) have to be considered. The inner glass layer has been identified in TRNbld TYPE56

library with the specifications of Table 1.

190

Density 2500 kg/m3

Capacity 0.84 kJ/(kgK)

Conductivity 0.27 kJ/(hmK)

Table 1: Glazed layer specifications

The inside set temperatures, adopted in the analysis, for the summer and winter seasons

are defined in Table 2. The considered façade is west oriented and the office area is 80m2 and
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internal loads were evaluated as 24W/m2.

Period Working days Weekend

Cooling season
Working hours (07:00 19:00) 25°C 29°C

Idle hours (19:00 07:00) 32°C 32°C

Heating season
Working hours (07:00 19:00) 20°C 17°C

Idle hours (19:00 07:00) 15°C 15°C

Table 2: Inside Set Temperature

2.5. Genetic Algorithm Optimization

Genetic algorithms represent one of the most powerful tool to analyse problems characterized195

by the influence of several parameters that lead to the definition of multiple optimal solutions.

The representation of the optimization schema adopted for the proposed analysis is shown

in Figure 5. The overall optimization is lead by MATLAB gamultiobj algorithm; the genes

represent the parameters for the PV-PCM façade calculation (carried in MATLAB) and the

resulting distributions of the cavity air node temperature Tac, thermal energy Qth and cavity200

convection heat transfer coefficient hC are saved. The inner zone calculation, implemented in

the TRNSYS module, uses the previous distributions in order to evaluate the thermal load Qth

and the operating temperature Top evolutions in each time step of the year. In the second

MATLAB module, different in-house functions elaborate the data in order to determine two

single parameter value to describe the performances of the individual.205

Figure 5: Schematic representation of the genetic algorithm.
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The population adopted for optimization consists of 40 individuals composed by a set of 8

genes; the optimization run for a total number of 50 generations. The first population considered

in the algorithm is random initialized.

2.5.1. Design Variables

In the optimization terminology, an individual represents the codification of a certain setting210

of the analysis and the resulting performances are calculated starting from its parameters;

furthermore, the individual’s chromosome consists of the sequence of parametric values to be

optimized.

In the present optimization, the considered design variables (defined with the X array,

illustrated in Table 3) determines the schedule of the ventilation inside the two cavities; genes215

X(1) and X(2) represent the mass flow values multiplied by the air specific heat capacity

(mcp1 and mcp2 in [J/sK]), in genes from X(3) to X(5) the starting hour of the ventilation

system is fixed for Winter, Mid-Seasons and Summer; finally genes from X(6) to X(8) establish

the duration of the ventilation during the three periods. The parameters that determine the

schedules of ventilation are represented by an integer number: the values are further converted220

in a starting hour or a duration using a factor of 30 minutes. For instance, the ventilation in

winter of the baseline individual (3rd row of Table 3) starts at 8.00a.m. (16 ∗ 0.5h, Gene X(3))

and is turned off after 8 hours (16 ∗ 0.5h, Gene X(3)).

X(1) X(2) X(3) X(4) X(5) X(6) X(7) X(8)

Lower Bounds 60 60 0 0 0 0 0 0

Upper Bounds 360 360 48 48 48 20 20 20

Baseline 100 100 16 16 16 16 16 16

Table 3: Upper and lower bounds adopted for the design variables, chromosome of the baseline individual

considered for the optimization.

2.5.2. Objective Functions and Constraints

The optimization problems concerns the minimization of two conflicting objective functions.225

The first objective function fQ is represented by the ratio between the total thermal load of a

13



year, of the considered individual and the baseline setting, calculated as:

fQ =

∑n
i=1 |Qth,i|
Qth,bas

(31)

The thermal comfort f∆T is the second objective function. In the present formulation,

it is defined as the differences between the calculated operating temperature Top and the

desired design temperature Tde. The value is normalized with respect the value of the baseline230

configuration:

f∆T =

∑n
i=1 |Top,i − Tde,i|

∆Tbas
(32)

Furthermore, a linear inequality constraint is set in order to limit the sum of mass flow rate

multiplied by the air specific heat capacitymcp in cavities 1 and 2 to 400J.s−1K−1, i.e 0.4kg.s−1.

X(1) +X(2) ≤ 400 (33)

The choice of using two contrasting functions allows to determine a Pareto front and to235

identify several solutions, based on the importance given to the considered objectives.

3. Results and Discussion

The results are divided into two main sections; first, the baseline configuration with and

without PCM is presented in order to highlight the effect of PCM on the performance, the

second section contains the results of the optimization and different individuals belonging to240

the Pareto Front are analysed.

3.1. Exploratory analysis: PV with and without PCM integrated façade

For a complete test reference year data TRY, two simulations were run considering cases

with and without PCM. Ventilation air flow rate for both cavities were considered 10l/s per

façade meter [31], [32] and it was ON during working hours, which started from 7.00 to 19.00.245

The inside set temperatures have been previously specified in Table 2.

Thermal analysis has been investigated for both cases to highlight the influence of the PCM

latent heat storage capability. In Figure 6 the thermal energy profile for the week of 16th−23th

of July is presented; in fact, according to the TRY database, this month is recorded as the
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hottest month in Venice summer season. As it is shown, thermal cooling loads are always250

higher during the day working hours. The implementation of PCM reduced thermal cooling

loads all over the summer season by 48 %.

Mon. Tue. Wen. Thu. Fri. Sat. Sun.

Week: 16-23 July [day]

0

1

2

3

4

5

6

7

8

9

10

T
l [k

W
h]

PV
PV-PCM

Figure 6: Week thermal energy profiles.

This initial exploratory study is followed by the optimization analysis to determine which

are the parameters that influence on the PCM performance.

3.2. Optimization Analysis255

3.2.1. Analysis of Genetic Algorithm results

The results of the optimization of the PV-PCM façade configuration are presented in terms

of Pareto front analysis. The evolution of the Pareto front through the generation is shown in

Figure 7: as can be noticed, the genetic algorithm greatly improved the performances of the

individual until the 30th generation, after that, the convergence seems to be reached and no260

further improvements are found. On the other hand, Figure 8 presents the overall Pareto front

of the optimization, considering all the analysed individuals.

Individuals belonging to the front represent the best solutions in, at least, one objective

function of the optimization. A single solution can not be considered as the best configuration,

hence several individuals distributed along the front are hereby analysed. Table 4 compares the265

genetic pools and the fitness values of the considered individuals belonging to the Pareto front

and the baseline configuration.
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Figure 7: Evolution of the Pareto front through the generations.
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Figure 8: Final Pareto front of the optimization.

The first solutions to be discussed are located in the upper-left part of the Pareto front, they

represent the best configuration for the thermal load reduction with no significant improvements

in the thermal comfort (Figure 9). The setting of Ind01 allows the greatest reduction in the270

thermal load fQ (-26.4%), however f∆T has been slightly increased of 1.2%. Ind02 presents

similar performances in terms of fQ with Ind01 and almost the same f∆T of the baseline. It is
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X(1) X(2) X(3) X(4) X(5) X(6) X(7) X(8) fQ f∆T

Basel. 100.00 100.00 16 16 16 16 16 16 1.000 1.000

Ind01 158.25 106.96 13 19 15 1 16 20 0.734 1.012

Ind02 166.61 104.81 11 20 15 2 17 20 0.735 0.998

Ind03 186.37 106.12 9 19 15 4 19 19 0.754 0.981

Ind04 186.11 106.74 9 19 15 5 19 17 0.785 0.971

Ind05 181.54 106.42 10 19 15 4 19 14 0.826 0.960

Ind06 183.76 106.75 10 19 15 4 19 11 0.867 0.951

Ind07 176.60 106.58 10 19 15 5 19 6 0.958 0.939

Ind08 162.41 106.11 15 18 16 11 20 5 1.083 0.932

Table 4: Genetic pool and fitness values of the considered individuals belonging to the Pareto front.

interesting to notice how the greatest reductions in thermal load have been obtained with the

limitation of the ventilation time in winter season to 1 and 2 hours; it can be concluded the

ventilation in winter is not necessary to improve the thermal load performance.275
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Figure 9: Graphical representation of the schedule of Individuals 1 (on the left) and 2 (on the right).

Moving along the Pareto Front towards right, the solutions improve the performances in

terms of f∆T and at the same time get worse considering fQ. Great increments in thermal load

can be observed for Ind03 (-24.6%) and Ind04 (-21.5%) with small improvements in f∆T (Figure

10). As can be seen in Figure 11, improvements in thermal load are reduced for Ind05 (-17.4%)

17



and Ind06 (-13.3%) however the termal confort increases, being the operating temperature280

closer to the design temperature (decrease of 4.0% and 4.9% in f∆T ).
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Figure 10: Graphical representation of the schedule of Individuals 3 (on the left) and 4 (on the right).

Winter Mid−Season Summer
0

4

8

12

16

20

24
Individual 5

H
ou

rs
 [h

]

Ventilation Schedule:

Win. = 05:00 to 07:00

Mid. = 09:30 to 19:00

Sum. = 07:30 to 14:30

mcp
1
 = 181.5 J/sK

mcp
2
 = 106.4 J/sK

Winter Mid−Season Summer
0

4

8

12

16

20

24
Individual 6

H
ou

rs
 [h

]

Ventilation Schedule:

Win. = 05:00 to 07:00

Mid. = 09:30 to 19:00

Sum. = 07:30 to 13:00

mcp
1
 = 183.8 J/sK

mcp
2
 = 106.7 J/sK

Figure 11: Graphical representation of the schedule of Individuals 5 (on the left) and 6 (on the right).

Finally, the last two considered individuals are found in the down-right zone of the Pareto

Front (Figure 12). Ind07 improves f∆T of 6.1% with a limited reduction of thermal load of

4.2%. The best individual of the optimization for the reduction of f∆T (- 6.8%) is represented

by Ind08, however its performance, in terms of fQ, is decreased compared to the baseline, with285

an increment in thermal load of 8.3%.

Some considerations can also be done observing the trend of parameters along the Pareto
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Figure 12: Graphical representation of the schedule of Individuals 7 (on the left) and 8 (on the right).

front (from Ind01 to Ind08 ). The progressive slightly increment in the duration of ventilation

during the Winter season is opposed to the marked decrease in the Summer season. In the

meanwhile the values of mass flow of cav1, increase with respect Ind01 and Ind02. A clear trend290

in the parameters can be identified: thermal load can be reduced by limiting the ventilation

in winter and increasing its duration in summer; on the other hand if thermal comfort is the

primary goal, the ventilation should be reduced in summer and increased during winter season.

3.2.2. PV-PCM Integration Air Thermal Analysis

The eight individuals analysed from Figure 9 to 12 are reflecting the thermal performances of295

the optimization different solutions. Considering Ind01, during the winter season both cavities

cav1 and cav2 were almost not ventilated. It was enough to depend on the PCM latent heat

storage capability. However, the pattern has changed during both the summer and mid seasons.

In the mid-season, the cavity ventilation started in 9:30 am and lasted for 8 hours while in the

summer season, the ventilation started in 7:30 am and lasted till 17:30 pm. This ventilation300

schedule has enforced the PCM charging/discharging process efficiently to confront the external

and internal loads, in which the PCM works under its highest values of specific heat capacity.

With almost the same ventilation schedule in Ind02, the first fitness function i.e. thermal loads

has not improved much. On the other hand, by reducing the summer ventilation time period,

thermal loads started to increase more. The ventilation flow rates as a whole were considered305

not to exceed 16l/s per façade meter.

19



The influence of ventilating cav1 is higher on the required thermal loads in comparing to cav2.

The ventilation flow rate of cav2 is almost constant and equal to 4.5 l/s per façade meter in all

seasons while in cav1 it ranged between 6 to 8l/s per façade meter This indicates that higher flow

rates implemented to cool the PV surface is improving the overall energy balance of the inner310

zone. On the other hand, PCM requires lesser mass flow rates in respect to its variable physical

states and thermal inertia. In Figure 13, the energy profiles for three individuals (Ind01, Ind05

and Ind08 ) are compared. The required cooling loads in Ind01 is in between the range of 2 and

4 kWh till almost 18 h and it increases to 5 kWh which confront the ventilation termination of

cavity 2. The same profile occurred in the other cases; however the thermal requirements rises315

in 15 h in Ind03 and in 11 h in Ind08. Which again confirming the importance of the cavity

ventilation schedule.
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Figure 13: 6th July: comparision of daily thermal energy profiles for different solutions.

4. Conclusions

The objective of the study is to highlight that not only energy trends and savings are

essential to evaluate the success of innovative applications, but also the thermal comfort has320

to be taken into account. The multi-objective optimization study allowed to identify a set

of solutions between the best in thermal loads and best in thermal comfort; accordingly, a

compromise decisions to ensure both energy savings and indoor comfort has to be made.
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The results demonstrates how both the schedule of ventilation and air flow rates represent

key parameters for the optimization: the thermal energy requirements were reduced and325

the maximum advantage of the implemented PCM layer was obtained. Thermal loads are

proportional to ventilation starting hour and duration, especially during the cooling season.

When the duration dropped below 7 hours, the required thermal loads started to deteriorate.

High solar radiation, intensity and external temperature need the ventilation system to support

the PCM solidification process. During winter season, heating loads were inverse proportional to330

the cavities ventilation. The best thermal performance solution was obtained by not ventilating

the cavities. This is due to the low external loads, accordingly the PCM is almost working under

its solid states. On the other hand, the second fitness function concluded in the difference

between design and the operating inside temperatures has a different trend. This temperature

difference is inverse proportional to the cavities ventilation duration. In the summer season;335

not ventilating the cavity is delaying the PCM solidification phase. Thus, the PCM latent heat

storage capability, which produce a more flatter temperature profile, is in its minimum level

i.e. specific heat capacity is 2kJkg−1K−1. Finally, to expand the study on urban scale, it is

important to highlight that the PCM type has to be properly selected to suit the boundary

conditions of each case under investigation.340

Further works should also focus on the economical considerations to expand the results on

urban scale deployment. In fact, the cost of energy definitely represents a main factor and a

third contrasting objective to be taken into account during the decision process regarding the

implementation of a PV-PCM module.
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Nomenclature345

a Solar absorption coefficient −

cl PCM Liquid specific heat capacity J/kgK

cs PCM Solid specific heat capacity J/kgK

CA Heat Capacity J/kgK

h Convection heat transfer coefficient W/m2K

hc Air cavity convection heat transfer coefficient W/m2K

H Enthalpy J/kg

HP Enthalpy node value J/kg

fh Floor height m

fQ Thermal load fitness −

f∆T Operating temperature fitness −

i Iteration number –

L Latent heat storage J/kgK

ṁ Mass flow rate kg/s

n Maximum iteration number –

Itr Transmitted solar radiation kW.h

Qth Thermal load kW.h

Qth,bas Thermal load of baseline individual kW.h

t Time s

T Temperature K

Tac Temperature of air cavity K

Tde Design temperature K

Tm Melting peak temperature K

Tnb Adjacent nodes Temperature K

Top Operating temperature K

TP PCM node Temperature K

k Thermal conductivity coefficient W/mK

R Thermal Resistance m2K/W

v Air velocity m/s

X Vector of Genes −
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∆Tbas Temperature difference in baseline individual ◦C

ε Arbitrary small temperature value K

ρ Mass density kg/m3

τ Time step s

Acronyms

HV AC Heating Ventilation and Air Conditioning

PCM Phase Change Material

PV Photo Voltaices

nZEB nearly Zero Energy Building
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